Modular Combinatorial DNA Assembly of Group B Streptococcus Capsular Polysaccharide Biosynthesis Pathways to Expediate the Production of Novel Glycoconjugate Vaccines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Plasmids
2.2. Construction of GBS CPS Biosynthesis Pathways
2.3. Detection of Glycan Expression by Dot Blot Analysis
2.4. Western Blot Analysis
3. Results
3.1. Heterologous Biosynthesis of GBS CPS III
3.2. Heterologous Biosynthesis of GBS CPS IV and CPS V
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, L.; Valentine, J.L.; Huang, C.-J.; Endicott, C.E.; Moeller, T.D.; Rasmussen, J.A.; Fletcher, J.R.; Boll, J.M.; Rosenthal, J.A.; Dobruchowska, J.; et al. Outer membrane vesicles displaying engineered glycotopes elicit protective antibodies. Proc. Natl. Acad. Sci. USA 2016, 113, E3609–E3618. [Google Scholar] [CrossRef] [PubMed]
- Ravenscroft, N.; Haeuptle, M.A.; Kowarik, M.; Fernandez, F.S.; Carranza, P.; Brunner, A.; Steffen, M.; Wetter, M.; Keller, S.; Ruch, C.; et al. Purification and characterization of a Shigella conjugate vaccine, produced by glycoengineering Escherichia coli. Glycobiology 2016, 26, 51–62. [Google Scholar] [CrossRef] [PubMed]
- van den Dobbelsteen, G.; Faé, K.C.; Serroyen, J.; van den Nieuwenhof, I.M.; Braun, M.; Haeuptle, M.A.; Sirena, D.; Schneider, J.; Alaimo, C.; Lipowsky, G.; et al. Immunogenicity and safety of a tetravalent E. coli O-antigen bioconjugate vaccine in animal models. Vaccine 2016, 34, 4152–4160. [Google Scholar] [CrossRef]
- Natarajan, A.; Jaroentomeechai, T.; Cabrera-Sánchez, M.; Mohammed, J.C.; Cox, E.C.; Young, O.; Shajahan, A.; Vilkhovoy, M.; Vadhin, S.; Varner, J.D.; et al. Engineering orthogonal human O-linked glycoprotein biosynthesis in bacteria. Nat. Chem. Biol. 2020, 16, 1062–1070. [Google Scholar] [CrossRef]
- Glasscock, C.J.; Yates, L.E.; Jaroentomeechai, T.; Wilson, J.D.; Merritt, J.H.; Lucks, J.B.; DeLisa, M.P. A flow cytometric approach to engineering Escherichia coli for improved eukaryotic protein glycosylation. Metab. Eng. 2018, 47, 488–495. [Google Scholar] [CrossRef]
- Tytgat, H.L.P.; Lin, C.-w.; Levasseur, M.D.; Tomek, M.B.; Rutschmann, C.; Mock, J.; Liebscher, N.; Terasaka, N.; Azuma, Y.; Wetter, M.; et al. Cytoplasmic glycoengineering enables biosynthesis of nanoscale glycoprotein assemblies. Nat. Commun. 2019, 10, 5403. [Google Scholar] [CrossRef] [PubMed]
- Dow, J.M.; Mauri, M.; Scott, T.A.; Wren, B.W. Improving protein glycan coupling technology (PGCT) for glycoconjugate vaccine production. Expert Rev. Vaccines 2020, 19, 507–527. [Google Scholar] [CrossRef]
- Kay, E.; Cuccui, J.; Wren, B.W. Recent advances in the production of recombinant glycoconjugate vaccines. npj Vaccines 2019, 4, 16. [Google Scholar] [CrossRef]
- Taylor, G.M.; Mordaka, P.M.; Heap, J.T. Start-Stop Assembly: A functionally scarless DNA assembly system optimized for metabolic engineering. Nucleic Acids Res. 2019, 47, e17. [Google Scholar] [CrossRef]
- Smanski, M.J.; Bhatia, S.; Zhao, D.; Park, Y.; Woodruff, L.B.A.; Giannoukos, G.; Ciulla, D.; Busby, M.; Calderon, J.; Nicol, R.; et al. Functional optimization of gene clusters by combinatorial design and assembly. Nat. Biotechnol. 2014, 32, 1241–1249. [Google Scholar] [CrossRef]
- Temme, K.; Zhao, D.; Voigt, C.A. Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca. Proc. Natl. Acad. Sci. USA 2012, 109, 7085–7090. [Google Scholar] [CrossRef] [PubMed]
- Naseri, G.; Koffas, M.A.G. Application of combinatorial optimization strategies in synthetic biology. Nat. Commun. 2020, 11, 2446. [Google Scholar] [CrossRef]
- Passmore, I.J.; Faulds-Pain, A.; Abouelhadid, S.; Harrison, M.A.; Hall, C.L.; Hitchen, P.; Dell, A.; Heap, J.T.; Wren, B.W. A combinatorial DNA assembly approach to biosynthesis of N-linked glycans in E. coli. Glycobiology 2023, 33, 138–149. [Google Scholar] [CrossRef] [PubMed]
- Seale, A.C.; Bianchi-Jassir, F.; Russell, N.J.; Kohli-Lynch, M.; Tann, C.J.; Hall, J.; Madrid, L.; Blencowe, H.; Cousens, S.; Baker, C.J.; et al. Estimates of the Burden of Group B Streptococcal Disease Worldwide for Pregnant Women, Stillbirths, and Children. Clin. Infect. Dis. 2017, 65, S200–S219. [Google Scholar] [CrossRef]
- Gonçalves, B.P.; Procter, S.R.; Paul, P.; Chandna, J.; Lewin, A.; Seedat, F.; Koukounari, A.; Dangor, Z.; Leahy, S.; Santhanam, S.; et al. Group B streptococcus infection during pregnancy and infancy: Estimates of regional and global burden. Lancet Glob. Health 2022, 10, e807–e819. [Google Scholar] [CrossRef]
- Kobayashi, M.; Schrag, S.J.; Alderson, M.R.; Madhi, S.A.; Baker, C.J.; Sobanjo-Ter Meulen, A.; Kaslow, D.C.; Smith, P.G.; Moorthy, V.S.; Vekemans, J. WHO consultation on group B Streptococcus vaccine development: Report from a meeting held on 27–28 April 2016. Vaccine 2019, 37, 7307–7314. [Google Scholar] [CrossRef]
- WHO Preferred Product Characteristics for Group B Streptococcus Vaccines; World Health Organization: Geneva, Switzerland, 2017.
- Swamy, G.K.; Metz, T.D.; Edwards, K.M.; Soper, D.E.; Beigi, R.H.; Campbell, J.D.; Grassano, L.; Buffi, G.; Dreisbach, A.; Margarit, I.; et al. Safety and immunogenicity of an investigational maternal trivalent group B streptococcus vaccine in pregnant women and their infants: Results from a randomized placebo-controlled phase II trial. Vaccine 2020, 38, 6930–6940. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Torné, A.; Curcio, D.; Moïsi, J.C.; Jodar, L. Burden of invasive group B Streptococcus disease in non-pregnant adults: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0258030. [Google Scholar] [CrossRef]
- Maulu, S.; Hasimuna, O.J.; Mphande, J.; Munang’andu, H.M. Prevention and Control of Streptococcosis in Tilapia Culture: A Systematic Review. J. Aquat. Anim. Health 2021, 33, 162–177. [Google Scholar] [CrossRef]
- Bianchi-Jassir, F.; Paul, P.; To, K.N.; Carreras-Abad, C.; Seale, A.C.; Jauneikaite, E.; Madhi, S.A.; Russell, N.J.; Hall, J.; Madrid, L.; et al. Systematic review of Group B Streptococcal capsular types, sequence types and surface proteins as potential vaccine candidates. Vaccine 2020, 38, 6682–6694. [Google Scholar] [CrossRef]
- Madhi, S.A.; Anderson, A.S.; Absalon, J.; Radley, D.; Simon, R.; Jongihlati, B.; Strehlau, R.; van Niekerk, A.M.; Izu, A.; Naidoo, N.; et al. Potential for Maternally Administered Vaccine for Infant Group B Streptococcus. N. Engl. J. Med. 2023, 389, 215–227. [Google Scholar] [CrossRef]
- Martin, P.; Alaimo, C. The Ongoing Journey of a Shigella Bioconjugate Vaccine. Vaccines 2022, 10, 212. [Google Scholar] [CrossRef] [PubMed]
- Fierro, C.A.; Sarnecki, M.; Spiessens, B.; Go, O.; Day, T.A.; Davies, T.A.; van den Dobbelsteen, G.; Poolman, J.; Abbanat, D.; Haazen, W. A randomized phase 1/2a trial of ExPEC10V vaccine in adults with a history of UTI. npj Vaccines 2024, 9, 106. [Google Scholar] [CrossRef]
- Duke, J.A.; Paschall, A.V.; Robinson, L.S.; Knoot, C.J.; Vinogradov, E.; Scott, N.E.; Feldman, M.F.; Avci, F.Y.; Harding, C.M. Development and Immunogenicity of a Prototype Multivalent Group B Streptococcus Bioconjugate Vaccine. ACS Infect. Dis. 2021, 7, 3111–3123. [Google Scholar] [CrossRef]
- Cieslewicz, M.J.; Chaffin, D.; Glusman, G.; Kasper, D.; Madan, A.; Rodrigues, S.; Fahey, J.; Wessels, M.R.; Rubens, C.E. Structural and genetic diversity of group B streptococcus capsular polysaccharides. Infect. Immun. 2005, 73, 3096–3103. [Google Scholar] [CrossRef]
- Bachmann, B.J. Derivations and Genotypes of Some Mutant Derivatives of Escherichia coli K-12; ASM Press: Washington, DC, USA, 1996. [Google Scholar]
- Taylor, G.M.; Heap, J.T. Design and Implementation of Multi-protein Expression Constructs and Combinatorial Libraries using Start-Stop Assembly. In DNA Cloning and Assembly: Methods and Protocols; Chandran, S., George, K.W., Eds.; Springer: New York, NY, USA, 2020; pp. 219–237. [Google Scholar] [CrossRef]
- Naseri, G.; Behrend, J.; Rieper, L.; Mueller-Roeber, B. COMPASS for rapid combinatorial optimization of biochemical pathways based on artificial transcription factors. Nat. Commun. 2019, 10, 2615. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, L.A.; Chuang, J.; Agmon, N.; Khunsriraksakul, C.; Phillips, N.A.; Cai, Y.; Truong, D.M.; Veerakumar, A.; Wang, Y.; Mayorga, M.; et al. Versatile genetic assembly system (VEGAS) to assemble pathways for expression in S. cerevisiae. Nucleic Acids Res. 2015, 43, 6620–6630. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela-Ortega, M.; French, C. Joint universal modular plasmids (JUMP): A flexible vector platform for synthetic biology. Synth. Biol. 2021, 6, ysab003. [Google Scholar] [CrossRef]
- Jones, J.A.; Vernacchio, V.R.; Lachance, D.M.; Lebovich, M.; Fu, L.; Shirke, A.N.; Schultz, V.L.; Cress, B.; Linhardt, R.J.; Koffas, M.A.G. ePathOptimize: A Combinatorial Approach for Transcriptional Balancing of Metabolic Pathways. Sci. Rep. 2015, 5, 11301. [Google Scholar] [CrossRef]
- Procter, S.R.; Salman, O.; Pecenka, C.; Gonçalves, B.P.; Paul, P.; Hutubessy, R.; Lambach, P.; Lawn, J.E.; Jit, M. A review of the costs of delivering maternal immunisation during pregnancy. Vaccine 2020, 38, 6199–6204. [Google Scholar] [CrossRef]
- Le Doare, K.; O′Driscoll, M.; Turner, K.; Seedat, F.; Russell, N.J.; Seale, A.C.; Heath, P.T.; Lawn, J.E.; Baker, C.J.; Bartlett, L.; et al. Intrapartum Antibiotic Chemoprophylaxis Policies for the Prevention of Group B Streptococcal Disease Worldwide: Systematic Review. Clin. Infect. Dis. 2017, 65, S143–S151. [Google Scholar] [CrossRef] [PubMed]
- Sabroske, E.M.; Iglesias, M.A.S.; Rench, M.; Moore, T.; Harvey, H.; Edwards, M.; Baker, C.J.; Flores, A.R. Evolving antibiotic resistance in Group B Streptococci causing invasive infant disease: 1970–2021. Pediatr. Res. 2023, 93, 2067–2071. [Google Scholar] [CrossRef]
- Buurman, E.T.; Timofeyeva, Y.; Gu, J.; Kim, J.H.; Kodali, S.; Liu, Y.; Mininni, T.; Moghazeh, S.; Pavliakova, D.; Singer, C.; et al. A Novel Hexavalent Capsular Polysaccharide Conjugate Vaccine (GBS6) for the Prevention of Neonatal Group B Streptococcal Infections by Maternal Immunization. J. Infect. Dis. 2019, 220, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Hillier, S.L.; Ferrieri, P.; Edwards, M.S.; Ewell, M.; Ferris, D.; Fine, P.; Carey, V.; Meyn, L.; Hoagland, D.; Kasper, D.L.; et al. A Phase 2, Randomized, Control Trial of Group B Streptococcus (GBS) Type III Capsular Polysaccharide-tetanus Toxoid (GBS III-TT) Vaccine to Prevent Vaginal Colonization With GBS III. Clin. Infect. Dis. 2019, 68, 2079–2086. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.J.; Klesius, P.H.; Shoemaker, C.A. Efficacy of Streptococcus agalactiae (group B) vaccine in tilapia (Oreochromis niloticus) by intraperitoneal and bath immersion administration. Vaccine 2004, 22, 3769–3773. [Google Scholar] [CrossRef]
- Zhang, D.; Gao, Y.; Li, Q.; Ke, X.; Liu, Z.; Lu, M.; Shi, C. An effective live attenuated vaccine against Streptococcus agalactiae infection in farmed Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2020, 98, 853–859. [Google Scholar] [CrossRef]
- Piamsomboon, P.; Jantrakajorn, S.; Tanpichai, P.; Wongtavatchai, J. Implementation of formalin-inactivated Streptococcus agalactiae vaccine in Nile tilapia Oreochromis niloticus broodstock: Efficient vaccination regime, antibody response, and immune-related genes. Egypt. J. Aquat. Res. 2024, 50, 558–565. [Google Scholar] [CrossRef]
- Bashir, S.; Phuoc, N.N.; Herath, T.; Basit, A.; Zadoks, R.N.; Murdan, S. An oral pH-responsive Streptococcus agalactiae vaccine formulation provides protective immunity to pathogen challenge in tilapia: A proof-of-concept study. PLoS ONE 2023, 18, e0278277. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, S.; Zhang, S.; Zhang, S.; Yu, Y.; Yao, H.; Liu, Y.; Zhang, W.; Liu, G. Development and evaluation of a multi-epitope subunit vaccine against group B Streptococcus infection. Emerg. Microbes Infect. 2022, 11, 2371–2382. [Google Scholar] [CrossRef]
Strain | Genotype | Reference |
---|---|---|
E. coli DH10β | F– endA1 deoR+ recA1 galE15 galK16 nupG rpsL Δ(lac)X74 φ80lacZΔM15 araD139 Δ(ara,leu)7697 mcrA Δ(mrr-hsdRMS-mcrBC) StrR λ– | New England Biolabs |
E. coli W3110 | F- mcrA mcrB In(rrnD-rrnE)1 | [27] |
Plasmid | Description | Source |
---|---|---|
pStA0 | Start-Stop Level 0 vector | [9] |
pGT326 | pStA0 carrying promoter P4 | [9] |
pGT327 | pStA0 carrying promoter P5 | [9] |
pGT332 | pStA0 carrying RBS R1 | [9] |
pGT331 | pStA0 carrying RBS R2 | [9] |
pGT330 | pStA0 carrying RBS R3 | [9] |
pGT333 | pStA0 carrying RBS R4 | [9] |
pGT335 | pStA0 carrying RBS R5 | [9] |
pGT334 | pStA0 carrying RBS R6 | [9] |
pGT337 | pStA0 carrying terminator T1 | [9] |
pStA1AB | Start-Stop Assembly Level 1 vector (A and B fusion sites) | [9] |
pStA1BC | Start-Stop Assembly Level 1 vector (B and C fusion sites) | [9] |
pStA1CD | Start-Stop Assembly Level 1 vector (C and D fusion sites) | [9] |
pStA1DE | Start-Stop Assembly Level 1 vector (D and E fusion sites) | [9] |
pStA1CZ | Start-Stop Assembly Level 1 vector (C and Z fusion sites) | [9] |
pStA1DZ | Start-Stop Assembly Level 1 vector (D and Z fusion sites) | [9] |
pStA1EZ | Start-Stop Assembly Level 1 vector (E and Z fusion sites) | [9] |
pStA212 | Start-Stop Assembly Level 2 vector (1 and 2 fusion sites) | [9] |
pStA223 | Start-Stop Assembly Level 2 vector (2 and 3 fusion sites) | [9] |
pStA234 | Start-Stop Assembly Level 2 vector (3 and 4 fusion sites) | [9] |
pStA314 | Start-Stop Assembly Level 3 vector (1 and 4 fusion sites) | [9] |
pCPSIII.1 | GBSIII Level 3 clone | This study |
pCPSIII.2 | GBSIII Level 3 clone | This study |
pCPSIII.3 | GBSIII Level 3 clone | This study |
pCPSIII.4 | GBSIII Level 3 clone | This study |
pCPSIII.5 | GBSIII Level 3 clone | This study |
pCPSIII.6 | GBSIII Level 3 clone | This study |
pCPSIII.7 | GBSIII Level 3 clone | This study |
pCPSIII.8 | GBSIII Level 3 clone | This study |
pCPSIV.1 | GBSIV Level 3 clone | This study |
pCPSIV.2 | GBSIV Level 3 clone | This study |
pCPSIV.3 | GBSIV Level 3 clone | This study |
pCPSIV.4 | GBSIV Level 3 clone | This study |
pCPSV.1 | GBSV Level 3 clone | This study |
pCPSV.2 | GBSV Level 3 clone | This study |
pCPSV.3 | GBSV Level 3 clone | This study |
pCPSV.4 | GBSV Level 3 clone | This study |
pCPSEFGHI.1 | GBSIII Level 2 clone | This study |
pCPSEFGHI.2 | GBSIII Level 2 clone | This study |
Oligonucleotide | Sequence 5′ to 3′ | Description |
---|---|---|
pStA0_F | GGGGAAACGCCTGGTATCT | Start-Stop Level 0 plasmid forward sequencing primer |
pStA0_R | AGCAAAAACAGGAAGGCAAA | Start-Stop Level 0 plasmid reverse sequencing primer |
pStA1_F | GTTGAGGACCCGGCTAGG | Start-Stop Level 1 plasmid forward sequencing primer |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harrison, M.A.; Atkins, E.; Faulds-Pain, A.; Heap, J.T.; Wren, B.W.; Passmore, I.J. Modular Combinatorial DNA Assembly of Group B Streptococcus Capsular Polysaccharide Biosynthesis Pathways to Expediate the Production of Novel Glycoconjugate Vaccines. Vaccines 2025, 13, 279. https://doi.org/10.3390/vaccines13030279
Harrison MA, Atkins E, Faulds-Pain A, Heap JT, Wren BW, Passmore IJ. Modular Combinatorial DNA Assembly of Group B Streptococcus Capsular Polysaccharide Biosynthesis Pathways to Expediate the Production of Novel Glycoconjugate Vaccines. Vaccines. 2025; 13(3):279. https://doi.org/10.3390/vaccines13030279
Chicago/Turabian StyleHarrison, Mark A., Elizabeth Atkins, Alexandra Faulds-Pain, John T. Heap, Brendan W. Wren, and Ian J. Passmore. 2025. "Modular Combinatorial DNA Assembly of Group B Streptococcus Capsular Polysaccharide Biosynthesis Pathways to Expediate the Production of Novel Glycoconjugate Vaccines" Vaccines 13, no. 3: 279. https://doi.org/10.3390/vaccines13030279
APA StyleHarrison, M. A., Atkins, E., Faulds-Pain, A., Heap, J. T., Wren, B. W., & Passmore, I. J. (2025). Modular Combinatorial DNA Assembly of Group B Streptococcus Capsular Polysaccharide Biosynthesis Pathways to Expediate the Production of Novel Glycoconjugate Vaccines. Vaccines, 13(3), 279. https://doi.org/10.3390/vaccines13030279