Multi-Component Vaccine Candidates Against Non-Typeable Haemophilus influenzae
Abstract
1. Introduction
2. Materials and Methods
2.1. H. influenzae and Growth Conditions
2.2. WGS, Bioinformatics Analysis and Selection of Vaccine Candidates
2.3. Subcloning, Expression and Purification of P5 and P26
2.4. Immunogenicity of Vaccine Candidates During Natural Infection
2.5. Ethical Statement
2.6. Mice
2.7. Experimental Active and Passive Protection of Vaccine Candidates in Mice
2.8. Responses in Mice to Vaccine Candidates
2.9. Statistical Analysis
3. Results
3.1. Rationale Behind the Selection of Genes Encoding Proteins Included as HiNT Vaccine Candidates
3.2. Immunogenicity of Vaccine Candidates During Natural Infection
3.3. Experimental Active and Passive Protection of Vaccine Candidates in Mice
3.4. Responses in Mice to Vaccine Candidates
3.5. Cross-Reactivity of Mice Sera with Proteins Expressed in Diverse Isolates
3.6. Breadth of Coverage During Experimental Infection in Mice
4. Discussion
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Casin, I.; Sanson-Le Pors, M.J.; Felten, A.; Perol, Y. Biotypes, serotypes, and susceptibility to antibiotics of 60 Haemophilus influenzae strains from genitourinary tracts. Genitourin. Med. 1988, 64, 185–188. [Google Scholar] [CrossRef]
- Leibovitz, E.; Jacobs, M.R.; Dagan, R. Haemophilus influenzae: A significant pathogen in acute otitis media. Pediatr. Infect. Dis. J. 2004, 23, 1142–1152. [Google Scholar] [CrossRef]
- Takala, A.K.; Eskola, J.; Peltola, H.; Mäkelä, P.H. Epidemiology of invasive Haemophilus influenzae type b disease among children in Finland before vaccination with Haemophilus influenzae type b conjugate vaccine. Pediatr. Infect. Dis. J. 1989, 8, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Ladhani, S.; Slack, M.P.; Heys, M.; White, J.; Ramsay, M.E. Fall in Haemophilus influenzae serotype b (Hib) disease following implementation of a booster campaign. Arch. Dis. Child. 2008, 93, 665–669. [Google Scholar] [CrossRef]
- Cherpes, T.L.; Kusne, S.; Hillier, S.L. Haemophilus influenzae septic abortion. Infect. Dis. Obstet. Gynecol. 2002, 10, 161–164. [Google Scholar] [CrossRef] [PubMed]
- Duell, B.L.; Su, Y.C.; Riesbeck, K. Host-pathogen interactions of nontypeable Haemophilus influenzae: From commensal to pathogen. FEBS Lett. 2016, 590, 3840–3853. [Google Scholar] [CrossRef] [PubMed]
- Belkacem, N.; Deghmane, A.E.; Taha, M.K. Biofilm Formation by Nontypeable Haemophilus influenzae and Resistance to Complement-Mediated Clearance. J. Infect. Dis. 2024, 229, 1674–1678. [Google Scholar] [CrossRef] [PubMed]
- Teo, E.; Lockhart, K.; Purchuri, S.N.; Pushparajah, J.; Cripps, A.W.; van Driel, M.L. Haemophilus influenzae oral vaccination for preventing acute exacerbations of chronic bronchitis and chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2017, 6, CD010010. [Google Scholar] [CrossRef]
- Cerquetti, M.; Giufrè, M. Why we need a vaccine for non-typeable Haemophilus influenzae. Hum. Vaccines Immunother. 2016, 9, 2357–2361. [Google Scholar] [CrossRef]
- Deghmane, A.E.; Hong, E.; Chehboub, S.; Terrade, A.; Falguieres, M.; Sort, M.; Harrison, O.; Jolley, K.A.; Taha, M.K. High diversity of invasive Haemophilus influenzae isolates in France and the emergence of resistance to third generation cephalosporins by alteration of ftsI gene. J. Infect. 2019, 79, 7–14. [Google Scholar] [CrossRef]
- Jolley, K.A.; Bray, J.E.; Maiden, M.C.J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef]
- Huson, D.H.; Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006, 23, 254–267. [Google Scholar] [CrossRef] [PubMed]
- Studier, F.W.; Moffatt, B.A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 1986, 189, 113–130. [Google Scholar] [CrossRef] [PubMed]
- Belkacem, N.; Hong, E.; Antunes, A.; Terrade, A.; Deghmane, A.E.; Taha, M.K. Use of Animal Models to Support Revising Meningococcal Breakpoints of beta-Lactams. Antimicrob. Agents Chemother. 2016, 60, 4023–4027. [Google Scholar] [CrossRef] [PubMed]
- El-Adhami, W.; Kyd, J.M.; Bastin, D.A.; Cripps, A.W. Characterization of the gene encoding a 26-kilodalton protein (OMP26) from nontypeable Haemophilus influenzae and immune responses to the recombinant protein. Infect. Immun. 1999, 67, 1935–1942. [Google Scholar] [CrossRef]
- Weeks, J.R.; Staples, K.J.; Spalluto, C.M.; Watson, A.; Wilkinson, T.M.A. The Role of Non-Typeable Haemophilus influenzae Biofilms in Chronic Obstructive Pulmonary Disease. Front. Cell Infect. Microbiol. 2021, 11, 720742. [Google Scholar] [CrossRef]
- Xiao, J.; Su, L.; Huang, S.; Liu, L.; Ali, K.; Chen, Z. Epidemic Trends and Biofilm Formation Mechanisms of Haemophilus influenzae: Insights into Clinical Implications and Prevention Strategies. Infect. Drug Resist. 2023, 16, 5359–5373. [Google Scholar] [CrossRef]
- Kyd, J.M.; Cripps, A.W.; Novotny, L.A.; Bakaletz, L.O. Efficacy of the 26-kilodalton outer membrane protein and two P5 fimbrin-derived immunogens to induce clearance of nontypeable Haemophilus influenzae from the rat middle ear and lungs as well as from the chinchilla middle ear and nasopharynx. Infect. Immun. 2003, 71, 4691–4699. [Google Scholar] [CrossRef]
- Poolman, J.T.; Bakaletz, L.; Cripps, A.; Denoel, P.A.; Forsgren, A.; Kyd, J.; Lobet, Y. Developing a nontypeable Haemophilus influenzae (NTHi) vaccine. Vaccine 2000, 19 (Suppl. 1), S108–S115. [Google Scholar] [CrossRef]
- Novotny, L.A.; Pichichero, M.E.; Denoël, P.A.; Neyt, C.; Vanderschrick, S.; Dequesne, G.; Bakaletz, L.O. Detection and characterization of pediatric serum antibody to the OMP P5-homologous adhesin of nontypeable Haemophilus influenzae during acute otitis media. Vaccine 2002, 20, 3590–3597. [Google Scholar] [CrossRef]
- Confer, A.W.; Ayalew, S. The Kompa family of proteins: Roles in bacterial pathogenesis and immunity. Vet. Microbiol. 2013, 163, 207–222. [Google Scholar] [CrossRef] [PubMed]
- Langereis, J.D.; de Jonge, M.I.; Weiser, J.N. Binding of human factor H to outer membrane protein P5 of non-typeable Haemophilus influenzae contributes to complement resistance. Mol. Microbiol. 2014, 94, 89–106. [Google Scholar] [CrossRef] [PubMed]
- Riedmann, E.M.; Lubitz, W.; McGrath, J.; Kyd, J.M.; Cripps, A.W. Effectiveness of engineering the nontypeable Haemophilus influenzae antigen Omp26 as an S-layer fusion in bacterial ghosts as a mucosal vaccine delivery. Hum. Vaccines 2011, 7, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Michel, L.V.; Kaur, R.; Gleghorn, M.L.; Holmquist, M.; Pryharski, K.; Perdue, J.; Jones, S.P.; Jackson, N.; Pilo, I.; Kasper, A.; et al. Haemophilus influenzae Protein D antibody suppression in a multi-component vaccine formulation. FEBS Open Bio 2022, 12, 2191–2202. [Google Scholar] [CrossRef]
- ECDC. Annual Epidemiological Report for 2023—Haemophilus influenzae Disease; European Centre for Disease Prevention and Control: Stockholm, Sweden, 2025. [Google Scholar]
- Novotny, L.A.; Brockman, K.L.; Mokrzan, E.M.; Jurcisek, J.A.; Bakaletz, L.O. Biofilm biology and vaccine strategies for otitis media due to nontypeable Haemophilus influenzae. J. Pediatr. Infect. Dis. 2019, 14, 69–77. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belkacem, N.; Deghmane, A.-E.; Taha, M.-K. Multi-Component Vaccine Candidates Against Non-Typeable Haemophilus influenzae. Vaccines 2025, 13, 892. https://doi.org/10.3390/vaccines13090892
Belkacem N, Deghmane A-E, Taha M-K. Multi-Component Vaccine Candidates Against Non-Typeable Haemophilus influenzae. Vaccines. 2025; 13(9):892. https://doi.org/10.3390/vaccines13090892
Chicago/Turabian StyleBelkacem, Nouria, Ala-Eddine Deghmane, and Muhamed-Kheir Taha. 2025. "Multi-Component Vaccine Candidates Against Non-Typeable Haemophilus influenzae" Vaccines 13, no. 9: 892. https://doi.org/10.3390/vaccines13090892
APA StyleBelkacem, N., Deghmane, A.-E., & Taha, M.-K. (2025). Multi-Component Vaccine Candidates Against Non-Typeable Haemophilus influenzae. Vaccines, 13(9), 892. https://doi.org/10.3390/vaccines13090892