Long-Term Persistence of Anti-Poliovirus Antibody Titers After Two-Dose Booster Immunization with Conventional Inactivated Poliovirus Vaccine Among Japanese Adults: 10-Year Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Participants and Study Procedures
2.2. Laboratory Testing
2.3. Statistical Analysis
2.4. Ethics
3. Results
3.1. Baseline Characteristics
3.2. Poliovirus Antibody Titers Against Poliovirus
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
WPV | wild poliovirus |
OPV | oral poliovirus vaccine |
tOPV | trivalent oral poliovirus vaccine |
cVDPV | circulating vaccine-derived poliovirus |
IPV | inactivated poliovirus vaccine |
cIPV | conventional inactivated poliovirus vaccine |
GMT | geometric mean titer |
References
- Global Polio Eradication Initiative. About Polio. 2024. Available online: https://polioeradication.org/about-polio/ (accessed on 24 December 2024).
- Geiger, K.; Stehling-Ariza, T.; Bigouette, J.P.; Bennett, S.D.; Burns, C.C.; Quddus, A.; Wassilak, S.G.; Bolu, O. Progress toward polio eradication—Worldwide, January 2022–December 2023. MMWR Morb. Mortal. Wkly. Rep. 2024, 73, 441–446. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Statement of the Fortieth Meeting of the Polio IHR Emergency Committee. 2024. Available online: https://www.who.int/news/item/03-12-2024-statement-of-the-fortieth-meeting-of-the-polio-ihr-emergency-committee/ (accessed on 17 December 2024).
- Link-Gelles, R.; Lutterloh, E.; Ruppert, P.S.; Backenson, P.B.; St George, K.; Rosenberg, E.S.; Anderson, B.J.; Fuschino, M.; Popowich, M.; Punjabi, C.; et al. Public health response to a case of paralytic poliomyelitis in an unvaccinated person and detection of poliovirus in wastewater—New York, June–August 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 1065–1068. [Google Scholar] [CrossRef] [PubMed]
- Global Polio Eradication Initiative. Vaccine-Derived Poliovirus Type 2 Detected in Environmental Samples in London. 2022. Available online: https://polioeradication.org/news-post/vaccine-derived-poliovirus-type-2-vdpv2-detected-in-environmental-samples-in-london-uk/ (accessed on 24 December 2024).
- World Health Organization. Detection of Circulating Vaccine Derived Polio Virus 2 (cVDPV2) in Environmental Samples—The United Kingdom of Great Britain and Northern Ireland and the United States of America. 2022. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON408/ (accessed on 24 December 2024).
- Pan American Health Organization. Epidemiological Update: Detection of Poliovirus in Wastewater. 2022. Available online: https://www.paho.org/en/documents/epidemiological-update-detection-poliovirus-wastewater/ (accessed on 24 December 2024).
- World Health Organization. Circulating Vaccine-Derived Poliovirus Type 3—Israel. 2022. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON366/ (accessed on 24 December 2024).
- World Health Organization. Polio Eradication Strategy 2022–2026: Delivering on a Promise. 2021. Available online: https://www.who.int/publications/i/item/9789240031937 (accessed on 24 December 2024).
- Saitoh, A.; Okabe, N. Current issues with the immunization program in Japan: Can we fill the “vaccine gap”? Vaccine 2012, 30, 4752–4756. [Google Scholar] [CrossRef] [PubMed]
- Katsuta, T.; Moser, C.A.; Feemster, K.A.; Saitoh, A.; Offit, P.A. Comparison of immunization systems in Japan and the United States—What can be learned? Vaccine 2020, 38, 7401–7408. [Google Scholar] [CrossRef] [PubMed]
- Satoh, H.; Tanaka-Taya, K.; Shimizu, H.; Goto, A.; Tanaka, S.; Nakano, T.; Hotta, C.; Okazaki, T.; Itamochi, M.; Ito, M.; et al. Polio vaccination coverage and seroprevalence of poliovirus antibodies after the introduction of inactivated poliovirus vaccines for routine immunization in Japan. Vaccine 2019, 37, 1964–1971. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Table 2: Summary of WHO Position Papers—Recommended Routine Immunizations for Children. Available online: https://www.who.int/publications/m/item/table-2-summary-of-who-position-papers-recommended-routine-immunizations-for-children (accessed on 24 December 2024).
- Fukushima, S.; Nakano, T.; Shimizu, H.; Hamada, A. Immunogenicity of catch-up immunization with conventional inactivated polio vaccine among Japanese adults. Vaccines 2022, 10, 2160. [Google Scholar] [CrossRef] [PubMed]
- Arita, M.; Iwai-Itamochi, M. High-throughput analysis of anti-poliovirus neutralization antibody titre in human serum by the pseudovirus neutralization test. Sci. Rep. 2022, 12, 16074. [Google Scholar] [CrossRef] [PubMed]
- Plotkin, S.A. Correlates of protection induced by vaccination. Clin. Vaccine Immunol. 2010, 17, 1055–1065. [Google Scholar] [CrossRef] [PubMed]
- Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013, 48, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Japan Institute for Health Security. Age distribution of Polio Vaccination History in Japan, 2022–National Epidemiological Surveillance of Vaccine-Preventable Diseases. 2022. Available online: https://id-info.jihs.go.jp/surveillance/nesvpd/en/y-graphs/p2022serum-e.pdf (accessed on 18 April 2025).
- Hotta, C.; Ogawa, T.; Shirasawa, H. Surveillance of immunity acquired from poliovirus immunization including vaccination with the Sabin strain-derived inactivated vaccine. Hum Vaccin Immunother. 2019, 15, 1154–1159. [Google Scholar] [CrossRef] [PubMed]
- Cassimos, D.C.; Effraimidou, E.; Medic, S.; Konstantinidis, T.; Theodoridou, M.; Maltezou, H.C. Vaccination programs for adults in Europe, 2019. Vaccines 2020, 8, 34. [Google Scholar] [CrossRef] [PubMed]
- Kidd, S.; Clark, T.; Routh, J.; Cineas, S.; Bahta, L.; Brooks, O. Use of Inactivated Polio Vaccine Among U.S. Adults: Updated Recommendations of the Advisory Committee on Immunization Practices—United States, 2023. MMWR Morb. Mortal. Wkly. Rep. 2023, 72, 1327–1330. [Google Scholar] [CrossRef] [PubMed]
- Giammanco, G.M.; Bechini, A.; Urone, N.; Bonura, F.; Muli, S.L.; De Grazia, S.; Bellini, I.; Tiscione, E.; Boccalini, S.; Nastasi, A. Is Italian population protected from poliovirus? Results of a seroprevalence survey in Florence, Italy. Hum. Vaccines Immunother. 2018, 14, 2248–2253. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, F.P.; Larocca, A.M.V.; Bozzi, A.; Spinelli, G.; Germinario, C.A.; Tafuri, S.; Stefanizzi, P. Long-term persistence of poliovirus neutralizing antibodies in the era of polio elimination: An Italian retrospective cohort study. Vaccine 2021, 39, 2989–2994. [Google Scholar] [CrossRef] [PubMed]
- Opare, J.K.; Akweongo, P.; Afari, E.A.; Odoom, J.K. Poliovirus neutralizing antibody levels among individuals in three regions of Ghana. Ghana Med. J. 2019, 53, 170–180. [Google Scholar] [CrossRef] [PubMed]
- Hendry, A.J.; Beard, F.H.; Dey, A.; Quinn, H.; Hueston, L.; Dwyer, D.E.; McIntyre, P.B. Lower immunity to poliomyelitis viruses in Australian young adults not eligible for inactivated polio vaccine. Vaccine 2020, 38, 2572–2577. [Google Scholar] [CrossRef] [PubMed]
Prior Short-Term Study | Long-Term Study | ||||||
---|---|---|---|---|---|---|---|
Pre | Post 1 | Post 2 | 3 Years | 5 Years | 10 Years | ||
% (95CI) | % (95%CI) | % (95%CI) | % (95%CI) | % (95%CI) | % (95%CI) | ||
Sabin | Sabin 1 | 100 (69.2–100) | 100 (69.2–100) | 100 (69.2–100) | 100 (69.2–100) | 100 (69.2–100) | 100 (69.2–100) |
Sabin 2 | 90 (55.5–99.7) | 100 (69.2–100) | 100 (69.2–100) | 100 (69.2–100) | 100 (69.2–100) | 100 (69.2–100) | |
Sabin 3 | 60 (26.2–87.8) | 100 (69.2–100) | 100 (69.2–100) | 100 (69.2–100) | 80 (94.1–100) | 80 (94.1–100) | |
Virulent | Mahoney (Type 1) | 90 (55.5–99.7) | 100 (69.2–100) | 100 (69.2–100) | 100 (69.2–100) | 100 (69.2–100) | 100 (69.2–100) |
MEF-1 (Type 2) | 90 (55.5–99.7) | 100 (69.2–100) | 100 (69.2–100) | 100 (69.2–100) | 100 (69.2–100) | 100 (69.2–100) | |
Saukett (Type 3) | 60 (55.5–99.7) | 100 (69.2–100) | 100 (69.2–100) | 100 (69.2–100) | 90 (94.1–100) | 90 (94.1–100) |
Prior Short-Term Study | Long-Term Study | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre | Post 1 | Post 2 | 3 Years | 5 Years | 10 Years | ||||||||
GMT | (95%CI) | GMT | (95%CI) | GMT | (95%CI) | GMT | (95%CI) | GMT | (95%CI) | GMT | (95%CI) | ||
Sabin | Sabin 1 | 64.0 | (25.1; 162.9) | 512 | 512 | 477.7 | (408.3; 558.5) | 274.4 | (190.1; 395.4) | 238.9 | (154.9; 369.0) | ||
Sabin 2 | 55.7 | (23.4; 132.7) | 512 | 512 | 415.9 | (297.9; 580.8) | 294.1 | (186.6; 463.4) | 294.1 | (176.2; 490.9) | |||
Sabin 3 | 13.9 | (3.7; 53.1) | 222.9 | (90.8; 548.3) | 222.9 | (90.8; 548.3) | 147.0 | (49.3; 437.5) | 73.5 | (16.5; 327.3) | 59.7 | (12.6; 283.8) | |
Virulent | Mahoney (Type 1) | 22.6 | (9.7; 53.0) | 477.7 | (408.3; 558.5) | 512 | 362.0 | (254.7; 514.0) | 238.9 | (126.2; 451.9) | 168.9 | (77.3; 369.0) | |
MEF-1 (Type 2) | 59.7 | (22.5; 158.5) | 512 | 512 | 388.0 | (300.6; 501.2) | 337.8 | (222.3; 512.9) | 362.0 | (223.4; 586.1) | |||
Saukett (Type 3) | 9.2 | (3.3; 25.3) | 256 | (95.1; 690.2) | 256 | (97.7; 671.4) | 111.4 | (37.4; 331.9) | 97.0 | (31.5; 299.2) | 59.7 | (15.8; 225.9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fukushima, S.; Nakano, T.; Arita, M.; Shimizu, H.; Hamada, A. Long-Term Persistence of Anti-Poliovirus Antibody Titers After Two-Dose Booster Immunization with Conventional Inactivated Poliovirus Vaccine Among Japanese Adults: 10-Year Observational Study. Vaccines 2025, 13, 447. https://doi.org/10.3390/vaccines13050447
Fukushima S, Nakano T, Arita M, Shimizu H, Hamada A. Long-Term Persistence of Anti-Poliovirus Antibody Titers After Two-Dose Booster Immunization with Conventional Inactivated Poliovirus Vaccine Among Japanese Adults: 10-Year Observational Study. Vaccines. 2025; 13(5):447. https://doi.org/10.3390/vaccines13050447
Chicago/Turabian StyleFukushima, Shinji, Takashi Nakano, Minetaro Arita, Hiroyuki Shimizu, and Atsuo Hamada. 2025. "Long-Term Persistence of Anti-Poliovirus Antibody Titers After Two-Dose Booster Immunization with Conventional Inactivated Poliovirus Vaccine Among Japanese Adults: 10-Year Observational Study" Vaccines 13, no. 5: 447. https://doi.org/10.3390/vaccines13050447
APA StyleFukushima, S., Nakano, T., Arita, M., Shimizu, H., & Hamada, A. (2025). Long-Term Persistence of Anti-Poliovirus Antibody Titers After Two-Dose Booster Immunization with Conventional Inactivated Poliovirus Vaccine Among Japanese Adults: 10-Year Observational Study. Vaccines, 13(5), 447. https://doi.org/10.3390/vaccines13050447