Long-Term Protection Against Symptomatic Omicron Infections Requires Balanced Immunity Against Spike Epitopes After COVID-19 Vaccination
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
- (1)
- Vaccinated with two doses of Comirnaty between January and April 2021 followed by a single homologous booster immunization between October 2021 and January 2022. Individuals who had received the Vaxzevria vaccine were excluded from the study due to the greater diversity of vaccination schedules and the insufficient number of participants who met the other inclusion criteria.
- (2)
- No reported infection-associated symptoms (chills, cough, diarrhea, fatigue, fever, headache, joint pain, loss of smell or taste, muscle pain, sore throat, vomiting) that correlated with a positive PCR or antigen test result until last blood draw.
- (3)
- Negative test results in both SARS-CoV-2 N-antibody assays performed in our laboratory at time point 1 (TP1) and TP2.
2.2. Sample Collection and Infection Monitoring
2.3. Antibody Assays
2.4. T-Cell Assays
2.5. Statistical Analyses
3. Results
3.1. Booster Immunization Does Not Result in Sustained Enhancement of Omicron RBD Neutralization
3.2. NAb Levels Are Not Generally Suitable as Correlates of Protection
3.3. Loss of RBD-Specific IgG Antibodies After Booster Vaccination Is Associated with Symptomatic Infection
3.4. NAbs Against RBD Epitopes Affected by Variant Mutations Are Associated with Protection from Symptomatic Variant Infection
3.5. Cellular Immunity to Conserved Epitopes Is Associated with Protection from Symptomatic Variant Infection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
aa | Amino acid |
ACE2 | Angiotensin-converting enzyme 2 |
CI | Confidence interval |
CXCL-10 | C-X-C motif chemokine ligand 10 |
ECLIA | Electrochemiluminescence immunoassay |
IFN | Interferon |
NAbs | Neutralizing antibodies |
N-antibody | Nucleocapsid-antibody |
N-sero-negative | Nucleocapsid-seronegative |
NTD | N-terminal domain |
RBD | Receptor-binding domain |
RT-qPCR | Quantitative reverse transcription PCR |
S- | Spike- |
TP | Timepoint |
VOC | Variant of concern |
Appendix A
Appendix A.1
Appendix A.2
Description | Variant | Product Number | Manufacturer |
---|---|---|---|
Entire Spike: 158 + 157 15 mers with 11 aa overlap | Wuhan (wild-type) | PM-WCPV-S-2 | jpt |
Entire Spike: 158 + 157 15 mers with 11 aa overlap | B.1.1.7 | PM-SARS2-SMUT01-1 | jpt |
Spike B.1.1.7 mutation sites: 34 mainly 15 mers | B.1.1.7 | 130-127-844 | MB |
Spike B.1.1.7 mutation sites: 34 mainly 15 mers | Wuhan (wild-type) | 130-127-841 | MB |
Entire Spike: 158 + 157 15 mers with 11 aa overlap | B.1.351 | PM-SARS2-SMUT02-1 | jpt |
Entire Spike: 158 + 157 15 mers with 11 aa overlap | P.1, B.1.1.28.1 | PM-SARS2-SMUT03-1 | jpt |
Entire Spike: 158 + 157 15 mers with 11 aa overlap | B.1.617.2 | PM-SARS2-SMUT06-1 | jpt |
Spike B.1.617.2 mutation sites: 27 15 mers | B.1.617.2 | LB01947 | p&e |
Spike B.1.617.2 mutation sites: 27 15 mers | Wuhan (wild-type) | LB02018 | p&e |
Entire Spike: 158 + 157 15 mers with 11 aa overlap | BA.1 | PM-SARS2-SMUT08-1 | jpt |
Spike B.1.1.529 mutation sites: 80 15 mers | B.1.1.529 | LB01999 | p&e |
Spike B.1.1.529 mutation sites: 82 15 mers | Wuhan (wild-type) | LB02004 | p&e |
Entire Spike: 158 + 157 15 mers with 11 aa overlap | BA.2 | PM-SARS2-SMUT09-1 | jpt |
Appendix A.3
Appendix A.4
References
- Andrews, N.; Stowe, J.; Kirsebom, F.; Toffa, S.; Rickeard, T.; Gallagher, E.; Gower, C.; Kall, M.; Groves, N.; O’Connell, A.M.; et al. Covid-19 vaccine effectiveness against the omicron (b.1.1.529) variant. N. Engl. J. Med. 2022, 386, 1532–1546. [Google Scholar] [CrossRef]
- Tartof, S.Y.; Slezak, J.M.; Puzniak, L.; Hong, V.; Xie, F.; Ackerson, B.K.; Valluri, S.R.; Jodar, L.; McLaughlin, J.M. Durability of bnt162b2 vaccine against hospital and emergency department admissions due to the omicron and delta variants in a large health system in the USA: A test-negative case-control study. Lancet Respir. Med. 2022, 10, 689–699. [Google Scholar] [CrossRef]
- Song, S.; Madewell, Z.J.; Liu, M.; Longini, I.M.; Yang, Y. Effectiveness of SARS-CoV-2 vaccines against omicron infection and severe events: A systematic review and meta-analysis of test-negative design studies. Front. Public Health 2023, 11, 1195908. [Google Scholar] [CrossRef]
- Muecksch, F.; Wang, Z.; Cho, A.; Gaebler, C.; Ben Tanfous, T.; DaSilva, J.; Bednarski, E.; Ramos, V.; Zong, S.; Johnson, B.; et al. Increased memory b cell potency and breadth after a SARS-CoV-2 mrna boost. Nature 2022, 607, 128–134. [Google Scholar] [CrossRef]
- Yang, L.; Van Beek, M.; Wang, Z.; Muecksch, F.; Canis, M.; Hatziioannou, T.; Bieniasz, P.D.; Nussenzweig, M.C.; Chakraborty, A.K. Antigen presentation dynamics shape the antibody response to variants like SARS-CoV-2 omicron after multiple vaccinations with the original strain. Cell Rep. 2023, 42, 112256. [Google Scholar] [CrossRef]
- Olukitibi, T.A.; Ao, Z.; Warner, B.; Unat, R.; Kobasa, D.; Yao, X. Significance of conserved regions in coronavirus spike protein for developing a novel vaccine against SARS-CoV-2 infection. Vaccines 2023, 11, 545. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yan, A.; Song, D.; Duan, M.; Dong, C.; Chen, J.; Jiang, Z.; Gao, Y.; Rao, M.; Feng, J.; et al. Identification of a highly conserved neutralizing epitope within the rbd region of diverse SARS-CoV-2 variants. Nat. Commun. 2024, 15, 842. [Google Scholar] [CrossRef] [PubMed]
- Meyer, S.; Blaas, I.; Bollineni, R.C.; Delic-Sarac, M.; Tran, T.T.; Knetter, C.; Dai, K.Z.; Madssen, T.S.; Vaage, J.T.; Gustavsen, A.; et al. Prevalent and immunodominant cd8 t cell epitopes are conserved in SARS-CoV-2 variants. Cell Rep. 2023, 42, 111995. [Google Scholar] [CrossRef]
- Tarke, A.; Coelho, C.H.; Zhang, Z.; Dan, J.M.; Yu, E.D.; Methot, N.; Bloom, N.I.; Goodwin, B.; Phillips, E.; Mallal, S.; et al. SARS-CoV-2 vaccination induces immunological t cell memory able to cross-recognize variants from alpha to omicron. Cell 2022, 185, 847–859.e11. [Google Scholar] [CrossRef]
- Tye, E.X.C.; Jinks, E.; Haigh, T.A.; Kaul, B.; Patel, P.; Parry, H.M.; Newby, M.L.; Crispin, M.; Kaur, N.; Moss, P.; et al. Mutations in SARS-CoV-2 spike protein impair epitope-specific cd4(+) t cell recognition. Nat. Immunol. 2022, 23, 1726–1734. [Google Scholar] [CrossRef] [PubMed]
- Robert-Koch-Institut. Wochenberichte zu COVID-19 (bis 8.6.2023). Available online: https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Wochenbericht/Wochenberichte_Tab.html?nn=13490888 (accessed on 6 November 2024).
- Gilbert, P.B.; Montefiori, D.C.; McDermott, A.B.; Fong, Y.; Benkeser, D.; Deng, W.; Zhou, H.; Houchens, C.R.; Martins, K.; Jayashankar, L.; et al. Immune correlates analysis of the mrna-1273 COVID-19 vaccine efficacy clinical trial. Science 2022, 375, 43–50. [Google Scholar] [CrossRef]
- Skelly, D.T.; Harding, A.C.; Gilbert-Jaramillo, J.; Knight, M.L.; Longet, S.; Brown, A.; Adele, S.; Adland, E.; Brown, H.; Medawar Laboratory, T.; et al. Two doses of SARS-CoV-2 vaccination induce robust immune responses to emerging SARS-CoV-2 variants of concern. Nat. Commun. 2021, 12, 5061. [Google Scholar] [CrossRef]
- Bonhomme, M.E.; Bonhomme, C.J.; Strelow, L.; Chaudhari, A.; Howlett, A.; Breidenbach, C.; Hester, J.; Hammond, C.; Fuzy, M.; Harvey, L.; et al. Robust validation and performance comparison of immunogenicity assays assessing igg and neutralizing antibodies to SARS-CoV-2. PLoS ONE 2022, 17, e0262922. [Google Scholar] [CrossRef]
- Shengule, S.; Alai, S.; Bhandare, S.; Patil, S.; Gautam, M.; Mangaonkar, B.; Gupta, S.; Shaligram, U.; Gairola, S. Validation and suitability assessment of multiplex mesoscale discovery immunogenicity assay for establishing serological signatures using vaccinated, non-vaccinated and breakthrough SARS-CoV-2 infected cases. Vaccines 2024, 12, 433. [Google Scholar] [CrossRef]
- Schwarz, M.; Torre, D.; Lozano-Ojalvo, D.; Tan, A.T.; Tabaglio, T.; Mzoughi, S.; Sanchez-Tarjuelo, R.; Le Bert, N.; Lim, J.M.E.; Hatem, S.; et al. Rapid, scalable assessment of SARS-CoV-2 cellular immunity by whole-blood pcr. Nat. Biotechnol. 2022, 40, 1680–1689. [Google Scholar] [CrossRef]
- Shah, M.; Woo, H.G. Omicron: A heavily mutated SARS-CoV-2 variant exhibits stronger binding to ace2 and potently escapes approved covid-19 therapeutic antibodies. Front. Immunol. 2021, 12, 830527. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhao, X.; Zhou, H.; Zhu, H.; Jiang, S.; Wang, P. Broadly neutralizing antibodies to SARS-CoV-2 and other human coronaviruses. Nat. Rev. Immunol. 2023, 23, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Hossen, M.L.; Baral, P.; Sharma, T.; Gerstman, B.; Chapagain, P. Significance of the rbd mutations in the SARS-CoV-2 omicron: From spike opening to antibody escape and cell attachment. Phys. Chem. Chem. Phys. 2022, 24, 9123–9129. [Google Scholar] [CrossRef]
- Bobrovitz, N.; Ware, H.; Ma, X.; Li, Z.; Hosseini, R.; Cao, C.; Selemon, A.; Whelan, M.; Premji, Z.; Issa, H.; et al. Protective effectiveness of previous SARS-CoV-2 infection and hybrid immunity against the omicron variant and severe disease: A systematic review and meta-regression. Lancet Infect. Dis. 2023, 23, 556–567. [Google Scholar] [CrossRef]
- Magazine, N.; Zhang, T.; Bungwon, A.D.; McGee, M.C.; Wu, Y.; Veggiani, G.; Huang, W. Immune epitopes of SARS-CoV-2 spike protein and considerations for universal vaccine development. Immunohorizons 2024, 8, 214–226. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Wang, J.; Jian, F.; Xiao, T.; Song, W.; Yisimayi, A.; Huang, W.; Li, Q.; Wang, P.; An, R.; et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 2022, 602, 657–663. [Google Scholar] [CrossRef]
- Willett, B.J.; Grove, J.; MacLean, O.A.; Wilkie, C.; De Lorenzo, G.; Furnon, W.; Cantoni, D.; Scott, S.; Logan, N.; Ashraf, S.; et al. Sars-cov-2 omicron is an immune escape variant with an altered cell entry pathway. Nat. Microbiol. 2022, 7, 1161–1179. [Google Scholar] [CrossRef] [PubMed]
- Follmann, D.; Janes, H.E.; Buhule, O.D.; Zhou, H.; Girard, B.; Marks, K.; Kotloff, K.; Desjardins, M.; Corey, L.; Neuzil, K.M.; et al. Antinucleocapsid antibodies after SARS-CoV-2 infection in the blinded phase of the randomized, placebo-controlled mrna-1273 covid-19 vaccine efficacy clinical trial. Ann. Intern. Med. 2022, 175, 1258–1265. [Google Scholar] [CrossRef]
- Bergeri, I.; Whelan, M.G.; Ware, H.; Subissi, L.; Nardone, A.; Lewis, H.C.; Li, Z.; Ma, X.; Valenciano, M.; Cheng, B.; et al. Global SARS-CoV-2 seroprevalence from January 2020 to April 2022: A systematic review and meta-analysis of standardized population-based studies. PLoS Med. 2022, 19, e1004107. [Google Scholar] [CrossRef]
- Jacobsen, H.; Sitaras, I.; Katzmarzyk, M.; Cobos Jimenez, V.; Naughton, R.; Higdon, M.M.; Deloria Knoll, M. Systematic review and meta-analysis of the factors affecting waning of post-vaccination neutralizing antibody responses against SARS-CoV-2. NPJ Vaccines 2023, 8, 159. [Google Scholar] [CrossRef]
- Sette, A.; Sidney, J.; Crotty, S. T cell responses to SARS-CoV-2. Annu. Rev. Immunol. 2023, 41, 343–373. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pfister, H.; Uhlig, C.; Mayer, Z.; Polatoglou, E.; Randeu, H.; Burglechner-Praun, S.; Berchtold, T.; Sernetz, S.; Heitzer, F.; Strötges-Achatz, A.; et al. Long-Term Protection Against Symptomatic Omicron Infections Requires Balanced Immunity Against Spike Epitopes After COVID-19 Vaccination. Vaccines 2025, 13, 867. https://doi.org/10.3390/vaccines13080867
Pfister H, Uhlig C, Mayer Z, Polatoglou E, Randeu H, Burglechner-Praun S, Berchtold T, Sernetz S, Heitzer F, Strötges-Achatz A, et al. Long-Term Protection Against Symptomatic Omicron Infections Requires Balanced Immunity Against Spike Epitopes After COVID-19 Vaccination. Vaccines. 2025; 13(8):867. https://doi.org/10.3390/vaccines13080867
Chicago/Turabian StylePfister, Heiko, Carsten Uhlig, Zsuzsanna Mayer, Eleni Polatoglou, Hannah Randeu, Silke Burglechner-Praun, Tabea Berchtold, Susanne Sernetz, Felicitas Heitzer, Andrea Strötges-Achatz, and et al. 2025. "Long-Term Protection Against Symptomatic Omicron Infections Requires Balanced Immunity Against Spike Epitopes After COVID-19 Vaccination" Vaccines 13, no. 8: 867. https://doi.org/10.3390/vaccines13080867
APA StylePfister, H., Uhlig, C., Mayer, Z., Polatoglou, E., Randeu, H., Burglechner-Praun, S., Berchtold, T., Sernetz, S., Heitzer, F., Strötges-Achatz, A., Deml, L., Sander, M., & Holdenrieder, S. (2025). Long-Term Protection Against Symptomatic Omicron Infections Requires Balanced Immunity Against Spike Epitopes After COVID-19 Vaccination. Vaccines, 13(8), 867. https://doi.org/10.3390/vaccines13080867