BCG Vaccine-Induced Innate and Adaptive Pulmonary Immunity Correlating with Protective Efficacy Against Mycobacterium tuberculosis in the Lungs
Abstract
1. Introduction
2. Materials and Methods
2.1. Mice
2.2. Immunization
2.3. Intracellular Cytokine Staining (ICS)
2.4. Antibody-Secreting Cell (ASC) ELISpot Assay
2.5. Aerosolized M. Tuberculosis Challenge and Determination of Bacterial Load
2.6. Statistical Analysis
3. Results
3.1. Intravenous Delivery of BCG Leads to Persistent Th1/17-Type Cytokine Responses Among Group 1 and 3 ILC and Sustained Expression of IL-13 by Group 2 ILCs in the Lungs
3.2. BCG Generates Th1-Type ILC1 and ILC3 Responses in the Lungs Within 72 h Post-Immunization, Particularly via the IV Route
3.3. Differential Expression of IL-5 and IL-13 by Group 2 ILCs in Mice over 72 h Following IV Immunization with BCG
3.4. Pulmonary Boosting with Ad-Vectored Vaccines Following IV BCG Prime Results in a Significantly Reduced Bacterial Load in the Lungs and Spleen Compared to BCG Prime Alone
3.5. Intranasal Boosting with Ad-Vectored Vaccines Following IV BCG Prime Results in Pulmonary IgA and IgG Expression and Tissue-Resident and Effector Memory T Cell Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Ad | adenovirus |
Ag85B | antigen 85B of Mycobacterium tuberculosis |
BCG | Bacille–Calmette–Guerin |
ICS | intracellular cytokine staining |
ILC | innate lymphoid cells |
IN | intranasal |
IV | intravenous |
Mtb | mycobacterium tuberculosis |
PPD | purified protein derivative |
SC | subcutaneous |
SFC | spot-forming cells |
TEM | effector memory T cells |
TRM | tissue resident memory T cells |
References
- WHO. Global Tuberculosis Report; WHO: Geneva, Switzerland, 2024; pp. 1–38.
- Keja, K.; Chan, C.; Hayden, G.; Henderson, R.H. Expanded programme on immunization. World Health Stat. Q. 1988, 41, 59–63. [Google Scholar]
- Colditz, G.A.; Brewer, T.F.; Berkey, C.S.; Wilson, M.E.; Burdick, E.; Fineberg, H.V.; Mosteller, F. Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-Anal. Publ. Lit. JAMA 1994, 271, 698–702. [Google Scholar]
- Tameris, M.D.; Hatherill, M.; Landry, B.S.; Scriba, T.J.; Snowden, M.A.; Lockhart, S.; Shea, J.E.; McClain, J.B.; Hussey, G.D.; Hanekom, W.A.; et al. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: A randomised, placebo-controlled phase 2b trial. Lancet 2013, 381, 1021–1028. [Google Scholar] [CrossRef]
- Scriba, T.J.; Tameris, M.; Mansoor, N.; Smit, E.; van der Merwe, L.; Mauff, K.; Hughes, E.J.; Moyo, S.; Brittain, N.; Lawrie, A.; et al. Dose-finding study of the novel tuberculosis vaccine, MVA85A, in healthy BCG-vaccinated infants. J. Infect. Dis. 2011, 203, 1832–1843. [Google Scholar] [CrossRef]
- Tameris, M.; Geldenhuys, H.; Luabeya, A.K.; Smit, E.; Hughes, J.E.; Vermaak, S.; Hanekom, W.A.; Hatherill, M.; Mahomed, H.; McShane, H.; et al. The Candidate TB Vaccine, MVA85A, Induces Highly Durable Th1 Responses. PLoS ONE 2014, 9, e87340. [Google Scholar] [CrossRef]
- Tait, D.R.; Hatherill, M.; Van Der Meeren, O.; Ginsberg, A.M.; Van Brakel, E.; Salaun, B.; Scriba, T.J.; Akite, E.J.; Ayles, H.M.; Bollaerts, A.; et al. Final Analysis of a Trial of M72/AS01(E) Vaccine to Prevent Tuberculosis. N. Engl. J. Med. 2019, 381, 2429–2439. [Google Scholar] [CrossRef]
- Darrah, P.A.; Zeppa, J.J.; Maiello, P.; Hackney, J.A.; Wadsworth, M.H., 2nd; Hughes, T.K.; Pokkali, S.; Swanson, P.A., 2nd; Grant, N.L.; Rodgers, M.A.; et al. Prevention of tuberculosis in macaques after intravenous BCG immunization. Nature 2020, 577, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Morrison, H.; McShane, H. Local Pulmonary Immunological Biomarkers in Tuberculosis. Front. Immunol. 2021, 12, 640916. [Google Scholar] [CrossRef] [PubMed]
- Dijkman, K.; Sombroek, C.C.; Vervenne, R.A.W.; Hofman, S.O.; Boot, C.; Remarque, E.J.; Kocken, C.H.M.; Ottenhoff, T.H.M.; Kondova, I.; Khayum, M.A.; et al. Prevention of tuberculosis infection and disease by local BCG in repeatedly exposed rhesus macaques. Nat. Med. 2019, 25, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Darrah, P.A.; Zeppa, J.J.; Wang, C.; Irvine, E.B.; Bucsan, A.N.; Rodgers, M.A.; Pokkali, S.; Hackney, J.A.; Kamath, M.; White, A.G.; et al. Airway T cells are a correlate of i.v. Bacille Calmette-Guerin-Mediat. Prot. Against Tuberc. Rhesus Macaques. Cell Host Microbe 2023, 31, 962–977 e968. [Google Scholar] [CrossRef]
- Irvine, E.B.; Darrah, P.A.; Wang, S.; Wang, C.; McNamara, R.P.; Roederer, M.; Seder, R.A.; Lauffenburger, D.A.; Flynn, J.L.; Fortune, S.M.; et al. Humoral correlates of protection against Mycobacterium tuberculosis following intravenous BCG vaccination in rhesus macaques. iScience 2024, 27, 111128. [Google Scholar] [CrossRef]
- Peters, J.M.; Irvine, E.B.; Makatsa, M.S.; Rosenberg, J.M.; Wadsworth, M.H., 2nd; Hughes, T.K.; Sutton, M.S.; Nyquist, S.K.; Bromley, J.D.; Mondal, R.; et al. High-dose intravenous BCG vaccination induces enhanced immune signaling in the airways. Sci. Adv. 2025, 11, eadq8229. [Google Scholar] [CrossRef] [PubMed]
- Cortez, V.S.; Robinette, M.L.; Colonna, M. Innate lymphoid cells: New insights into function and development. Curr. Opin. Immunol. 2015, 32, 71–77. [Google Scholar] [CrossRef]
- Gasteiger, G.; Fan, X.; Dikiy, S.; Lee, S.Y.; Rudensky, A.Y. Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science 2015, 350, 981–985. [Google Scholar] [CrossRef] [PubMed]
- Colonna, M. Interleukin-22-producing natural killer cells and lymphoid tissue inducer-like cells in mucosal immunity. Immunity 2009, 31, 15–23. [Google Scholar] [CrossRef]
- Eberl, G.; Colonna, M.; Di Santo, J.P.; McKenzie, A.N. Innate lymphoid cells. Innate lymphoid cells: A new paradigm in immunology. Science 2015, 348, aaa6566. [Google Scholar] [CrossRef] [PubMed]
- Auten, M.W.; Huang, W.; Dai, G.; Ramsay, A.J. CD40 ligand enhances immunogenicity of vector-based vaccines in immunocompetent and CD4+ T cell deficient individuals. Vaccine 2012, 30, 2768–2777. [Google Scholar] [CrossRef]
- Khanna, M.; Rady, H.; Dai, G.; Ramsay, A.J. Intranasal boosting with MVA encoding secreted mycobacterial proteins Ag85A and ESAT-6 generates strong pulmonary immune responses and protection against M. tuberculosis in mice given BCG as neonates. Vaccine 2021, 39, 1780–1787. [Google Scholar] [CrossRef]
- Dalmia, N.; Klimstra, W.B.; Mason, C.; Ramsay, A.J. DNA-Launched Alphavirus Replicons Encoding a Fusion of Mycobacterial Antigens Acr and Ag85B Are Immunogenic and Protective in a Murine Model of TB Infection. PLoS ONE 2015, 10, e0136635. [Google Scholar] [CrossRef]
- Rady, H.F.; Dai, G.; Huang, W.; Shellito, J.E.; Ramsay, A.J. Flagellin Encoded in Gene-Based Vector Vaccines Is a Route-Dependent Immune Adjuvant. PLoS ONE 2016, 11, e0148701. [Google Scholar] [CrossRef]
- Sadeghalvad, M.; Khijakadze, D.; Orangi, M.; Takei, F. Flow cytometric analysis of innate lymphoid cells: Challenges and solutions. Front. Immunol. 2023, 14, 1198310. [Google Scholar] [CrossRef]
- Schwander, S.; Dheda, K. Human lung immunity against Mycobacterium tuberculosis: Insights into pathogenesis and protection. Am. J. Respir. Crit. Care Med. 2011, 183, 696–707. [Google Scholar] [CrossRef]
- Wilkie, M.E.; McShane, H. TB Vaccine Development: Where Are We Why Is. It So Difficult? Thorax 2015, 70, 299–301. [Google Scholar] [CrossRef]
- Santosuosso, M.; McCormick, S.; Zhang, X.; Zganiacz, A.; Xing, Z. Intranasal boosting with an adenovirus-vectored vaccine markedly enhances protection by parenteral Mycobacterium bovis BCG immunization against pulmonary tuberculosis. Infect. Immun. 2006, 74, 4634–4643. [Google Scholar] [CrossRef]
- da Costa, C.; Walker, B.; Bonavia, A. Tuberculosis vaccines--state of the art, and novel approaches to vaccine development. Int. J. Infect. Dis. 2015, 32, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Choreno-Parra, J.A.; Jimenez-Alvarez, L.A.; Munoz-Torrico, M.; Ramirez-Martinez, G.; Jimenez-Zamudio, L.A.; Salinas-Lara, C.; Garcia-Latorre, E.A.; Zuniga, J. Antigens of Mycobacterium tuberculosis Stimulate CXCR6+ Natural Killer Cells. Front. Immunol. 2020, 11, 582414. [Google Scholar] [CrossRef]
- Swanson, R.V.; Gupta, A.; Foreman, T.W.; Lu, L.; Choreno-Parra, J.A.; Mbandi, S.K.; Rosa, B.A.; Akter, S.; Das, S.; Ahmed, M.; et al. Antigen-specific B cells direct T follicular-like helper cells into lymphoid follicles to mediate Mycobacterium tuberculosis control. Nat. Immunol. 2023, 24, 855–868. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, A.; Tjarnlund, A.; Ivanji, J.; Singh, M.; Garcia, I.; Williams, A.; Marsh, P.D.; Troye-Blomberg, M.; Fernandez, C. Role of IgA in the defense against respiratory infections IgA deficient mice exhibited increased susceptibility to intranasal infection with Mycobacterium bovis BCG. Vaccine 2005, 23, 2565–2572. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Rodríguez, C.; Estrada-Chávez, C.; García-Vigil, J.; Laredo-Sánchez, F.; Halabe-Cherem, J.; Pereira-Suárez, A.; Mancilla, R. An IgG antibody response to the antigen 85 complex is associated with good outcome in Mexican Totonaca Indians with pulmonary tuberculosis. Int. J. Tuberc. Lung D 2002, 6, 706–712. [Google Scholar]
- Lu, L.L.; Chung, A.W.; Rosebrock, T.R.; Ghebremichael, M.; Yu, W.H.; Grace, P.S.; Schoen, M.K.; Tafesse, F.; Martin, C.; Leung, V.; et al. A Functional Role for Antibodies in Tuberculosis. Cell 2016, 167, 433–443 e414. [Google Scholar] [CrossRef]
- Li, H.; Javid, B. Antibodies and Tuberculosis: Finally Coming Age? Nat. Rev. Immunol. 2018, 18, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Perdomo, C.; Zedler, U.; Kuhl, A.A.; Lozza, L.; Saikali, P.; Sander, L.E.; Vogelzang, A.; Kaufmann, S.H.; Kupz, A. Mucosal BCG Vaccination Induces Protective Lung-Resident Memory T Cell Populations against Tuberculosis. mBio 2016, 7, 10-1128. [Google Scholar] [CrossRef]
- Bull, N.C.; Stylianou, E.; Kaveh, D.A.; Pinpathomrat, N.; Pasricha, J.; Harrington-Kandt, R.; Garcia-Pelayo, M.C.; Hogarth, P.J.; McShane, H. Enhanced protection conferred by mucosal BCG vaccination associates with presence of antigen-specific lung tissue-resident PD-1(+) KLRG1(−) CD4(+) T cells. Mucosal Immunol. 2019, 12, 555–564. [Google Scholar] [CrossRef]
- Bando, J.K.; Colonna, M. Innate lymphoid cell function in the context of adaptive immunity. Nat. Immunol. 2016, 17, 783–789. [Google Scholar] [CrossRef] [PubMed]
- Denis, M. Interleukin-12 (IL-12) augments cytolytic activity of natural killer cells toward Mycobacterium tuberculosis-infected human monocytes. Cell Immunol. 1994, 156, 529–536. [Google Scholar] [CrossRef]
- Yoneda, T.; Ellner, J.J. CD4(+) T cell and natural killer cell-dependent killing of Mycobacterium tuberculosis by human monocytes. Am. J. Respir. Crit. Care Med. 1998, 158, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Vankayalapati, R.; Klucar, P.; Wizel, B.; Weis, S.E.; Samten, B.; Safi, H.; Shams, H.; Barnes, P.F. NK cells regulate CD8+ T cell effector function in response to an intracellular pathogen. J. Immunol. 2004, 172, 130–137. [Google Scholar] [CrossRef]
- Doherty, T.M.; Kastelein, R.; Menon, S.; Andrade, S.; Coffman, R.L. Modulation of murine macrophage function by IL-13. J. Immunol. 1993, 151, 7151–7160. [Google Scholar] [CrossRef]
- Van Dyken, S.J.; Locksley, R.M. Interleukin-4- and interleukin-13-mediated alternatively activated macrophages: Roles in homeostasis and disease. Annu. Rev. Immunol. 2013, 31, 317–343. [Google Scholar] [CrossRef]
- Khader, S.A.; Bell, G.K.; Pearl, J.E.; Fountain, J.J.; Rangel-Moreno, J.; Cilley, G.E.; Shen, F.; Eaton, S.M.; Gaffen, S.L.; Swain, S.L.; et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat. Immunol. 2007, 8, 369–377. [Google Scholar] [CrossRef]
- Umemura, M.; Yahagi, A.; Hamada, S.; Begum, M.D.; Watanabe, H.; Kawakami, K.; Suda, T.; Sudo, K.; Nakae, S.; Iwakura, Y.; et al. IL-17-mediated regulation of innate and acquired immune response against pulmonary bacille Calmette-Guerin infection. J. Immunol. 2007, 178, 3786–3796. [Google Scholar] [CrossRef] [PubMed]
- Ardain, A.; Domingo-Gonzalez, R.; Das, S.; Kazer, S.W.; Howard, N.C.; Singh, A.; Ahmed, M.; Nhamoyebonde, S.; Rangel-Moreno, J.; Ogongo, P.; et al. Group 3 innate lymphoid cells mediate early protective immunity against tuberculosis. Nature 2019, 570, 528–532. [Google Scholar] [CrossRef] [PubMed]
- Steigler, P.; Daniels, N.J.; McCulloch, T.R.; Ryder, B.M.; Sandford, S.K.; Kirman, J.R. BCG vaccination drives accumulation and effector function of innate lymphoid cells in murine lungs. Immunol. Cell Biol. 2018, 96, 379–389. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khanna, M.; Ramsay, A.J. BCG Vaccine-Induced Innate and Adaptive Pulmonary Immunity Correlating with Protective Efficacy Against Mycobacterium tuberculosis in the Lungs. Vaccines 2025, 13, 876. https://doi.org/10.3390/vaccines13080876
Khanna M, Ramsay AJ. BCG Vaccine-Induced Innate and Adaptive Pulmonary Immunity Correlating with Protective Efficacy Against Mycobacterium tuberculosis in the Lungs. Vaccines. 2025; 13(8):876. https://doi.org/10.3390/vaccines13080876
Chicago/Turabian StyleKhanna, Mayank, and Alistair J. Ramsay. 2025. "BCG Vaccine-Induced Innate and Adaptive Pulmonary Immunity Correlating with Protective Efficacy Against Mycobacterium tuberculosis in the Lungs" Vaccines 13, no. 8: 876. https://doi.org/10.3390/vaccines13080876
APA StyleKhanna, M., & Ramsay, A. J. (2025). BCG Vaccine-Induced Innate and Adaptive Pulmonary Immunity Correlating with Protective Efficacy Against Mycobacterium tuberculosis in the Lungs. Vaccines, 13(8), 876. https://doi.org/10.3390/vaccines13080876