The Validation of a Hemagglutination Inhibition Assay That Detects Antibodies Against a Newcastle Disease Virus-Based Vaccine Vector in Human Serum Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Newcastle Disease Virus (NDV) Antigen
2.3. Red Blood Cell (RBC) Suspension
2.4. Serum Samples
2.5. Test Controls
2.6. Standardization of Experimental Conditions for HI
2.7. Experimental Strategy for the Validation of the HI Assay
2.8. Parameters and Validation Criteria
2.9. Analysts
2.10. Statistical Treatment
3. Results
3.1. Standardization of Test Conditions
3.2. Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Committee on Taxonomy of Viruses (ICTV). Paramyxoviridae: Orthoavulavirus. Available online: https://ictv.global/report/chapter/paramyxoviridae/paramyxoviridae/orthoavulavirus (accessed on 29 January 2025).
- Rasekhi Kazeruni, A.; Babaei, N.; Esmaeili Gouvarchin Ghaleh, H.; Doosti, A.; Farzanehpour, M. Newcastle Disease Virus Enhances the Antitumor Efficacy of Doxorubicin in a Cervical Cancer Mouse Model. BMC Cancer 2024, 24, 1253. [Google Scholar] [CrossRef] [PubMed]
- Suarez, D.L.; Miller, P.J.; Koch, G.; Mundt, E.; Rautenschlein, S. Newcastle Disease, Other Avian Paramyxoviruses, and Avian Metapneumovirus Infections. In Diseases of Poultry, 14th ed.; Swayne, D.E., Boulianne, M., Logue, C.M., McDougald, L.R., Nair, V., Suarez, D.L., Wit, S., Grimes, T., Johnson, D., Kromm, M., et al., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2020; Chapter 3. [Google Scholar] [CrossRef]
- Yusoff, K.; Tan, W.S. Newcastle disease virus: Macromolecules and opportunities. Avian Pathol. 2001, 30, 439–455. [Google Scholar] [CrossRef] [PubMed]
- Morokutti, A.; Redlberger-Fritz, M.; Nakowitsch, S.; Krenn, B.M.; Wressnigg, N.; Jungbauer, A.; Romanova, J.; Muster, T.; Popow-Kraupp, T.; Ferko, B. Validation of the modified hemagglutination inhibition assay (mHAI), a robust and sensitive serological test for analysis of influenza virus-specific immune response. J. Clin. Virol. Off. Publ. Pan Am. Soc. Clin. Virol. 2013, 56, 323–330. [Google Scholar] [CrossRef]
- Makkoch, J.; Prachayangprecha, S.; Payungporn, S.; Chieochansin, T.; Songserm, T.; Amonsin, A.; Poovorawan, Y. Erythrocyte binding preference of human pandemic influenza virus a and its effect on antibody response detection. Ann. Lab. Med. 2012, 32, 276–282. [Google Scholar] [CrossRef]
- Kaufmann, L.; Syedbasha, M.; Vogt, D.; Hollenstein, Y.; Hartmann, J.; Linnik, J.E.; Egli, A. An Optimized Hemagglutination Inhibition (HI) Assay to Quantify Influenza-Specific Antibody Titers. J. Vis. Exp. JoVE 2017, 55833. [Google Scholar] [CrossRef]
- Fulber, J.P.C.; Kamen, A.A. Development and Scalable Production of Newcastle Disease Virus-Vectored Vaccines for Human and Veterinary Use. Viruses 2022, 14, 975. [Google Scholar] [CrossRef]
- Duan, Z.; Xu, H.; Ji, X.; Zhao, J. Recombinant Newcastle disease virus-vectored vaccines against human and animal infectious diseases. Future Microbiol. 2015, 10, 1307–1323. [Google Scholar] [CrossRef]
- Kim, S.-H.; Samal, S.K. Newcastle Disease Virus as a Vaccine Vector for Development of Human and Veterinary Vaccines. Viruses 2016, 8, 183. [Google Scholar] [CrossRef]
- Nelson, C.B.; Pomeroy, B.S.; Schrall, K.; Park, W.E.; Linderman, R.J. An outbreak of conjunctivitis due to Newcastle disease virus (NDV) occurring in poultry workers. Am. J. Public Health Nation’s Health 1952, 42, 672–678. [Google Scholar] [CrossRef]
- López-Macías, C.; Torres, M.; Armenta-Copca, B.; Wacher, N.H.; Castro-Castrezana, L.; Colli-Domínguez, A.A.; Rivera-Hernández, T.; Torres-Flores, A.; Damián-Hernández, M.; Ramírez-Martínez, L.; et al. Phase II Study on the Safety and Immunogenicity of Single-Dose Intramuscular or Intranasal Administration of the AVX/COVID-12 “Patria” Recombinant Newcastle Disease Virus Vaccine as a Heterologous Booster Against COVID-19 in Mexico. Vaccine 2025, 43 Pt 2, 126511. [Google Scholar] [CrossRef]
- Santra, S.; Seaman, M.S.; Xu, L.; Barouch, D.H.; Lord, C.I.; Lifton, M.A.; Gorgone, D.A.; Beaudry, K.R.; Svehla, K.; Welcher, B.; et al. Replication-defective adenovirus serotype 5 vectors elicit durable cellular and humoral immune responses in nonhuman primates. J. Virol. 2005, 79, 6516–6522. [Google Scholar] [CrossRef] [PubMed]
- Bautista-Juárez, J. Factores que intervienen en la reacción antígeno-anticuerpo y clasificación antigénica eritrocitaria. Rev. Médica IMSS 2005, 43, 9–12. [Google Scholar]
- Food and Agriculture Organization of the United Nations. Manual of Procedures for the Implementation of the Mobile Desert Locust Information Surveillance System; FAO: Rome, Italy, 2002; Available online: https://www.fao.org/4/AC802E/ac802e00.htm (accessed on 1 April 2024).
- Boliar, S.; Stanislawek, W.; Chambers, T.M. Inability of kaolin treatment to remove nonspecific inhibitors from equine serum for the hemagglutination inhibition test against equine H7N7 influenza virus. J. Vet. Diagn. Investig. 2006, 18, 264–267. [Google Scholar] [CrossRef]
- Kim, H.R.; Lee, K.K.; Kwon, Y.K.; Kang, M.S.; Moon, O.K.; Park, C.K. Comparison of serum treatments to remove nonspecific inhibitors from chicken sera for the hemagglutination inhibition test with inactivated H5N1 and H9N2 avian Influenza A virus subtypes. J. Vet. Diagn. Investig. 2012, 24, 954–958. [Google Scholar] [CrossRef]
- World Health Organization. Manual for the Laboratory Diagnosis and Virological Surveillance of Influenza; WHO: Geneva, Switzerland, 2011; Available online: https://www.who.int/publications/i/item/manual-for-the-laboratory-diagnosis-and-virological-surveillance-of-influenza (accessed on 1 April 2024).
- Hidalgo-Lara, D.R.; De la Luz-Armendáriz, J.; Rivera-Benítez, J.F.; Gomez-Nuñez, L.; Salazar-Jiménez, E.N.; Madrigal-Valencia, T.L.; Ramírez-Mendoza, H. Comparison of hemagglutination inhibition tests, immunoperoxidase monolayer assays, and serum neutralizing tests in detecting antibodies against blue eye disease in pigs. J. Immunol. Methods 2021, 496, 113088. [Google Scholar] [CrossRef] [PubMed]
- Rabenau, H.F.; Kessler, H.H.; Kortenbusch, M.; Steinhorst, A.; Raggam, R.B.; Berger, A. Verification and validation of diagnostic laboratory tests in clinical virology. J. Clin. Virol. 2007, 40, 93–98. [Google Scholar] [CrossRef]
- EURACHEM. Quantifying Uncertainty in Analytical Measurement, 3rd ed.; EURACHEM: London, UK, 2012; Available online: https://www.eurachem.org/index.php/publications/guides/mv (accessed on 1 April 2024).
- European Medicines Agency. ICH Q2(R2) Validation of Analytical Procedures—Scientific Guideline; European Medicines Agency: Amsterdam, The Netherlands, 2024; Available online: https://www.ema.europa.eu/en/ich-q2r2-validation-analytical-procedures-scientific-guideline (accessed on 1 April 2024).
- Sánchez, R. Validación de Métodos Analíticos no Cuantitativos. Rev. Mex. Cienc. Farm. 2010, 4, 15–24. [Google Scholar]
- ISO 9001:2015; Quality Management Systems—Requirements. ISO: Geneva, Switzerland, 2015.
- ISO/IEC 17025:2017; General Requirements for the Competence of Testing and Calibration Laboratories. ISO: Geneva, Switzerland, 2017.
- Trombetta, C.M.; Remarque, E.J.; Mortier, D.; Montomoli, E. Comparison of hemagglutination inhibition, single radial hemolysis, virus neutralization assays, and ELISA to detect antibody levels against seasonal influenza viruses. Influenza Other Respir. Viruses 2018, 12, 675–686. [Google Scholar] [CrossRef]
- Yang, H.; Tian, J.; Zhao, J.; Zhao, Y.; Zhang, G. The Application of Newcastle Disease Virus (NDV): Vaccine Vectors and Tumor Therapy. Viruses 2024, 16, 886. [Google Scholar] [CrossRef]
- Cervantes-Torres, J.; Cabello-Gutiérrez, C.; Ayón-Núñez, D.A.; Soldevila, G.; Olguin-Alor, R.; Diaz, G.; Acero, G.; Segura-Velázquez, R.; Huerta, L.; Gracia-Mora, I.; et al. Caveats of chimpanzee ChAdOx1 adenovirus-vectored vaccines to boost anti-SARS-CoV-2 protective immunity in mice. Appl. Microbiol. Biotechnol. 2024, 108, 179. [Google Scholar] [CrossRef]
- Byazrova, M.G.; Astakhova, E.A.; Minnegalieva, A.R.; Sukhova, M.M.; Mikhailov, A.A.; Prilipov, A.G.; Gorchakov, A.A.; Filatov, A.V. Anti-Ad26 humoral immunity does not compromise SARS-CoV-2 neutralizing antibody responses following Gam-COVID-Vac booster vaccination. NPJ Vaccines 2022, 7, 145. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. ICH M4Q—Common Technical Document for the Registration of Pharmaceuticals for Human use—Quality (Scientific Guideline); EMA: Amsterdam, The Netherlands, 2003; Available online: https://www.ema.europa.eu/en/ich-m4q-common-technical-document-registration-pharmaceuticals-human-use-quality-scientific-guideline. (accessed on 1 April 2024).
Temperature 17–19 °C | Temperature 20–25 °C | ||||||
---|---|---|---|---|---|---|---|
RBC | [%] | Sedimentation Time | Teardrop Formation | RBC | [%] | Sedimentation Time | Teardrop Formation |
Chicken | 1 | 35 min | 40 s | Chicken | 1 | 30 min | 30 s |
1.3 | 35 min | 40 s | 1.3 | 30 min | 25 s | ||
2 | 30 min | 30 s | 2 | 30 min | 20 s | ||
Human | 1 | 50 min | No | Human | 1 | 50 min | No |
1.3 | 50 min | No | 1.3 | 50 min | No | ||
2 | 50 min | No | 2 | 50 min | No | ||
Pig | 1 | >4 h | No | Pig | 1 | >3 h | No |
1.3 | >4 h | No | 1.3 | >3 h | No | ||
2 | >3 h | No | 2 | >3 h | No |
Present | Absent | |||||
Positive * | (A) True positives | 20.00 | (B) False positives | 0.00 | A + B | 20.00 |
Negative * | (C) False negatives | 0.00 | (D) True negatives | 20.00 | C + D | 20.00 |
A + C | 20.00 | B + D | 20.00 | A + B + C + D | 40.00 | |
Sensitivity = [A/(A + C)] | 1.00 | Criteria: | ≥0.95 | |||
Result: | 1.00 | ≥ | 0.95 | |||
Conclusion: | Approved | |||||
Specificity = [D/(D + B)] | 1.00 | Criteria: | ≥0.95 | |||
Result: | 1.00 | ≥ | 0.95 | |||
Conclusion: | Approved | |||||
Positive Predictive Value = [A/(A + B)] | 1.00 | Criteria: | ≥0.95 | |||
Result: | 1.00 | ≥ | 0.95 | |||
Conclusion: | Approved | |||||
Negative Predictive Value = [D/(C + D)] | 1.00 | Criteria: | ≥0.95 | |||
Result: | 1.00 | ≥ | 0.95 | |||
Conclusion: | Approved |
Present | Absent | |||||
Positive * | (A) True positives | 20.00 | (B) False positives | 0.00 | G = A + B | 20.00 |
Negative * | (C) False negatives | 0.00 | (D) True negatives | 20.00 | H = C + D | 20.00 |
E = A + C | 20.00 | F = B + D | 20.00 | A + B + C + D | 40.00 | |
Positive diagnostic reliability = A/G | 1.00 | Criteria: | ≥0.95 | |||
Result: | 1 | ≥ | 0.95 | |||
Conclusion: | Approved | |||||
Negative diagnostic reliability = C/H | 0.00 | Criteria: | <0.05 | |||
Result: | 0 | < | 0.05 | |||
Conclusion: | Approved |
Assay Robustness | ||||
---|---|---|---|---|
Conditions | Results | |||
Variarion: interaction time (serum/antigen) % Recovery (Observed titer/Expected titer) × 100 | Time (min) | 15 | 30 | 45 |
Criteria: | 80 to 120% | |||
Result: | 100 | 110 | 106 | |
CV% (σ/Mean) × 100 | Criteria: | ≤20% | ||
Result: | 0% | 6% | 7% | |
Conclusion: | Approved | Approved | Approved |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nieto-Ponce, M.; Reyna-Rosas, E.; Palencia-Reyes, R.A.; Blancas-Ruíz, C.; Aguilar-Rafael, G.; Rubio-Diaz, M.P.R.; Ramírez-Martínez, L.A.; Carranza, C.; Lozano-Dubernard, B.; Torres, M.; et al. The Validation of a Hemagglutination Inhibition Assay That Detects Antibodies Against a Newcastle Disease Virus-Based Vaccine Vector in Human Serum Samples. Vaccines 2025, 13, 342. https://doi.org/10.3390/vaccines13040342
Nieto-Ponce M, Reyna-Rosas E, Palencia-Reyes RA, Blancas-Ruíz C, Aguilar-Rafael G, Rubio-Diaz MPR, Ramírez-Martínez LA, Carranza C, Lozano-Dubernard B, Torres M, et al. The Validation of a Hemagglutination Inhibition Assay That Detects Antibodies Against a Newcastle Disease Virus-Based Vaccine Vector in Human Serum Samples. Vaccines. 2025; 13(4):342. https://doi.org/10.3390/vaccines13040342
Chicago/Turabian StyleNieto-Ponce, Milton, Edgar Reyna-Rosas, Rosa Andrea Palencia-Reyes, Carlos Blancas-Ruíz, Guadalupe Aguilar-Rafael, Marlenne Paola Rubicer Rubio-Diaz, Luis Alfonso Ramírez-Martínez, Claudia Carranza, Bernardo Lozano-Dubernard, Martha Torres, and et al. 2025. "The Validation of a Hemagglutination Inhibition Assay That Detects Antibodies Against a Newcastle Disease Virus-Based Vaccine Vector in Human Serum Samples" Vaccines 13, no. 4: 342. https://doi.org/10.3390/vaccines13040342
APA StyleNieto-Ponce, M., Reyna-Rosas, E., Palencia-Reyes, R. A., Blancas-Ruíz, C., Aguilar-Rafael, G., Rubio-Diaz, M. P. R., Ramírez-Martínez, L. A., Carranza, C., Lozano-Dubernard, B., Torres, M., & Zamudio-Meza, H. (2025). The Validation of a Hemagglutination Inhibition Assay That Detects Antibodies Against a Newcastle Disease Virus-Based Vaccine Vector in Human Serum Samples. Vaccines, 13(4), 342. https://doi.org/10.3390/vaccines13040342