Immunotherapy of Oncovirus-Induced Cancers: A Review on the Development and Efficacy of Targeted Vaccines
Abstract
1. Introduction
2. Vaccine Technologies and Platforms
2.1. Anti-Viral Vaccines
2.1.1. Protein Platform
Whole Inactivated (Killed) Vaccines
Live Attenuated Vaccines
Virus-like Particle (VLP) Vaccines
Synthetic Peptide Vaccines (SPVs)
2.1.2. Nucleic Acid Platforms (NAPs)
Bacterial and Viral Vectored Vaccines
Synthetic DNA Vaccines (SDNAVs)
mRNA-Based Vaccines (mRNAVs)
2.2. Anti-Cancer Vaccines (ACVs)
2.2.1. ACV Technologies and Platforms
Tumor Antigens
- (a)
- Neoantigens
- (b)
- Shared antigens
ACV Platforms
In Situ Vaccines (ISVs)
Combined Vaccination
2.3. Adjuvants
3. The Oncogenic Viruses, Attributed Tumors and Vaccines
3.1. Human Papilloma Virus (HPV)
3.1.1. Virology and Oncogenesis
3.1.2. HPV-Associated Cancers
3.1.3. Vaccines
Prophylactic Vaccines (PVs)
Therapeutic Vaccines (TVs)
3.1.4. Viral Coinfections
HPV and HIV
HPV and EBV
HPV, HIV, and EBV
3.2. Epstein–Barr Virus (EBV)
3.2.1. Virology and Oncogenesis
3.2.2. EBV-Associated Cancers
Nasopharyngeal Carcinoma (NPC)
Gastric Cancer (GC)
Lymphoepithelial Carcinoma of the Lung (LEC)
Thymus Epithelial Tumors (TETs)
Burkitt’s Lymphoma (BL)
Hodgkin Lymphoma (HL)
Extranodal NK/T-Cell Lymphoma (ENNKTL)
EBV+ Nodal T- and NK-Cell Lymphoma (NTNKL)
Systemic EBV+ T-Cell Lymphoma of Childhood (SEBVTCLC)
Aggressive NK Cell Leukemia (ANKL)
EBV+ Inflammatory Follicular Dendritic Cell Sarcoma (IFDCS)
Other EBV-Associated Lymphoproliferative Diseases (LPDs)
3.2.3. EBV Vaccines
Prophylactic Vaccine
Therapeutic Vaccine
3.2.4. Viral Coinfections
EBV and HPV
Coinfection of EBV and Kaposi Sarcoma-Associated Herpes Virus (KSHV)
EBV and HIV
3.3. Kaposi Sarcoma-Associated Herpes Virus (KSHV)
3.3.1. Virology and Oncogenesis
3.3.2. KSHV-Associated Cancers
Kaposi Sarcoma (KS)
Primary Effusion Lymphoma (PEL)
KSHV-Positive Diffuse Large B-Cell Lymphoma (DLBL)
3.3.3. KSHV Vaccines
3.3.4. Viral Coinfections
KSHV and HIV
KSHV and EBV
KSHV, HIV, and EBV
3.4. Human Immunodeficiency Virus (HIV)
3.4.1. Virology and Role in Oncogenesis
3.4.2. HIV Vaccines
3.4.3. Viral Coinfections
3.5. Hepatitis Viruses
3.5.1. Virology and Oncogenesis
Hepatitis B (HBV)
Hepatitis C (HCV)
3.5.2. Hepatitis Virus—Associated Cancers
3.5.3. Hepatitis Virus Vaccines
HBV
HCV
3.5.4. Viral Coinfections
HBV and HIV or HCV and HIV
HBV and HCV
HBV, HCV, and HIV
3.6. The Merkel Cell Polyoma Virus (McPyV)
3.6.1. Virology and Oncogenesis
3.6.2. The McPyV-Associated Cancers
3.6.3. McPyV Vaccines
3.6.4. Viral Coinfections
3.7. The Human T-Cell Leukemia Virus Type-1 (HTLV-1)/Human T-lymphotropic Virus
3.7.1. Virology and Oncogenesis
3.7.2. HTLV-1-Associated Cancer
3.7.3. HTLV-1 Vaccine
3.8. SARS-CoV-2 Virus
3.8.1. Virology and Possible Oncogenetic Mechanisms
3.8.2. Vaccines
4. Developing New Vaccines
4.1. Defining Endpoints for Clinical Vaccine Trials
4.2. Clinical Vaccine Trials, Difficulties and Prospects
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- de Martel, C.; Georges, D.; Bray, F.; Ferlay, J.; Clifford, G.M. Global Burden of Cancer Attributable to Infections in 2018: A Worldwide Incidence Analysis. Lancet Glob. Health 2020, 8, e180–e190. [Google Scholar] [CrossRef] [PubMed]
- Parkin, D.M. The Global Health Burden of Infection-associated Cancers in the year 2002. Int. J. Cancer 2006, 118, 3030–3044. [Google Scholar] [CrossRef] [PubMed]
- Morales-Sanchez, A.; Fuentes-Pananá, E.M. Human Viruses and Cancer. Viruses 2014, 6, 4047–4079. [Google Scholar] [CrossRef]
- Xiao, Q.; Liu, Y.; Li, T.; Wang, C.; He, S.; Zhai, L.; Yang, Z.; Zhang, X.; Wu, Y.; Liu, Y. Viral Oncogenesis in Cancer: From Mechanisms to Therapeutics. Signal. Transduct. Target. Ther. 2025, 10, 151. [Google Scholar] [CrossRef]
- White, M.C.; Wu, X.; Damania, B. oncogenic Viruses, Cancer Biology and Innate Immunity. Curr. Opin. Immunol. 2023, 78, 102253. [Google Scholar] [CrossRef]
- Gaglia, M.M.; Munger, K. More than just Oncogenes: Mechanisms of Tumorigenesis by Human Viruses. Curr. Opin. Virol. 2018, 32, 48–59. [Google Scholar] [CrossRef]
- Ng, C.S. From the Midfacial Destructive Drama to the Unfolding EBV Story: A Short History of EBV-positive NK-cell and T-cell lymphoproliferative Diseases. Pathology 2024, 56, 773–785. [Google Scholar] [CrossRef]
- Mahdavi, P.; Javaherdehi, A.P.; Khanjanpoor, P.; Aminian, H.; Zakeri, M.; Zafarani, A.; Razizadeh, M.H. The role of C-MYC in Epstein-Barr Virus-associated Cancers: Mechanistic Insights and Therapeutic Implications. Microb. Pathog. 2024, 197, 107025. [Google Scholar] [CrossRef]
- Allday, M.J. How does Epstein-Barr Virus (EBV) Complement the Activation of Myc in the Pathogenesis of Burkitt’s Lymphoma? Semin. Cancer Biol. 2009, 19, 366–376. [Google Scholar] [CrossRef]
- Moore, P.S.; Chang, Y. Why do viruses cause cancer? Highlights of the First Century of Human Tumour Virology. Nat. Rev. Cancer 2010, 10, 878–889. [Google Scholar] [CrossRef] [PubMed]
- Park, N.H.; Chung, Y.H.; Lee, H.S. Impacts of Vaccination on Hepatitis B Viral Infections in Korea over a 25-year Period. Intervirology 2010, 53, 20–28. [Google Scholar] [CrossRef]
- Schiller, J.T.; Lowy, D.R. Understanding and Learning from the Success of Prophylactic Human Papillomavirus Vaccines. Nat. Rev. Microbiol. 2012, 10, 681–692. [Google Scholar] [CrossRef]
- Cohen, J.I.; Fauci, A.S.; Varmus, H.; Nabel, G.J. Epstein-Barr Virus: An Important Vaccine target for Cancer Prevention. Sci. Transl. Med. 2011, 3, 107fs7. [Google Scholar] [CrossRef]
- Casper, C.; Corey, L.; Cohen, J.I.; Damania, B.; Gershon, A.A.; Kaslow, D.C.; Krug, L.T.; Martin, J.; Mbulaiteye, S.M.; Mocarski, E.S.; et al. KSHV (HHV8) Vaccine: Promises and Potential Pitfalls for a New Anti-cancer Vaccine. NPJ Vaccines 2022, 7, 108. [Google Scholar] [CrossRef] [PubMed]
- Ghattas, M.; Dwivedi, G.; Lavertu, M.; Alameh, M.G. Vaccine Technologies and Platforms for Infectious Diseases: Current Progress, Challenges and Opportunities. Vaccines 2021, 9, 1490. [Google Scholar] [CrossRef]
- Saxena, M.; vander Burg, S.H.; Melief, C.J.; Bhardwaj, N. Therapeutic Cancer Vaccines. Nat. Rev. Cancer 2021, 21, 360–378. [Google Scholar] [CrossRef]
- Bayani, F.; Hashkavaei, N.S.; Arjmand, S.; Rezaei, S.; Uskokovic, V.; Alijanianzadeh, M.; Uversky, V.N.; Siadat, S.O.R.; Mozaffari-Jovin, S.; Sefidbakht, Y. An Overview of the Vaccine Platforms to Combat COVID-19 with a focus on the Subunit Vaccines. Prog. Biophys. Mol. Biol. 2023, 178, 32–49. [Google Scholar] [CrossRef] [PubMed]
- Folorunso, O.S.; Sebolai, O.M. Overview of the Development, Impacts, and Challenges of Live-Attenuated Oral Rotavirus Vaccines. Vaccines 2020, 8, 341. [Google Scholar] [CrossRef] [PubMed]
- Vignuzzi, M.; Wendt, E.; Andino, R. Engineering Attenuated Virus Vaccines by Controlling Replication Fidelity. Nat. Med. 2008, 14, 154–161. [Google Scholar] [CrossRef]
- Groenke, N.; Trimpert, J.; Merz, S.; Conradie, A.M.; Wyler, E.; Zhang, H.; Hazapis, O.-G.; Rausch, S.; Landthaler, M.; Osterrieder, N.; et al. Mechanism of Virus Attenuation by Codon Pair Deoptimization. Cell Rep. 2020, 31, 107586. [Google Scholar] [CrossRef]
- Mak, T.W.; Saunders, M.E. Vaccines and Clinical Immunization. In The Immune Response; Mak, T.W., Saunders, M.E., Eds.; Academic Press: Burlington, MA, USA, 2006; pp. 695–749. [Google Scholar]
- Fehlner-Gardiner, C.; Nadin-Davis, S.; Armstrong, J.; Muldoon, F.; Bachmann, P.; Wandeler, A. Era Vaccine-derived Cases of Rabies in Wildlife and Domestic Animals in Ontario, Canada, 1989–2004. J. Wildl. Dis. 2008, 44, 71085. [Google Scholar] [CrossRef]
- Frederiksen, L.S.F.; Zhang, Y.; Foged, C.; Thakur, A. The Long road Toward COVID-19 Herd Immunity: Vaccine Platform Technologies and Mass Immunization Strategies. Front. Immunol. 2020, 11, 1817. [Google Scholar] [CrossRef]
- Syomin, B.V.; Ilyin, Y.V. Virus-like Particles as an Instrument of Vaccine Production. Mol. Biol. 2019, 53, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Cimica, V.; Galarza, J.M. Adjuvant formulations for Virus-like Particle (VLP) Based Vaccines. Clin. Immunol. 2017, 183, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Lua, L.H.L.; Connors, N.K.; Sainsbury, F.; Chuan, Y.P.; Wibowo, N.; Middelberg, A.P.J. Bioengineering Virus-like Particles as Vaccines. Biotechnol. Bioeng. 2014, 111, 425–440. [Google Scholar] [CrossRef]
- Da Silva, A.J.; Zangirolami, T.C.; Novo-Mansur, M.T.; GiodanoRde, C.; Martins, E.A. Live Bacteria Vaccine Vectors: An Overview. Braz. J. Microbiol. 2014, 45, 1117–1129. [Google Scholar] [CrossRef]
- Humphreys, I.R.; Sebastian, S. Novel Viral Vectors in Infectious Diseases. Immunology 2018, 153, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ertl, H.C. Viral Vectors as Vaccine Carriers. Curr. Opin. Virol. 2016, 21, 1–8. [Google Scholar] [CrossRef]
- Lambricht, L.; Lopes, A.; Kos, S.; Sersa, G.; Preat, V.; Vandermeulen, G. Clinical Potential of Electroporation for Gene Therapy and DNA Vaccine Delivery. Expert. Opin. Drug Deliv. 2016, 13, 295–310. [Google Scholar] [CrossRef]
- Wang, Z.; Troilo, P.J.; Wang, X.; Griffiths, T.G.; Pacchione, S.J.; Barnum, A.B.; Harper, L.B.; Pauley, C.J.; Niu, Z.; Denisova, L.; et al. Detection of Integration of Plasmid DNA into Host Genomic DNA Following Intramuscular Injection and Electroporation. Gene Ther. 2004, 11, 711–721. [Google Scholar] [CrossRef]
- Alameh, M.-G.; Weissman, D.; Pardi, N. Messenger RNA-Based Vaccines Against Infectious Diseases; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–35. [Google Scholar]
- Andries, O.; Mc Cafferty, S.; De Smedt, S.C.; Weiss, R.; Sanders, N.N.; Kitada, T. N(1)-methylpseudouridine-incorporated mRNA Outperforms Pseudouridine-incorporated mRNA by Providing Enhanced Protein Expression and Reduced Immunogenicity in Mammalian Cell Lines and Mice. J. Control. Release 2015, 217, 337–344. [Google Scholar] [CrossRef]
- Chaudhary, N.; Weissman, D.; Whitehead, K.A. mRNA Vaccines for Infectious Diseases. Principles, Delivery and Clinical Translation. Nat. Rev. Drug Discov. 2021, 20, 817–838. [Google Scholar] [CrossRef]
- Magini, D.; Giovani, C.; Mangiavacchi, S.; Maccari, S.; Cecchi, R.; Ulmer, J.B.; De Gregorio, E.; Geall, A.J.; Brazzoli, M.; Bertholet, S. Self-amplifying mRNA Vaccines Expressing Multiple Conserved Influenza Antigens Confer Protection Against Homologous and Heterosubtypic Viral Challenge. PLoS ONE 2016, 11, e0161193. [Google Scholar] [CrossRef]
- Kristensen, L.S.; Andersen, M.S.; Stagsted, L.V.W.; Ebbesen, K.K.; Hansen, T.B.; Kjems, J. The Biogenesis, Biology and Characterization of Circular RNAs. Nat. Rev. Genet. 2019, 20, 675–691. [Google Scholar] [CrossRef] [PubMed]
- Alameh, M.-G.; Tombacz, I.; Bettini, E.; Lederer, K.; Sittplangkoon, C.; Wilmore, J.R.; Gaudette, B.T.; Soliman, O.Y.; Pine, M.; Hicks, P.; et al. Lipid Nanoparticles Enhance the Efficacy of mRNA and Protein Subunit Vaccines by Inducing Robust T Follicular Helper Cell and Humoral Responses. Immunity 2021, 54, 2877–2892. [Google Scholar] [CrossRef]
- Verdegaal, E.M.E.; de Miranda, N.F.C.C.; Visser, M.; Harryvan, T.; van Buurre, M.M.; Andersen, R.S.; Hadrup, S.R.; van der Minne, C.E.; Schotte, R.; Spits, H.; et al. Neoantigen Landscape Dynamics During Human Melanoma-T Cell Interactions. Nature 2016, 536, 91–95. [Google Scholar] [CrossRef]
- Sade-Feldman, M.; Jiao, Y.J.; Chen, J.H.; Rooney, M.S.; Barzily-Rokni, M.; Eliane, J.-P.; Bjorgaard, S.L.; Hammond, M.R.; Vitzthum, H.; Blackmon, S.M.; et al. Resistance to Checkpoint Blockade Therapy through Inactivation of Antigen Presentation. Nat. Commun. 2017, 8, 1136. [Google Scholar] [CrossRef]
- Hammerich, L.; Binder, A.; Brody, J.D. In situ Vaccination: Cancer Immunotherapy both Personalized and Off-the-shelf. Mol. Oncol. 2015, 9, 1966–1981. [Google Scholar] [CrossRef] [PubMed]
- Mariathasan, S.; Turley, S.J.; Nickles, D.; Castiglioni, A.; Yuen, K.; Wang, Y.; Kadel, E.E., III; Koeppen, H.; Astarita, J.; Cubas, R.; et al. TGFbeta Attenuates Tumor Response to PD-L1 Blockade by Contributing to Exclusion of T Cells. Nature 2018, 554, 544–548. [Google Scholar] [CrossRef] [PubMed]
- Oweida, A.; Hararah, M.K.; Phan, A.; Binder, D.; Bhatia, S.; Lennon, S.; Bukkapatnam, S.; Van Court, B.; Uyanga, N.; Darragh, L.; et al. Resistance to Radiotherapy and PD-L1 Blockade is Mediated by TIM-3 Upregulation and regulatory T-cell Infiltration. Clin. Cancer Res. 2018, 24, 5368–5380. [Google Scholar] [CrossRef]
- Smith, C.C.; Selitsky, S.R.; Chai, S.; Armistead, P.M.; Vincent, B.G.; Serody, J.S. Alternative tumour-specific antigens. Nat. Rev. Cancer 2019, 19, 465–478. [Google Scholar] [CrossRef]
- Roudko, V.; Bozkus, C.C.; Orfannelli, T.; McClain, C.B.; Carr, C.; O’Donnell, T.; Chakraborty, L.; Samstein, R.; Huang, K.; Blank, S.V.; et al. Shared Immunogenic Poly-epitope Frameshift Mutations in Microsatellite Unstable Tumors. Cell 2020, 183, 1634–1649. [Google Scholar] [CrossRef]
- Engelhard, V.H.; Obeng, R.C.; Cummings, K.L.; Petroni, G.R.; Ambakhutwala, A.L.; Chianese-Bullock, K.A.; Smith, K.T.; Lulu, A.; Varhegyi, N.; Smilkin, M.E.; et al. MHC-restricted Phosphopeptide Antigens: Preclinical Validation and First-in-humans Clinical Trial in Participants with High-risk Melanoma. J. Immunother. Cancer 2020, 8, e000262. [Google Scholar] [CrossRef]
- Brentville, V.A.; Vankemmelbeke, M.; Metheringham, R.L.; Durrant, L.C. Post-translational Modifications such as Citrullination are Excellent Targets for Cancer Therapy. Semin. Immunol. 2020, 47, 101393. [Google Scholar] [CrossRef]
- Yarchoan, M.; Albacker, L.A.; Hopkins, A.C.; Montesion, M.; Murugesan, K.; Vithayathil, T.T.; Zaidi, N.; Azad, N.S.; Lalern, D.A.; Frampton, G.M.; et al. PD-L1 Expression and Tumor Mutational Burden are Independent Biomarkers in Most Cancers. JCI Insight 2019, 4, e126908. [Google Scholar] [CrossRef]
- van der Bulk, J.; Verdegaal, E.M.E.; Ruano, D.; Ijsselsteijn, M.E.; Visser, M.; van der Breggen, R.; Duhen, T.; van der Ploeg, M.; de Vries, N.L.; Oosting, J.; et al. Neoantigen-specific Immunity in Low Mutation Burden Colorectal Cancers of the Consensus Molecular Subtype 4. Genome Med. 2019, 11, 87. [Google Scholar] [CrossRef]
- Sahin, U.; Oehm, P.; Derhovanessian, E.; Jabulowsky, R.A.; Vormehr, M.; Gold, M.; Maurus, D.; Schwarck-Kokorakis, D.; Kuhn, A.N.; Omokoko, T.; et al. An RNA Vaccine Drives Immunity in Checkpoint-inhibitor-treated Melanoma. Nature 2020, 585, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Baharom, F.; Ramizez-Valdez, R.A.; Tobin, K.K.S.; Yamane, H.; Dutertre, C.-A.; Khalilnezhad, A.; Reynoso, G.V.; Coble, V.L.; Lynn, G.M.; Mule, M.P.; et al. Intravenous Nanoparticle Vaccination Generates Stem-like TCF1-neoantigen-specific CD8+ T Cells. Nat. Immunol. 2021, 22, 41–52. [Google Scholar] [CrossRef] [PubMed]
- van der Maaden, K.; Heuts, J.; Pontier, M.; van Scheltinga, A.T.; Jiskoot, W.; Ossendorp, F.; Bouwstra, J. Hollow Microneedle-mediated Micro-injections of a Liposome HPVE743-63 Synthetic Long Peptide Vaccine for Efficient Induction of Cytotoxic and T-helper responses. J. Control. Release 2018, 269, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Sobral, M.C.; Badrinath, S.; Choi, Y.; Graveline, A.; Stafford, A.G.; Weaver, J.C.; Dellacherie, M.O.; Shih, T.; Ali, O.A.; et al. A Facile Approach to Enhance Antigen response for Personalized Cancer Vaccination. Nat. Mater. 2018, 17, 528–534. [Google Scholar] [CrossRef]
- Meshii, N.; Takahashi, G.; Okunaga, S.; Hamada, M.; Iwai, S.; Takasu, A.; Ogawa, Y.; Yura, Y. Enhancement of Systemic Tumor Immunity for Squamous Cell Carcinoma Cells by an Oncolytic Herpes Simplex Virus. Cancer Gene Ther. 2013, 20, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Cerullo, V.; Diaconu, J.; Romano, V.; Hirvinen, M.; Ugolini, M.; Escutenaire, S.; Holm, S.-L.; Kipar, A.; Kanerva, A.; Hemminki, A. An oncolytic adenovirus enhanced for toll-like receptor 9 stimulation increases antitumor immune responses and tumor clearance. Mol. Ther. 2012, 20, 2076–2086. [Google Scholar] [CrossRef]
- Motoyoshi, Y.; Kaminoda, K.; Saitoh, O.; Hamasaki, K.; Nakao, K.; Ishii, N.; Nagayama, Y.; Eguchi, K. Different Mechamisms for Anti-tumor Effects of Low-and High-Dose Cyclophosphamide. Oncol. Rep. 2006, 16, 141–146. [Google Scholar]
- Cerullo, V.; Diaconu, J.; Kangasniemi, L.; Rajecki, M.; Escutenaire, S.; Koshi, A.; Romano, V.; Rouvinen, N.; Tuuminen, T.; Laasonen, L.; et al. Immunological Effects of Low-dose Cyclophosphamide in Cancer Patients Treated with Oncolytic Adenovirus. Mol. Ther. 2011, 19, 1737–1746. [Google Scholar] [CrossRef]
- Banissi, C.; Ghiringhelli, F.; Chen, L.; Carpentier, A.F. Treg Depletion with a Low-dose Metronomic Temozolomide Regimen in a Rat Glioma Model. Cancer Immunol. Immunother. 2009, 58, 1627–1634. [Google Scholar] [CrossRef]
- Zamarin, D.; Holmgaard, R.B.; Subudhi, S.K.; Park, J.S.; Mansour, M.; Palese, P.; Merghoub, T.; Wolchok, J.D. Localized Oncolytic Virotherapy Overcomes Systemic Tumor Resistance to Immune Checkpoint Blockade Immunotherapy. Sci. Transl. Med. 2014, 6, 226–232. [Google Scholar] [CrossRef]
- Zhao, T.; Cai, Y.; Jiang, Y.; He, X.; Wei, Y.; Yu, Y.; Tian, X. Vaccine Adjuvants: Mechanisms and Platforms. Signal. Transduct. Target. Ther. 2023, 8, 283. [Google Scholar] [CrossRef] [PubMed]
- Coffman, R.L.; Sher, A.; Seder, R.A. Vaccine Adjuvants: Putting Innate Immunity to Work. Immunity 2010, 10, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Yao, R.; Xia, X. The Advances of adjuvants in mRNA Vaccines. NPJ Vaccines 2023, 8, 162. [Google Scholar] [CrossRef]
- Molina, M.A.; Steenbergen, R.D.M.; Pumpe, A.; Kenyon, A.N.; Melchers, W.J.G. HPV Integration and Cervical Cancer: A Failed Evolutionary Viral Trait. Trends Mol. Med. 2024, 30, 890–902. [Google Scholar] [CrossRef]
- WHO Vaccine Position Papers. Weekly Epidemiological Record No. 50, 2022, 97, 645–672. World Health Organization. Geneva. Available online: https://www.who.int/publications/i/item/who-wer9750-645-672 (accessed on 16 December 2022).
- The Cancer Genome Atlas Research Network. Integrated Genomic and Molecular Characterization of Cervical Cancer. Nature 2017, 543, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Gaykalova, D.A.; Guo, T.; Favorov, A.V.; Fertig, E.J.; Tamayo, P.; Callejas-Valera, J.L.; Allevato, M.; Gilardi, M.; Santos, J.; et al. HPV E2, E4, E5 Drive Alternative Carcinogenic Pathways in HPV Positive Cancers. Oncogene 2020, 39, 63327–66339. [Google Scholar] [CrossRef]
- Maehama, T.; Nishio, M.; Otani, J.; Mak, T.W.; Suzuki, A. The Role of Hippo-YAP Signaling in Squamous Cell Carcinomas. Cancer Sci. 2020, 20, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Basslar, F.; Hoppe-Seyler, K.; Hoppe-Seyler, F. PI3K/AKT/mTOR Signaling Regulates the Virus/Host Cell Crosstalk in HPV-positive Cervical Cancer Cells. Int. J. Mol. Sci. 2019, 20, 2188. [Google Scholar] [CrossRef]
- Von Knebel Doeberitz, M.; Prigge, E.-S. Role of DNA methylation in HPV associated lesions. Papillomavirus Res. 2019, 7, 180–183. [Google Scholar] [CrossRef]
- Wongjampa, W.; Nakahara, T.; Tanaka, K.; Yugawa, T.; Ekalaksananan, T.; Kleebkaow, P.; Goshima, N.; Kiyono, T.; Pientong, C. An In Vitro Carcinogenesis Model for Cervical Cancer Harboring Episomal form of HPV16. PLoS ONE 2023, 18, e0281069. [Google Scholar] [CrossRef]
- Ni, H.; Huang, C.; Ran, Z.; Li, S.; Kuang, C.; Zhang, Y.; Yuan, K. Targeting HPV for the Prevention, Diagnosis, and Treatment of Cervical Cancer. J. Mol. Cell. Biol. 2024, 16, mjae046. [Google Scholar] [CrossRef]
- Saco, A.; Mills, A.M.; Park, K.J.; Focchi, G.R.A.; Carrhilho, C.; Regauer, S.; Kong, C.S. Squamous Cell Carcinoma. HPV-associated, of the Uterine Cervix. In WHO Classification of Female Genital Tumours, 5th ed.; Herrington, C.S., Ordi, J., Eds.; IARC: Lyon, France, 2020; pp. 347–349. [Google Scholar]
- Saco, A.; Mills, A.M.; Park, K.J.; Focchi, G.R.A.; Carrhilho, C.; Regauer, S.; Kong, C.S. Squamous Cell Carcinoma, HPV-independent, of the Uterine Cervix. In WHO Classification of Female Genital Tumours, 5th ed.; Herrington, C.S., Ordi, J., Eds.; IARC: Lyon, France, 2020; p. 350. [Google Scholar]
- Lam, E.W.H.; Chan, J.Y.W.; Chan, A.B.W.; Ng, C.S.; Lo, S.T.H.; Lam, V.S.C.; Chan, M.M.H.; Ngai, C.M.; Vlantis, A.C.; Ma, R.K.H.; et al. Prevalence, Clinicopathological Characteristics and Outcome of Human Papillomavirus-associated Oropharyngeal Cancrs in Southern Chinese Patients. Cancer Epidemiol. Biomark. Prev. 2016, 25, 165–173. [Google Scholar] [CrossRef]
- Lei, J.; Ploner, A.; Elfstrom, M.; Wang, J.; Roth, A.; Fang, F.; Sundstrom, K.; Dillner, J. HPV Vaccination and the Risk of Invasive Cervical Cancer. N. Eng. J. Med. 2020, 383, 1340–1348. [Google Scholar] [CrossRef]
- Falcaro, M.; Soldan, K.; Ndela, B.; Sasieni, P. Effect of the HPV Vaccination Programme on Incidence of Cervical Cancer and Grade 3 Cervical Intraepithelial Neoplasia by Socioeconomic Deprivation in England: Population Based Observational Study. BMJ 2024, 385, e077341. [Google Scholar] [CrossRef] [PubMed]
- Suksanpaisan, L.; Xu, T.; Tesfay, M.Z.; Bomidi, C.; Hamm, S.; Vandergaast, R.; Jenks, N.; Steele, M.B.; Ota-Setlik, A.; Akhtar, H.; et al. Preclinical Development of Oncolytic Immunotherapy for Treatment of HPV-positive Cancers. Mol. Ther. Oncolytics 2018, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Cowell, L.G.; Tomkies, A.; Day, A.T. Therapeutic Vaccination for HPV-mediated Cancers. Curr. Otorhinolaryngol. Rep. 2023, 11, 44–61. [Google Scholar] [CrossRef]
- Bushara, O.; Krogh, K.; Weinberg, S.E.; Finkelman, B.S.; Sun, L.; Liao, J.; Yang, G.Y. Human Immunodeficiency Virus Infection Promotes Human Papillomavirus–mediated Anal Squamous Carcinogenesis: An Immunologic and Pathobiologic Review. Pathobiology 2022, 89, 1–12. [Google Scholar] [CrossRef]
- Liu, G.; Sharma, M.; Tan, N.; Barnabas, R.V. HIV-positive Women have Higher Risk of Human Papillomavirus Infection, Pecancerous Lesions, and Cervical Cancer. AIDS 2018, 32, 795–808. [Google Scholar] [CrossRef] [PubMed]
- Palefsky, J.M. Human Papillomavirus-associated Anal and Cervical Cancers in HIV-infected individuals: Incidence and Prevention in the Anti-retroviral Therapy Era. Curr. Opin. HIV AIDS 2017, 12, 26–30. [Google Scholar] [CrossRef]
- Lien, K.; Mayer, W.; Herrera, R.; Padilla, N.T.; Cai, X.; Lin, V.; Pholcharoenchit, R. HIV-1 proteins gp120 and Tat Promote Epithelial-mesenchymal Transition and Invasiveness of HPV-positive and HPV-negative Neoplastic Genital and Oral Epithelial Cells. Microbiol. Spectr. 2022, 10, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Isaguliants, M.; Bayurova, E.; Avodoshina, D.; Kondrashova, A.; Chiodi, F.; Palefsky, J.M. Oncogenic Effects of HIV-1 proteins, Mechanisms Behind. Cancers 2021, 13, 305. [Google Scholar] [CrossRef]
- Gordon, K.J.; Blobe, G.C. Role of Transforming Growth Factor-beta Superfamily Signaling Pathways in Human Disease. Biochim. Biophys. Acta 2008, 1782, 197–228. [Google Scholar] [CrossRef]
- Glauser, D.A.; Schlegel, W. Sequential Actions of ERK1/2 on the AP-1 Transcription Factor Allow Temporal Integration of Metabolic Signals in Pancreatic Beta Cells. FASEB J. 2007, 21, 3240–3249. [Google Scholar] [CrossRef]
- DiMascio, M.; Srinivasula, S.; Bhattacharjec, A.; Cheng, L.; Martiniova, L.; Herseovitch, P.; Lertora, J.; Kiesewetter, D. Antiretroviral Tissue Kinetics: In Vivo Imaging Using Positron Emission Tomography. Antimicrob. Agents Chemother. 2009, 53, 4086–4095. [Google Scholar] [CrossRef]
- Boomgarden, A.C.; Upadhyay, C. Progress and Challenges in HIV-1 Vaccine Research: A Comprehensive Overview. Vaccines 2025, 13, 148. [Google Scholar] [CrossRef]
- Silver, M.I.; Paul, P.; Sowjanya, P.; Ramakinshna, G.; Vedantham, H.; Kalpana, B.; Shah, K.V.; Gravitt, P.E. Shedding of Epstein-Barr Virus and Cytomegalovirus from the Genital Tract of Women in a Periurban Community in Andhra, Pradesh, India. J. Clin. Microbiol. 2011, 49, 2435–2439. [Google Scholar] [CrossRef] [PubMed]
- Kala, S.; Oueslati, S.; Achour, M.; Kochbati, L.; Chanoufi, M.B.; Maalej, M.; Oueslati, R. Correlation Between EBV Co-infection and HPV Genome Integrity in Tunisian Cervical Cancer Patients. Braz. J. Microbiol. 2012, 43, 744–753. [Google Scholar] [CrossRef]
- de Lima, M.A.P.; Neto, P.J.N.; Lima, L.P.M.; Junior, J.G.; Junior, A.G.T.; Teodoro, L.P.M.; Facundo, H.T.; da Silva, C.G.L.; Lima, M.V.A. Association Between Epstein-Barr Virus (EBV) and Cervical Carcinoma: A meta-analysis. Gynecol. Oncol. 2018, 148, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Blanco, R.; Carrillo-Beltran, D.; Osorio, J.C.; Calaf, G.M.; Aguayo, F. Role of Epstein-Barr Virus and Human Papillomavirus Coinfection in Cervical Cancer: Epidemiology, Mechanisms and Perspectives. Pathogens 2020, 9, 685. [Google Scholar] [CrossRef] [PubMed]
- Ebrahim, F.; Rasizadeh, R.; Sharaflou, S.; Aghbash, P.S.; Shamekh, A.; Jafari-Sales, A.; Baghi, H.B. Coinfection of EBV with Other Pathogens: A Narrative Review. Front. Viorol. 2024, 4, 482329. [Google Scholar] [CrossRef]
- Dillner, J.; Lenner, P.; Lehtinen, M.; Eklundl, C.; Heino, P.; Wiklund, F.; Hallmans, G.; Stendahl, U. A Population-based Seroepidemiological Study of Cervical Cancer. Cancer Res. 1994, 54, 134–141. [Google Scholar]
- Rodrigues, F.R.; Miranda, N.L.; Fonseca, E.C.; Pires, A.R.C.; Dias, E.P. Investigation of the LMPEBV and Co-infection by HPV in Genital Lesions of Patients Infected or Not by HIV. J. Bras. Patol. Med. Lab. 2010, 46, 415–420. [Google Scholar] [CrossRef]
- Kaiser, C.; Laux, G.; Eick, D.; Jochner, N.; Bornkamm, G.W.; Kempkes, B. The Proto-oncogene c-myc is a Direct Target of Epstein-Barr Virus Nuclear Antigen 2. J. Virol. 1999, 73, 4481–4484. [Google Scholar] [CrossRef]
- Sausen, D.G.; Basith, A.; Muqeemuddin, S. EBV and Lymphomagenesis. Cancers 2023, 15, 2133. [Google Scholar] [CrossRef]
- Cui, X.; Snapper, C.M. Epstein Barr Virus: Development of Vaccines and Immune Cell Therapy for EBV-associated Diseases. Front. Immunol. 2021, 12, 734471. [Google Scholar] [CrossRef]
- Glover, A.; Shannon-Lowe, C. From pathobiology to targeted treatment in Epstein Barr virus related T cell and Natural Killer cell lymphoproliferative diseases. Ann. Lymphoma 2021, 5, 31. [Google Scholar] [CrossRef]
- Yin, H.; Qu, J.; Peng, Q.; Gan, R. Molecular Mechanisms of EBV-driven Cell Cycle Progression and Oncogenesis. Med. Microbiol. Immunol. 2019, 208, 573–583. [Google Scholar] [CrossRef]
- Lurain, K.A.; Ramaswami, R.; Krug, L.T.; Whitby, D.; Ziegelbauer, J.M.; Wang, H.; Yarchoan, R. HIV-associated Cancers and Lymphoproliferative Disorders Caused by Kaposi Sarcoma Herpes and Epstein-Barr Viruses. Clin. Microbiol. Rev. 2024, 37, 1–46. [Google Scholar] [CrossRef] [PubMed]
- Nash, A.; Ryan, E.J. The Oncogenic Gamma Herpes Viruses Epstein-Barr Virus (EBV) and Kaposi’s Sarcoma-associated Herpes Virus (KSHV) Hijack Retinoic Acid-inducible Gene I (RIG-I) Facilitating Both Viral and Tumour Immune Evasion. Tumour Virus Res. 2022, 14, 200246. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Liu, Y.; Wang, C.; Gan, R. Signaling Pathways of EBV-induced Oncogenesis. Cancer Cell Int. 2021, 21, 93. [Google Scholar] [CrossRef]
- Rosemarie, Q.; Sugden, B. Epstein-Barr Virus: How its Lytic Phase Contributes to Oncogenesis. Microorganisms 2022, 8, 1824. [Google Scholar] [CrossRef]
- Cross, J.R.; Postigo, A.; Blight, K.; Downward, J. Viral Pro-survival Proteins Block Separate Stages in Bax Inactivation but Changes in Mitochondrial Ultrastructure Still Occur. Cell Death Differ. 2008, 15, 997. [Google Scholar] [CrossRef]
- Fanidi, A.; Hancock, D.C.; Littlewood, T.D. Suppression of c-myc-induced Apoptosis by the Epstein-Barr Virus Gene Product BHRF1. J. Virol. 1998, 72, 8392. [Google Scholar] [CrossRef]
- Zelazowska, M.A.; McBride, K.; Krug, L.T. Dangerous Liaisons: Gammaherpesvirus Subversion of the Immunoglobulin Repertoire. Viruses 2020, 12, 788. [Google Scholar] [CrossRef]
- Chan, J.K.C.; Peterson, B.F.; Bray, F.; Lee, A.W.M.; Rajadurai, P.; Lo, K.W. Nasopharyngeal Carcinoma. In WHO Classification of Head and Neck Tumours, 5th ed.; Tilakarratne, W.M., Lewis, J.S., Eds.; IARC: Lyon, France, 2023; Available online: https://tumourclassification.iarc.who.int/chapters/52 (accessed on 25 August 2025).
- Wei, K.; Zheng, R.; Zhang, S.; Liang, Z.; Li, Z.; Chen, W. Nasopharyngeal Carcinoma Incidence and Mortality in China, 2013. Clin. J. Cancer 2017, 36, 90. [Google Scholar] [CrossRef]
- Lin, J.; Wang, W.; Chen, K.Y.; Wei, Y.; Liang, W.; Jan, J.; Jiang, R. Quantification of Plasma Epstein-Barr Virus DNA in Patients with Advanced Nasopharyngeal Carcinoma. N. Eng. J. Med. 2004, 350, 2461–2470. [Google Scholar] [CrossRef]
- Su, W.; Hildesheim, A.; Chang, Y. Human Leukocyte Antigens and Epstein-Barr Virus-associated Nasopharyngeal Carcinoma: Old Association Offers New Clues into the Role of Immunity in Infection-associated Cancers. Front. Oncol. 2013, 3, 299. [Google Scholar] [CrossRef]
- Bei, J.; Li, Y.; Jia, W.; Feng, B.; Zhou, G.; Chen, L.; Feng, Q.; Low, H.; Zhang, H. A Genome-wide Association Study of Nasopharyngeal Carcinoma Identifies three New Susceptibility Loci. Nat. Genet. 2010, 42, 599–603. [Google Scholar] [CrossRef]
- Bruce, J.P.; To, K.F.; Lui, V.E.Y.; Chung, G.T.Y.; Chan, Y.; Tsang, C.M.; Yip, K.Y.; Ma, B.B.Y.; Woo, J.K.S.; Hui, E.P.; et al. Whole-Genome Profiling of Nasopharyngeal Carcinoma Reveals Viral-Host Co-operation in Inflammatory NF-KB Activation and Immune Escape. Nat. Commun. 2021, 12, 49. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, F.; Fukayama, M.; Grabsch, H.I.; Yasui, W. Gastric Adenocarcinoma. In WHO Classification of Digestive System Tumours, 5th ed.; IARC: Lyon, France, 2019; p. 91. [Google Scholar]
- Nishikawa, J.; Iizasa, H.; Yoshiyama, H.; Shimokuri, K.; Kobayashi, Y.; Sasaki, S.; Nakamura, M.; Yanai, H.; Sakai, K.; Suehiro, Y.; et al. Clinical Importance of Epstein-Barr Virus-associated Gastric Cancer. Cancers 2018, 10, 167. [Google Scholar] [CrossRef] [PubMed]
- Saito, M.; Kono, K. Landscape of EBV-positive Gastric Cancer. Gastric Cancer 2021, 24, 983–989. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Cho, H.J.; Seo, J.; Park, K.B.; Kwon, Y.H.; Bae, H.I.; Seo, A.N.; Kim, M. Genetic Landscape and PD-L1 Expression in Epstein-Barr Virus-associated Gastric Cancer According to the Histological Pattern. Sci. Rep. 2023, 13, 19487. [Google Scholar] [CrossRef]
- Salnikov, M.Y.; MacNeil, K.M.; Mymryk, J.S. The Viral etiology of EBV-associated Gastric Cancers Contributes to their Unique pathology, Clinical Outcomes, Treatment Responses and Immune Landscape. Front. Immunol. 2024, 15, 1358511. [Google Scholar] [CrossRef]
- Saito, R.; Abe, H.; Kunita, A.; Yamashita, H.; Setoo, Y.; Fukayama, M. Overexpression of PD-L1 in Cancer Cells and PD-L1+ Immune Cells in Epstein-Barr Virus-associated Gastric Cancer, the Prognostic Implications. Mod. Pathol. 2017, 30, 427–439. [Google Scholar] [CrossRef]
- Chou, T.; Wong, P.; Chang, Y. Lymphoepithelial Carcinoma of the Lung. In WHO Classification of Thoracic Tumours, 5th ed.; Travis, W.D., Chan, J.K.C., Eds.; IARC: Lyon, France, 2021; pp. 94–96. [Google Scholar]
- The, Y.; Kao, H.; Lee, K.; Wu, M.; Ho, H.; Chou, T. Epstein-Barr Virus-associated pulmonary Carcinoma: Proposing an Alternative Term and Expanding the Histologic Spectrum of Lymphoepithelioma-like Carcinoma of the Lung. Am. J. Surg. Pathol. 2019, 43, 211–219. [Google Scholar] [CrossRef]
- Chang, Y.; Wu, C.; Shih, J.; Lee, Y. New Aspects in Clinicopathologic and Oncogene Studies of 23 Pulmonary Lymphoepithelioma-like Carcinomas. Am. J. Surg. Pathol. 2002, 26, 715–723. [Google Scholar] [CrossRef]
- Zhao, L.; Ding, J.; Tao, Y.; Zhu, K.; Chen, G. Detection of Epstein-Barr Virus Infection in Thymic Epithelial Tumors by Nested PCR and Epstein-Barr-encoded RNA ISH. Infect. Agent. Cancer 2023, 18, 37. [Google Scholar] [CrossRef]
- Wy, T.; Kuo, T. Study of Epstein-Barr Virus early RNA1 (EBER1) Expression by InSitu Hybridization in Thymic Epithelial Tumors of Chinese Patients in Taiwan. Hum. Pathol. 1993, 24, 235–238. [Google Scholar] [CrossRef]
- Zhang, G.; Yu, Z.; Shen, G.; Chai, Y.; Liang, C. Association Between Epstein-Barr Virus and Thymic Epithelial Tumors: A Systematic Review. Infect. Agent. Cancer 2019, 14, 32. [Google Scholar] [CrossRef]
- Chan, J.K.C.; Chalabreysse, L.; Mukai, K.; Tateyama, H. Lymphoepithelial Carcinoma of the Thymus. In WHO Classification of Thoracic Tumours, 5th ed.; IARC: Lyon, France, 2021; pp. 361–363. [Google Scholar]
- Huang, J.; Ahwad, U.; Antonicelli, A.; Catlin, A.C.; Fang, W.; Gomez, D.; Loehrer, P.; Lucchi, M.; Marom, E.; Nicholson, A.; et al. Development of the International Thymic Malignancy Interest Group International Database: An Unprecedented Resource for the Study of a Rare Group of Tumors. Thorac. Oncol. 2014, 9, 1573–1578. [Google Scholar] [CrossRef]
- Sayed, S.; Leoncini, L.; Siebert, R.; Ferry, J.A.; Meideiros, L.J.; Cheuk, W.; Klapper, W.; d’Amore, E.S.G.; Naresh, K.N.; Dave, S.S.; et al. Burkitt Lymphoma. In WHO Classification of Hematolymphoid Tumours, 5th ed.; Oh, G., Alaggio, R., Chan, J.K.C., Schuh, A., Eds.; IARC: Lyon, France, 2024; Available online: https://tumourclassification.iarc.who.int/chapters/63 (accessed on 25 August 2025).
- Johnston, W.t.; Erdmann, F.; Newton, R.; Steliarova-Foucher, E.; Schuz, J.; Roman, E. Childhood Cancer: Estimating Regional and Global ncidence. Cancer Epidemiol. 2021, 71, 101662. [Google Scholar] [CrossRef] [PubMed]
- Leoncini, L. Epstein-Barr Virus Positivity as a Defining Pathogenetic Feature of Burkitt Lymphoma Subtypes. Br. J. Haematol. 2022, 196, 468–470. [Google Scholar] [CrossRef] [PubMed]
- Grande, B.M.; Gerhad, D.S.; Jiang, A.; Grinar, N.B.; Abramson, J.S.; Alexander, T.B.; Allen, H.; Ayers, L.W.; Bethony, J.M.; Bhatia, K.; et al. Genome-wide Discovery of Somatic Coding and Noncoding Mutations in Pediatric Endemic and Sporadic Burkitt Lymphoma. Blood 2019, 133, 1313–1324. [Google Scholar] [CrossRef]
- Robbiani, D.F.; Deroubaix, S.; Feldhahn, N.; Oliveira, T.Y.; Callen, E.; Wang, Q.; Jankovic, M.; Silva, I.T.; Rommel, P.C.; Bosque, D.; et al. Plasmodium Infection Promotes Genomic Instability and AID-dependent B Cell Lymphoma. Cell 2015, 162, 727–737. [Google Scholar] [CrossRef] [PubMed]
- Ramaswami, R.; Chia, G.; Pria, A.D.; Pinato, D.J.; Parker, K.; Nelson, M.; Bower, M. Evolution of HIV-associated Lymphoma over 3 Decades. J. Acquir. Immune Defic. Syndr. 2016, 72, 177–183. [Google Scholar] [CrossRef]
- Mundo, L.; Del Porro, L.; Granai, M.; Sicilano, M.C.; Mancini, V.; Santi, R.; Marcar, L.; Vrzalikova, K.; Vergoni, F.; Di Stefano, G.; et al. Correction: Frequent Traces of EBV Infection in Hodgkin and non-Hodgkin Lymphomas Classified as EBV-negative by Routine methods: Expanding the Landscape of EBV-related Lymphomas. Mod. Pathol. 2020, 33, 2637. [Google Scholar] [CrossRef]
- Ng, C.S.; Qin, J.L. New Facets of Hematolymphoid Eponymic Diseases. Lymphatics 2025, 3, 9. [Google Scholar] [CrossRef]
- Alsharif, R.; Dunleavy, K. Burkitt Lymphoma and other High-grade-B-cell Lymphomas with or without MYC, BCL2 and/or BCL6 Rearrangements. Hematol. Oncol. Clin. N. Am. 2019, 33, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Borges, A.M.; Delabie, J.; Vielh, P.; d’Amore, E.S.G.; Hebeda, K.M.; Diepstra, A.; Naresh, K.M.; Garcia, J.F.; Tamarn, J.; Laskar, S.; et al. Classic Hodgkin Lymphoma. In WHO Classification of Haematolymphoid Tumours, 5th ed.; Gujral, S., Siebert, R., de Jong, D., Eds.; IARC: Lyon, France, 2024; Available online: https://tumourclassification.iarc.who.int/chapters/63 (accessed on 25 August 2025).
- Kanzler, H.; Kuppers, R.; Hansmann, M.L.; Rajewsky, K. Hodgkin and reed-Sternberg Cells in Hodgkin’s Disease represent the Outgrowth of a Dominant Tumor Clone Derived From (Crippled) Germinal Center B Cells. J. Exp. Med. 1996, 184, 1495–1505. [Google Scholar] [CrossRef] [PubMed]
- Harabuchi, Y.; Imai, S.; Wakashima, J.; Hirao, M.; Katanra, A.; Osato, T.; Kon, S. Nasal T-cell Lymphoma Causally Associated with Epstein-Barr Virus: Clinicopathologic, Phenotypic and Genotypic Studies. Cancer 1996, 77, 2137–2149. [Google Scholar] [CrossRef]
- Wang, H.; Fu, B.B.; Gale, R.P.; Liang, Y. NK/T-cell Lymphoma. Leukemia 2021, 35, 2460–2468. [Google Scholar] [CrossRef]
- Au, W.; Pang, A.; Choy, C.; Chin, C.; Kwong, Y. Quantitation of Circulating Epstein-Barr Virus (EBV) DNA in the Diagnosis and Monitoring of Natural Killer Cell and EBV-positive Lymphomas in Immunocompetent Patients. Blood 2004, 104, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Wai, C.M.M.; Chen, S.; Phyu, T.; Fan, S.; Leong, S.M.; Zheng, W.; Low, L.C.Y.; Choo, S.; Lee, C.; Chung, T.; et al. Immune Pathway Upregulation and Lower Genomic Instability Distinguish EBV-positive nodal T/NK-cell Lymphoma from ENKTL and PTCL-NOS. Haematologica 2022, 107, 1864–1879. [Google Scholar] [CrossRef]
- Cohen, J.I.; Kimura, H.; Nakamura, S.; Ko, Y.; Jaffe, E.S. Epstein-Barr Virus-associated Lymphoproliferative Disease in Non-immunocompromised Hosts: A Status Report and Summary of an International Meeting, 8–9 September 2008. Ann. Oncol. 2009, 20, 1472–1482. [Google Scholar] [CrossRef]
- Tang, Y.T.; Wang, D.; Luo, H.; Xiao, M.; Zhou, H.S.; Liu, D.; Ling, S.-P.; Wang, N.; Hu, X.-L.; Luo, Y.; et al. Aggressive NK-cell Leukemia: Clinical Subtypes, Molecular Features and Treatment Outcomes. Blood Cancer J. 2017, 7, 660. [Google Scholar] [CrossRef]
- Jiang, X.N.; Zhang, Y.; Xue, T.; Chen, J.; Chan, A.C.L.; Cheuk, W.; Chan, J.K.C.; Li, X. New Clinicopathologic Scenarios of EBV+ Inflammatory Follicular Dendritic Cell sarcoma. Report of 9 Extrahepatosplenic Cases. Am. J. Surg. Pathol. 2021, 45, 765–772. [Google Scholar] [CrossRef]
- Cheuk, W.; Chan, J.K.C.; Shek, T.W.H.; Chang, J.H.; Tsou, M.; Yuen, N.W.F.; Ng, W.F.; Chan, A.C.L.; Prat, J. Inflammatory Pseudotumor-like Follicular Dendritic Cell Tumor. Am. J. Surg. Pathol. 2001, 25, 721–731. [Google Scholar] [CrossRef]
- Li, Y.; Yang, X.; Tao, L.; Zeng, W.; Zuo, M.; Li, S.; Wu, L.; Lin, Y.; Zhang, Z.; Yun, J.; et al. Challenges in the Diagnosis of Epstein-Barr Virus-positive Inflammatory Follicular Dendritic Cell Sarcoma. Am. J. Surg. Pathol. 2023, 47, 476–489. [Google Scholar] [CrossRef]
- Natkunam, Y.; Bhagat, G.; Chadbum, A.; Naresh, K.N.; Chan, J.; Michelow, P.; Satou, A.; Satom, Y.; Bower, M.; Gratzinger, D.; et al. EBV-mucocutaneous Ulcer. In WHO Classification of Haematolymphoid Tumours, 5th ed.; de Jong, D., Siebert, R., Alaggio, R., Coupland, S.E., Eds.; IARC: Lyon, France, 2024; Available online: https://tumourclassification.iarc.who.int/chapters/63 (accessed on 25 August 2025).
- Anagnostopoulos, I.; Siebert, R.; Nicholson, A.G.; Deckert, M. Lymphomatoid Granulomatosis. In WHO Classification of Haematolymphoid Tumours, 5th ed.; Oh, G., de Jong, D., Eds.; IARC: Lyon, France, 2024; Available online: https://tumourclassification.iarc.who.int/chapters/63 (accessed on 25 August 2025).
- Anagnostopoulis, I.; Medeiros, J.; Klapper, W.; de Jong, D.; Miles, R.R.; Lenz, G.; Asano, N.; Chapman, J.R.; Steidi, C. EBV-positive Diffuse Large B-cell Lymphoma. In WHO Classification of Haematolymphoid Tumours, 5th ed.; Oh, G., Chan, J., Eds.; IARC: Lyon, France, 2024; Available online: https://tumourclassification.iarc.who.int/chapters/63 (accessed on 25 August 2025).
- Montes-Morento, S.; Leoncini, L.; Miranda, R.; Louissaint, A., Jr.; Sengar, M. Plasmablastic Lymphoma. In WHO Classification of Haematolymphoid Tumours, 5th ed.; Oh, G., de Jong, D., Dave, S.S., Eds.; IARC: Lyon, France, 2024; Available online: https://tumourclassification.iarc.who.int/chapters/63 (accessed on 25 August 2025).
- Cui, X.; Cao, Z.; Ishikawa, Y.; Cui, S.; Imadome, K.; Snapper, C.M. Immunization with Epstein-Barr Virus Core Fusion Machinery Envelope Proteins Elicits High Titers of neutralizing Activities and Protect Humanized Mice from Lethal Dose EBV Challenge. Vaccines 2021, 9, 285. [Google Scholar] [CrossRef]
- Moutschea, M.; Leonard, P.; Sokal, E.M.; Smets, F.; Haumont, M.; Mazzu, P.; Bollen, A.; Denamur, F.; Peeters, P.; Dublin, G.; et al. Phase I/II Studies to Evaluate Safety and Immunogenicity of a Recombinant gp350 Epstein-Barr Virus Vaccine in Healthy Adults. Vaccine 2007, 25, 4697–4705. [Google Scholar] [CrossRef]
- Draper, S.J.; Angov, E.; Hori, T.; Miller, L.H.; Srinivasan, P.; Theisen, M.; Biswas, S. recent Advances in recombinant Protein-based Malaria Vaccines. Vaccine 2015, 33, 7433–7443. [Google Scholar] [CrossRef]
- Zhong, L.; Zhao, Q.; Zeng, M.; Zhang, X. Prophylactic Vaccines against Epstein-Barr Virus. Lancet 2024, 404, 845. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Meng, Z.; Zhou, Z.; Zhong, Z.; Kang, M. Therapeutic Vaccines for Epstein-Barr Virus: A Way Forward. Lancet 2024, 403, 2779. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.I. Epstein-Barr Virus Vaccines. Clin. Transl. Immunol. 2015, 4, 27. [Google Scholar] [CrossRef] [PubMed]
- Choi, A.; Marcus, K.; Pohl, D.; Ten Eyck, P.; Balfour, H., Jr.; Jackson, B. Epstein-Barr Virus Infection Status Among First Year Undergraduate University Students. J. Am. Coll. Health 2020, 70, 22–25. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Cesarman, E.; Pessin, M.S.; Lee, F.; Culpepper, J.; Knowles, D.M.; Moore, P.S. Identification of Herpes-like DNA Sequences in AIDS-associated Kaposi’s Sarcoma. Science 1994, 266, 1865–1869. [Google Scholar] [CrossRef]
- Ablashi, D.V.; Chatlynne, L.G.; Whitman, J.E., Jr.; Cesarman, E. Spectrum of Kaposi’s Sarcoma-associated Herpesvirus, or Human Herpesvirus 8, Diseases. Clin. Microbiol. Rev. 2002, 15, 439–464. [Google Scholar] [CrossRef]
- Cesarman, E.; Damania, B.; Krown, S.E.; Martin, J.; Bower, M.; Whitby, D. Kaposi Sarcoma. Nat. Rev. Dis. Primers 2019, 5, 9. [Google Scholar] [CrossRef] [PubMed]
- Gantts, S.; Casper, C. Human Herpesvirus 8-associated Neoplasms: The Roles of Viral Replication and Antiviral Treatment. Curr. Opin. Infect. Dis. 2011, 24, 295–301. [Google Scholar] [CrossRef]
- Suda, T.; Katano, H.; Delso, G.; Kakiuchi, C.; Nakamura, T.; Shiota, T.; Higashihara, M.; Mori, S. HHV-8 Infection Status of AIDS-unrelated and AIDS-associated Multicentric Castleman Disease. Pathol. Int. 2001, 51, 671–679. [Google Scholar] [CrossRef]
- Chadbum, A.; Said, J.W.; Du, M.; Vega, F. KSHV/HHV8-positive Germinotropic Lymohoproliferative Disorder. In WHO Classification of Haematolymphoid Tumours, 5th ed.; De Jong, D., Naresh, K.N., Chan, J., Eds.; IARC: Lyon, France, 2024; Available online: https://tumourclassification.iarc.who.int/chapters/63 (accessed on 25 August 2025).
- Douglas, J.l.; Gustin, J.K.; Moses, A.V.; Dezube, B.J.; Pantanowitz, L. Kaposi Sarcoma Pathogenesis: A Triad of Viral Infection, Oncogenesis and Chronic Inflammation. Transl. Biomed. 2010, 1, 172. [Google Scholar]
- Radu, O.; Pantanowitz, L. Kpaosi Sarcoma. Arch. Pathol. Lab. Med. 2013, 137, 289–294. [Google Scholar] [CrossRef]
- Guillet, S.; Gerald, L.; Meignin, V.; Agbalika, F.; Cuccini, W.; Denis, B.; Katlama, C.; Galicier, L.; Oksenhendler, E. Classsic and Extracavity Primary Effusion Lymphoma in 51 HIV-infected Patients from a Single Institution. Am. J. Hematol. 2016, 91, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Bruce-Brand, C.; Rigby, J. Kaposi Sarcoma with Intravascular Primary Effusion Lymphoma in the Skin: A Potential Pitfall in HHV8 Immunohistochemistry Interpretation. Int. J. Surg. Pathol. 2020, 28, 868–871. [Google Scholar] [CrossRef]
- Said, J.W.; Chadbum, A.; Medeiros, L.J.; Bacon, C.M.; Cesarman, E.; Michelow, P.; Du, M.; Bower, M. Primary Effusion Lymphoma. In WHO Classification of Haematolymphoid Tumours, 5th ed.; De Jong, D., Naresh, K.N., Chan, J., Eds.; IARC: Lyon, France, 2024; Available online: https://publications.iarc.who.int/637 (accessed on 25 August 2025).
- Rossi, G.; Cozzi, I.; Starza, I.D.; DeNovi, L.A.; DePropris, M.S.; Gaeta, A.; Petrucci, L.; Pulsoni, A.; Pulvirenti, F.; Ascoli, V. Human Herpes-8-positive Primary Effusion Lymphoma in HIV-negative Patients: Single Institution Case Series with a Multidisciplinary Characterization. Cancer Cytopathol. 2021, 129, 62–74. [Google Scholar] [CrossRef]
- Das, D.K. Serous Effusions in Malignant Lymphomas: A Review. Diagn. Cytopathol. 2006, 34, 335–347. [Google Scholar] [CrossRef]
- Lurain, K.; Polizzotto, M.N.; Aleman, K.; Bhutani, M.; Wyvill, K.M.; Goncalves, P.H.; Ramaswami, R.; Marshall, V.A.; Miley, W.; Steinberg, S.M.; et al. Yiral, Immunologic, and Clinical Features of Primary Effusion Lymphoma. Blood 2019, 133, 1753–1761. [Google Scholar] [CrossRef]
- Dittmer, D.P.; Damania, B. Kaposi Sarcoma Associated Herpesvirus Pathogenesis (KSHV)—An Update. Curr. Opin. Virol. 2013, 3, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Mariggio, G.; Koch, S.; Schulz, T.F. Kaposi Sarcoma Virus Pathogenesis. Philos. Trans. R. Soc. B 2017, 372, 20160275. [Google Scholar] [CrossRef]
- Pantanowitz, L.; Moses, A.V.; Dezube, B.J. The inflammatory Component of Kaposi Sarcoma. Exp. Mol. Pathol. 2009, 87, 163–165. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.K.; Foreman, K.; Shin, J.W.; Hirakawa, S.; Curry, C.L.; Sage, D.R.; Libermann, T.; Dezube, B.J.; Fingeroth, J.D.; Detmar, M. Lymphatic reprogramming of blood vascular endothelium by Kaposi sarcoma–associated herpesvirus. Nat. Genet. 2004, 36, 283–685. [Google Scholar] [CrossRef] [PubMed]
- Kaposi, M. Idiopathisces Multiples Pigmentsarkom der Haut. Archiv Dermatol. Syphilis 1872, 3, 265–273. [Google Scholar] [CrossRef]
- Bigi, R.; Landis, J.T.; An, H.; Caro-Vegas, C.; Raab-Tranb, N.; Dittmer, D.P. Epstein-Barr Virus Enhances Genome Maintenance of Kaposi sarcoma-associated Herpesvirus. Proc. Natl. Acad. Sci. USA 2018, 115, E11387. [Google Scholar] [CrossRef]
- Cesarmann, E.; Chang, Y.; Moore, Y.; Said, J.W.; Knowles, D.M. Kaposi’s Sarcoma-associated Herpesvirus-like DNA Sequences in AIDS-related Body Cavity-based Lymphoma. N. Eng. J. Med. 1995, 4, 1186–1191. [Google Scholar] [CrossRef]
- Vega, F.; Chadbum, A.; Said, J.W.; Cesarmann, E.; Du, M.; Bower, M. KSH/HHV8-positive Diffuse Large B-cell Lymphoma. In WHO Classification of Haematolymphoid Tumours, 5th ed.; De Jong, D., Naresh, K.N., Chan, J., Eds.; IARC: Lyon, France, 2024; Available online: https://tumourclassification.iarc.who.int/chapters/63 (accessed on 25 August 2025).
- Chandran, B. Early Events in Kaposi’s Sarcoma-associated Herpesvirus Infection of Target Cells. J. Virol. 2010, 84, 2188–2199. [Google Scholar] [CrossRef]
- Mulama, D.H.; Mutsvunguma, L.Z.; Totonchy, J.; Ye, P.; Foley, J.; Escalante, G.M.; Rodriguez, E.; Nabiee, R.; Muniraju, M.; Wussow, E.; et al. A Multivalent Kaposi Sarcoma-associated Herpesvirus-like Particle Vaccine Capable of Eliciting High Titres of Neutralizing Antibodies in Immunized rabbits. Vaccine 2019, 37, 4188–4194. [Google Scholar] [CrossRef]
- Muniraju, M.; Mutsvunguma, L.; Foley, J.; Escalante, G.M.; Rodriguez, E.; Nabiee, R.; Totonchy, J.; Mulama, D.H.; Nyagol, J.; Wussow, F.; et al. Kaposi Sarcoma-associated Herpesvirus Glycoprotein H is Indispensable for Infection of Epithelial, Endothelial and Fibroblast Cell Types. J. Virol. 2019, 93, e00630-19. [Google Scholar] [CrossRef]
- Kwun, H.J.; da Silva, S.R.; Qin, H.; Ferris, R.L.; Tan, R.; Chang, Y.; Moore, P.S. The Central Repeat Domain 1 of Kaposi’s Sarcoma-associated Herpesvirus (KSHV) Latency Associated-nuclear Antigen (LANA1) Prevents cis HLA Class 1 Peptide Presentation. Virology 2011, 412, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Sugden, A.U.; Heyes, M.; Sugden, B. How Epstein-Barr Virus and Kaposi’s Sarcoma-associated Herpesvirus are Maintained Together to transform the Same B-Cell. Viruses 2021, 13, 1478. [Google Scholar] [CrossRef] [PubMed]
- Boui, M.; Rieble, L.; Munz, C. Co-infection of the Epstein-Barr Virus and the Kaposi Sarcoma-associated Herpesvirus. Viruses 2022, 4, 2709. [Google Scholar] [CrossRef]
- Julius, P.; Karg, G.; Siyumbwa, S.; Musumali, J.; Tso, F.Y.; Ngalamika, O.; Kaile, T.; Maate, F.; Moonga, P.; West, J.T.; et al. Co-infection and Co-localization of Kaposi Sarcoma-associated Herpesvirus and Epstein-Barr Virus in HIV-associated Kaposi Sarcoma: A Case Report. Front. Cell Infect. Microbiol. 2023, 13, 1270935. [Google Scholar] [CrossRef]
- King, S.R. HIV: Virology and Mechanisms of Disease. Ann. Emerg. Med. 1994, 24, 3. [Google Scholar] [CrossRef]
- Chinen, J.; Shearer, W.T. Molecular Virology and Immunology of HIV Infection. J. Allergy Clin. Immunol. 2002, 110, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control (CDC). Kaposi’s Sarcoma and Pneucystits Pneumonia Among Homosexual Men—New York City and California. MMWR Morb. Mortal. Wkly. Rep. 1981, 30, 305–308. [Google Scholar]
- Yarchoan, R.; Uldrick, T.S. HIV-associated Cancers and Related Diseases. N. Eng. J. Med. 2018, 378, 1029–1041. [Google Scholar] [CrossRef]
- Omar, A.; Marques, N.; Crawfood, N. Cancer and HIV: The Molecular Mechanisms of the Deadly Duo. Cancers 2024, 16, 546. [Google Scholar] [CrossRef]
- Libera, M.; Caputo, V.; Laterza, G.; Moudoud, L.; Soggiu, A.; Bonizzi, L. The Question of HIV Vaccine: Why is a Solution Not Yet Available? J. Immunol. Res. 2024, 2024, 1–20. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, X.; Yan, H.; Li, W.; Zeng, X.; Yang, Y.; Zhao, J.; Liu, S.; Zhuang, X.; Lin, C.; et al. Genomic and Oncogenic Preference of HBV Integration in Hepatocellular Carcinoma. Nat. Commun. 2016, 7, 12992. [Google Scholar] [CrossRef] [PubMed]
- Nevola, R.; Beccia, D.; Rosato, V.; Ruocco, R.; Mestrocinque, D.; Villani, A.; Perillo, P.; Imbriani, S.; Delle Femine, A.; Criscuolo, L.; et al. HBV Infectionand Host Interaction: The Role in Viral Persistence and Oncogenesis. Int. J. Mol. Sci. 2023, 24, 7651. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Chen, H.; Liu, H.; Tang, H. The Impact of Integrated Hepatitis B Virus DNA on Oncogenesis and Anti-viral Therapy. Biomarkers Res. 2024, 12, 84. [Google Scholar] [CrossRef]
- Yin, D.; Zhou, T.; Xia, X.; Han, C.; Liu, Z.; Li, Q.; Shu, Y.; Xu, H. Novel Insights into HBV-Hepatocellular Carcinoma at Single-Cell Swquencing. MedComm-Oncol. 2023, 2, e60. [Google Scholar] [CrossRef]
- Flores, J.F.; Thompson, A.J.; Ryan, M.; Howed, J. The Global Impact of Hepatitis B Vaccination on Hepatocellular Carcinoma. Vaccines 2022, 10, 793. [Google Scholar] [CrossRef] [PubMed]
- Forner, A.; Llovet, J.M.; Brnix, J. Hepatocellular Carcinoma. Lancet 2012, 379, 1245–1255. [Google Scholar] [CrossRef]
- Baily, J.R.; Barnes, E.; Cox, A.L. Approaches, Progress and Challenges to Hepatitis C Vaccine Development. Gastroenterology 2019, 156, 418–430. [Google Scholar] [CrossRef]
- Virzi, A.; Suarez, A.A.R.; Baumert, T.F.; Lupberger, J. Oncogenic Signaling Induced by HCV Infection. Viruses 2018, 10, 538. [Google Scholar] [CrossRef] [PubMed]
- Couronne, L.; Bachy, E.; Roullard, S.; Nadel, B.; Davi, F.; Armand, M.; Canioni, D.; Michot, J.M.; Visco, C.; Arcaini, L.; et al. From Hepatitis C Virus Infection to B-cell Lymphoma. Ann. Oncol. 2018, 29, 92–100. [Google Scholar] [CrossRef]
- Fiehu, F.; Beisel, C.; Binder, M. Hepatitis C Virus and Hepatocellular Carcinoma: Carcinogenesis in the Era of Direct-acting Anti-virals. Curr. Opin. Virol. 2024, 67, 101423. [Google Scholar] [CrossRef]
- Martineau, C.; Rivard, N.; Bisaillon, M. From Viruses to Cancer: Exploring the Role of the Hepatitis C Virus NS3 Protein in Carcinogenesis. Inf. Agents Cancer 2024, 19, 40. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.a.; Jemal, A. lobal Cancer Statistics 2018, GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Sanyal, A.J.; Yoon, S.K.; Lencioni, R. The Etiology of Hepatocellular Carcinoma and Consequences for Treatment. Oncologist 2010, 15 (Suppl. 4), 14–22. [Google Scholar] [CrossRef]
- Torbenson, M.; Ng, I.; Park, Y.N.; Roncalli, M.; Sakamato, M. Hepatocellular Carcinoma. In WHO Classification of Digestive System Tumours, 5th ed.; Shirmacher, P., Ed.; IARC: Lyon, France, 2019; pp. 229–239. [Google Scholar]
- Burt, A.D.; Alves, V.; Bedossa, P.; Clouston, A.; Guido, M.; Hubscher, S.; Kakar, S.; Ng, I.; Park, Y.N.; Reeves, H.; et al. Data Set for Reporting of Intrahepatic Cholangiocarcinoma, Perhilar Cholangiocarcinoma and Hepatocellular Carcinoma: Recommendations from the International Collaboration on Cancer Reporting (ICCR). Histopathology 2018, 73, 369–385. [Google Scholar] [CrossRef]
- Romano, L.; Paladini, S.; Galli, C.; Raimondo, G.; Pollicino, T.; Zanetti, A.R. Hepatitis B Vaccination. Hum. Vaccin. Immunother. 2015, 11, 53–57. [Google Scholar] [CrossRef]
- Vasikari, T.; Finn, A.; van Damme, P.; Leroux-Roels, I.; LEROUX-Roels, G.; Segall, N.; Toma, A.; Vallieres, G.; Aronson, R.; Reich, D.; et al. Immunogenicity and Safety of a 3-antigen Hepatitis B Vaccine Vs a Single-antigen Hepatitis B Vaccine. JAMA Netw. Open 2021, 4, e2128652. [Google Scholar] [CrossRef]
- Chang, M.; You, S.; Chen, C.; Liu, C.; Lee, C.; Lin, S.; Chu, H.; Wu, T.; Yang, S.; Kuo, H.; et al. Decreased Incidence of Hepatocellular Carcinoma in Hepatitis B Vaccinees: A 20-year Follow Up Study. J. Natl. Cancer Inst. 2009, 101, 1348–1355. [Google Scholar] [CrossRef] [PubMed]
- Chen, T. Paths Toward Hepatitis B Immunization in South Korea and Taiwan. Clin. Exp. Vaccine Res. 2013, 2, 76–82. [Google Scholar] [CrossRef]
- Li, T.; Fu, Y.; Allain, J.; Li, C. Chronic and Occult Hepatitis B Virus Infection in the Vaccinated Chinese Population. Ann. Blood 2017, 2, 4. [Google Scholar] [CrossRef]
- Cao, M.; Fan, J.; Lu, L.; Fan, C.; Wang, Y.; Chen, T.; Zhang, S.; Yu, Y.; Xia, C.; Lu, J.; et al. Long Term Outcome of Prevention of Liver Cancer by Hepatitis B Vaccine: Results from an RCT with 37 Years. Cancer Lett. 2022, 536, 215652. [Google Scholar] [CrossRef] [PubMed]
- Wong, N.S.; Chan, D.P.C.; Poon, C.M.; Chan, C.P.; Lau, L.H.W.; Yeoh, E.K.; Lee, S.S. Hepatitis B Burden and Population Immunity in a High Endemicity City—A Geographically Random Household Epidemiology Study for Evaluating Achievability of Elimination. Epidemiol. Infect. 2022, 151, e22. [Google Scholar] [CrossRef]
- Shoukry, N.H. Hepatitis C Vaccines, ntibodies, and T Cells. Front. Immunol. 2018, 9, 1480. [Google Scholar] [CrossRef]
- Czarnota, A.; Raszplewicz, A.; Stawinska, A.; Biekowska-Szewczk, K.; Grzyb, K. Minicircle-based Vaccine Induces Potent t-cell and antibody Responses Against Hepatitis C Virus. Nat. Sci. Rep. 2024, 14, 26698. [Google Scholar] [CrossRef]
- Garcia-Samaniego, J.; Rodriguez, M.; Berengner, J.; Rodriguez-Rosado, R.; Carbo, J.; Aseni, V.; Soriano, V. Hepatocellular Carcinoma in HIV-infected Patients with Chronic Hepatitis C. Am. J. Gastroenterol. 2001, 96, 179–183. [Google Scholar] [CrossRef]
- Glaerde, L.; Shepherd, L.; Jablonowska, E.; Lazzarin, A.; Rougemont, M.; Darling, K.; Battegay, M.; Braun, D.; Martel-Laferriere, V.; Lundgren, J.D. Trends inIncidences and Risk Factors for Hepatocellular Carcinoma and Other Liver Events in HIV and Hepatitis C Virus-coinfected Individuals from 2001 to 2014: A Multicohort Study. Clin. Infect. Dis. 2016, 63, 821–829. [Google Scholar] [CrossRef]
- Awadh, A.A.; Alharthi, A.A.; Alghamdi, B.A.; Alghamdi, S.T.; Baqays, M.K.; Biurabaa, I.S.; Malli, I.A. Coinfection of hepatitis B and C Viruses and Risk of Hepatocellular Carcinoma: Systematic Review and Meta-analysis. J. Glob. Infect. Dis. 2024, 16, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Zampino, R.; Pisaturo, M.; Cirillo, G.; Marrpne, A.; Macera, M.; Rinaldi, L.; Stanzione, M.; Durante-Mangoni, E.; Gentile, I.; Sagnelli, E.; et al. Hepatocellular Carcinoma in Chronic HBV-HCV Coinfection is Correlated to Fibrosis and Disease Duration. Ann. Hepatol. 2015, 14, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Maqsood, Q.; Sumrin, A.; Iqbal, M.; Younas, S.; Hussain, N.; Mahnoor, M.; Wajid, A. Hepatitis C Virus/ Hepatitis B Virus Coinfection: Current Perspectives. Antiviral Ther. 2023, 1, 18. [Google Scholar] [CrossRef]
- 224Mehershanhi, S.; Haider, A.; Kandhi, S.; Sun, H.; Patel, H. Prevalence of Hepatocellular Carcinoma in HIV Patients Coinfected or TripleInfected with Hepatitis B and Hepatitis C in a Community Hospital in South Bronx. Cureus 2022, 14, e26089. [Google Scholar] [CrossRef]
- Feng, H.; Shuda, M.; Chang, Y.; Moore, P.S. Clonal Integration of Polyomavirus in Human Merkel Cell carcinoma. Science 2008, 319, 1096–1100. [Google Scholar] [CrossRef]
- Spurgeon, M.E.; Lambert, P.F. Merkel Cell Polyomavirus—A Newly Discovered Human Virus with Oncogenic Potential. Virology 2013, 5, 118–130. [Google Scholar] [CrossRef]
- Stilling, S.; Kreuter, A.; Gambichler, T.; Meyer, T.; Stockfleth, E.; Wieland, U. Epidemiology of Merkel Cell Polyomavirus Infection and Merkel Cell Carcinoma. Cancers 2022, 14, 6176. [Google Scholar] [CrossRef]
- Yang, J.F.; You, J. Merkel Cell Polyomavirus and Associated Merkel Cell Carcinoma. Tumor Virus Res. 2022, 13, 200232. [Google Scholar] [CrossRef]
- De Caprio, J.A. Merkel Cell Polyomavirus and Merkel Cell carcinoma. Philos. Trans. R. Soc. B 2017, 372, 20160276. [Google Scholar] [CrossRef]
- Zhou, X.; Yin, C.; Lin, Z.; Yan, Z.; Wang, J. Merkel Cell Polyomavirus Co-infectionin HIV/AIDS Individuals: Clinical Diagnosis, Consequences and Treatments. Pathogens 2025, 14, 134. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Lai, Y.; Cheng, P.; Yu, W.; Wang, R.; Shen, W.; Chuang, S. Merkel Cell Carcinoma in Taiwan: A Subset is Chronic Arsenicism-related, and the Merkel Cell Polyomavirus-negative Cases Are Pathologically Distinct from Virus-related Cases with a Poorer Outcome. Pathology 2025, 57, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Jiang, S.; Jin, X.; Zhao, G.; Wang, B. Development of a Therapeutic Vaccine Targeting Merkel Cell Polyomavirus Capsid Protein VP1 Against Merkel Cell Carcinoma. NPJ Vaccines 2021, 6, 119. [Google Scholar] [CrossRef]
- Frey, A.; Pevzy, C.; Olino, K.; Ishizwka, J. Development of an mRNA Therapeutic Vaccine for Virally Driven Merkel Cell Carcinoma. J. Clin. Oncol. 2024, 42, s2637. [Google Scholar] [CrossRef]
- Gambichler, T.; Schrama, D.; Kapynen, R.; Weyer-Fahlbusch, S.S.; Becker, J.C.; Susok, L.; Kreppel, F.; Abu Rached, N. Current Progress in Vaccines Against Merkel Cell Carcinoma: A Narrative Review and Update. Vaccines 2024, 12, 533. [Google Scholar] [CrossRef]
- Rosean, C.B.; Leyder, E.C.; Hamilton, J.; Carter, J.J.; Galloway, D.A.; Koelle, D.M.; Nghiem, P.; Heiland, T. LAMP1 Targeting of the Large T Antigen of Merkel Cell Polyomavirus Results in Potent CD4 T Cell Responses and Tumor Inhibition. Front. Immunol. 2023, 14, 1253568. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Gomez, B.P.; Viscidi, R.P.; Peng, S.; He, L.; Ma, B.; Wu, T.C.; Hung, C. Development of a DNA Vaccine Targeting Merkel Cell Polyomavirus. Vaccine 2012, 30, 1322–1329. [Google Scholar] [CrossRef] [PubMed]
- Engels, E.A.; Frisch, M.; Goedert, J.J.; Biggar, R.J.; Miller, R.W. Merkel Cell Carcinoma and HIV Infection. Lancet 2002, 359, 497–498. [Google Scholar] [CrossRef] [PubMed]
- Izikson, L.; Nornhold, S.; Iyer, J.G.; Nghiem, P.; Zeitouni, N.C. Merkel Cell carcinoma Associated with HIV: Review of 14 Patients. AIDS 2011, 25, 119–121. [Google Scholar] [CrossRef]
- Brites, C.; Quaresma, J.A.S.; Ishak, R.; Vallinoto, A.C.R. Pathogenesis of HTLV-1 Infection and Progression Biomarkers: An Overview. Braz. J. Infect. Dis. 2021, 25, 101594. [Google Scholar] [CrossRef]
- Foriani, G.; Shallak, M.; Accolla, R.S.; Romanelli, M.G. HTLV-1 Infection and Pathogenesis: New Insights from Cellular and animal Models. Int. J. Mol. Sci. 2021, 22, 8001. [Google Scholar] [CrossRef]
- Hirons, A.; Khoury, G.; Purcell, D.F.J. Human T-cell Lymphotropic Virus Type-1: A Life Long Persistent Infection, Yet Never Truly Silent. Lancet Infect. Dis. 2021, 21, e2–e10. [Google Scholar] [CrossRef]
- Goncalves, D.U.; Proietti, F.A.; Ribas, J.G.R.; Araujo, M.G.; Pinheiro, S.R.; Guedes, A.C.; Carneiro-Proietti, A.B.F. Epidemiology, treatment and Prevention of Human T-cell Leukemia Virus Type 1-associated Diseases. Clin. Microbiol. Rev. 2010, 23, 577–589. [Google Scholar] [CrossRef]
- Bangham, C.R.M. HTLV-1 Persistence and the Oncogenesis of Adult T-cell Leukemia/Lymphoma. Blood 2023, 141, 2299–2306. [Google Scholar] [CrossRef]
- Letafati, A.; Bahari, M.; Ardekani, O.S.; Jazi, N.N.; NIkzad, A.; Norouzi, F.; Mahdavi, B.; Aboofazeli, A.; Mozhgani, S.-H. HTLV-1 Vaccination Landscape: Current Development and Challenges. Vaccine X 2024, 9, 100525. [Google Scholar] [CrossRef]
- Attygalle, A.D.; Kennosuke, K.; Jeon, Y.K.; Cheuk, W.; Bhagat, G.; Chan, J.K.C.; Naresh, K.N. The Fifth Edition of the WHO Classificationof Mature T Cell. NK Cell and Stroma-derived Neoplasm. J. Clin. Pathol. 2025, 78, 217–232. [Google Scholar] [CrossRef]
- Suchiro, Y.; Hasegawa, A.; Iino, T.; Sasada, A.; Watanabe, N.; Matsuoka, M.; Takamori, A.; Tanosaki, R.; Utsunomiya, A.; Choi, I.; et al. Clinical Outcomes of a Novel Therapeutic Vaccine with Tax Peptide-pulsed Dendritic Cell for Adult T Cell Leukemia/Lymphoma in a Pilot Study. Br. J. Haematol. 2015, 169, 356–367. [Google Scholar] [CrossRef]
- McFee, R.B. SARS 2 human coronavirus (COVID-19, SARS CoV2). Dis. Mon. 2020, 66, 101063. [Google Scholar] [CrossRef]
- Hu, B.; Guo, H.; Zhou, P.; Shi, Z. Characteristics of SARS-CoV-2 and COV-19. Nat. Rev. Microbiol. 2021, 19, 141–154. [Google Scholar] [CrossRef]
- Plicard, M.; Jain, S.; Rego, S.; Dakshanamurthy, S. Immune Characterization and profiles of SARS-CoV-2 Infected Patients Reveals Potential Host Therapeutic Targets and SARS-CoV-2 Oncogenesis Mechanism. Virus Res. 2021, 301, 198464. [Google Scholar] [CrossRef] [PubMed]
- Jahankani, K.; Ahangari, F.; Adcock, I.M.; Mortaz, E. Possible Cancer-causing Capacity of COVID-19: Is SARS-CoV-2 an Oncogenic Agent? Biochime 2023, 213, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Stingi, A.; Crillo, L. SARS-CoV-2 infection and cancer: Evidence for and against a role of SARS-CoV-2 in cancer onset. Bioessays 2021, 43, e2000289. [Google Scholar] [CrossRef]
- Lopez-Romero, R.; Nambo-Lucio, M.J.; Dalcedo-Carrillo, E.; Hernandez-Cueto, M.L.A.; Salcedo-Vacgas, M. The Big Challenge of SARS-CoV-2 Latency: Testes as Reservoir. Gaceto Med. Mex. 2020, 156, 328–333. [Google Scholar] [CrossRef]
- Goubran, H.; Stakiw, J.; Seghatchian, J.; Ragab, G.; Burnouf, T. SARS-CoV-2 and Cancer: The Intriguing and Informative Cross-talk. Transfus. Apher. Sci. 2022, 61, 103488. [Google Scholar] [CrossRef] [PubMed]
- Costanzo, M.; De Giglio, M.A.R.; Roviello, G.N. Deciphering the Relationship Between SARS-CoV-2 and Cancer. Int. J. Mol. Sci. 2023, 24, 7803. [Google Scholar] [CrossRef]
- Chia, S.B.; Johnson, B.J.; Hu, J.; Valenca-Pereira, F.; Chadeau-Hyam, M.; Guntoro, F.; Montgomery, H.; Boorgula, M.P.; Sreekanth, V.; Goodspeed, A.; et al. Respiratory Viral Infections Awaken Metastatic Breast Cancer Cells in Lungs. Nature 2025. [Google Scholar] [CrossRef]
- De Souza, L.M.; Ismail, M.; Elaskandrany, M.-A.; Fratela-Calabresse, A.; Grossman, I.R. Primary Hepatic EBV-DLBCL Lymphoma in the Setting of COVID-19 Infection. ACG Case Rep. J. 2024, 11, e01276. [Google Scholar] [CrossRef]
- Pietroluongo, E.; Luciano, A.; Peddio, A.; Buonaiuto, R.; Caltavituoo, A.; Servetto, A.; De Angelis, C.; Arpino, G.; Palmieri, G.; Veneziani, B.M.; et al. Exploring the Interplay Between Kaposi’s Sarcoma and SARS-CoV-2 Infection. A Case Series and Systematic Review. J. Med. Virol. 2024, 96, e29849. [Google Scholar] [CrossRef]
- Pasi, F.; Calveri, M.M.; Pizzarelli, G.; Calabresse, A.; Andreoli, M.; Bongiovanni, I.; Cattaneo, C.; Rignanese, G. Oncolytic Effect of SARS-CoV-2 in a Patient with NK Lymphoma. Acta Biomed. 2020, 91, e2020047. [Google Scholar]
- Challenor, S.; Tucker, D. SARS-CoV-2 Induced Remission of Hodgkin Lymphoma. Br. J. Haematol. 2021, 192, 415. [Google Scholar] [CrossRef]
- Ohadi, L.; Hosseinzadeh, F.; Dadkhahfar, S.; Nasiri, S. Oncolytic Effect of SARS-CoV-2 in a Patient with Mycosis Fungoides: A Case Report. Clin. Case Rep. 2022, 10, e05682. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Xu, P.; Ye, Q. Analysis of COVID-19 Vaccines: Types, Thoughts and Applications. J. Clin. Lab. Anal. 2021, 35, e23937. [Google Scholar] [CrossRef]
- Horne, A.D.; Lachenbruch, P.A.; Goldenthal, K.L. Intent-to-treat Analysis and Preventive Vaccine Efficacy. Vaccine 2000, 19, 319–326. [Google Scholar] [CrossRef]
- Hudgens, M.; Gilbert, P.B.; Self, S.G. Endpoints in Vaccine Trials. Stat. Methods Med. Res. 2004, 13, 1–26. [Google Scholar] [CrossRef] [PubMed]
Incidence | ||
---|---|---|
Infectious Agents | Number of Attributed Cancers | Percentage of Total Infections |
Bacterial Infections | ||
Helicobacter pylori | 810,000 | 36.8 |
Subtotal (Bacteria) | 810,000 | 36.8 |
Viral Infections | ||
HPV | 690,000 | 31 |
HBV | 360,000 | 16 |
HCV | 160,000 | 7 |
EBV | 156,000 | 7 |
KSHV | 42,000 | 2 |
HTLV-1 | 3600 | 0.2 |
Subtotal (Viruses) | 1,411,600 | 63.2 |
Total Infections | 2,221,600 | 100 |
Virus | Cancers Caused | Prophylactic Vaccines | Platform |
---|---|---|---|
HPV |
|
| Recombinant |
HBV | Hepatocellular carcinoma (HCC) |
| Recombinant |
|
|
Virus | Prophylactic (PV) or Therapeutic (TV) Vaccines | Clinical Trials.gov ID Number | Sponsoring Body | Vaccine | Vaccine Platform | Enrolment (Subjects Number) | Trial Phase | Status of Trial |
---|---|---|---|---|---|---|---|---|
HPV | TV | NCT01266460 | Gynecologic Oncology Group | ADXS11-001 | Bacterial Vectored | 54 | 2 | Completed |
TV | NCT01598792 | U of Liverpool | ADXS11-001 | Bacterial Vectored | 2 | 1 | Completed | |
TV | NCT02399813 | Advaxis, Inc | ADXS11-001 | Bacterial Vectored | 36 | 2 | Completed | |
TV | NCT02291055 | Adaxix, Inc | ADXS11-001 | Bacterial Vectored | 75 | 1/2 | Completed | |
TV | NCT02002182 | Baylor College of Medicine | ADXS11-001 | Bacterial Vectored | 15 | 2 | Completed | |
TV | NCT04607850 | Barinthus Biotherapeutics | ChAdOx1-hrHPV | Viral Vectored | 108 | 1/2 | Completed | |
TV | NCT00075569 | Albert Einstein College of Medicine | SGN-00101 | Peptide | 64 | 2 | Completed | |
TV | NCT02576561 | THEVAX Genetics Vaccine | TVGV-1 | Peptide | 10 | 2 | Completed | |
TV | NCT02405221 | Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins | TA-CIN | Peptide | 14 | 1 | Completed | |
TV | NCT01957878 | Genticel | Procervix | Peptide | 239 | 2 | Completed | |
TV | NCT03821272 | U of Arkansas | PepCan | Peptide | 17 | 1/2 | Completed | |
TV | NCT02481414 | U of Arkansas | PepCan | Peptide | 81 | 2 | Completed | |
TV | NCT03418480 | U of Southampton | HARE-40 | mRNA | 32 | 1/2 | Completed | |
TV | NCT01304524 | Inovio Pharmaceuticals | VGX-3100 | DNA | 167 | 2 | Completed | |
TV | NCT04131413 | Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins | PNGVL4a- CRTE6E7L2 | DNA | 48 | 1 | Ongoing | |
TV | NCT00988559 | Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins | PNGVL4a-CRT/E7(Detox) | DNA | 132 | 1 | Completed | |
TV | NCT03870113 | Shenzhen People’s Hospital | DC Vaccine | Dendritic cell-based | 80 | 1 | Completed | |
EBV | PV | NCT05164094 | Moderna | mRNA-1189 | mRNA | 867 | 1/2 | Ongoing |
PV | NCT04645147 | National Institute of Health (NIH) | Nanoparticle gp350-ferritin | Nanoparticle | 83 | 1 | Ongoing | |
PV | NCT06908096 | National Institute of Allergy and Infectious Diseases (INIAID) | Nanoparticle gH/gL/g42-ferritin +/− gp350-ferritin | Nanoparticle | 750 | 1 | Ongoing | |
PV | NCT05831111 | NIH | mRNA-1195 | mRNA | 474 | 1 | Ongoing | |
TV | NCT01094405 | Chinese U of Hong Kong | EBNA1/LMP2 recombinant vaccine | Recombinant | 25 | 2 | Completed | |
TV | NCT01147991 | Cancer Research UK | EBNA1 c-terminal/LMP2 chimeric protein expressing recombinant + modified Vaccinia Ankara vaccine | Recombinant + Viral vectored | 16 | 1 | Completed | |
TV | NCT00078494 | National Institute of Health Clinical Center (CC) | LMP2:340-349 + LMP2:419–427 | Peptide | 99 | 1/2 | Completed | |
TV | NCT05714748 | West China Hospital | mRNA vaccine | mRNA | 19 | 1 | Ongoing | |
TV | NCT00078494 | CC | LMP2:340–349 + LMP2:419–427 | Peptide | 99 | 1 | Completed | |
TV | NCT01094405 | Chinese U of Hong Kong | MVA EBNA1/LMP2 | Viral Vectored | 25 | 2 | Completed | |
HBV | TV | NCT06513286 | Ludwig-Maximilians-University, Munich | TherVacB | Protein-based + Bacterial Vectored | 81 | 1/2 | Ongoing |
TV | NCT04297917 | Barinthus Biothertapeutics | ChAdOx-1-HBV | Viral Vectored | 47 | 1 | Completed | |
HCV | PV | NCT01436357 | NAID | AdCh3NSmut1+ MVA-NSMut | Viral Vectored | 548 | 1/2 | Completed |
PV | NCT03688061 | U of Oxford | ChAd3-hliNSmut + MVA-hliNSmut | Viral Vectored | 25 | 1 | Completed | |
PV | NCT01296451 | Rei Ther Sri | AdCh3NSmut + MVA-NSmut | Viral Vectored | 55 | 1 | Completed | |
TV | NCT00601770 | Valneva Austria GmbH | IC41 | mRNA | 71 | 2 | Completed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ng, C.S. Immunotherapy of Oncovirus-Induced Cancers: A Review on the Development and Efficacy of Targeted Vaccines. Vaccines 2025, 13, 911. https://doi.org/10.3390/vaccines13090911
Ng CS. Immunotherapy of Oncovirus-Induced Cancers: A Review on the Development and Efficacy of Targeted Vaccines. Vaccines. 2025; 13(9):911. https://doi.org/10.3390/vaccines13090911
Chicago/Turabian StyleNg, Chi Sing. 2025. "Immunotherapy of Oncovirus-Induced Cancers: A Review on the Development and Efficacy of Targeted Vaccines" Vaccines 13, no. 9: 911. https://doi.org/10.3390/vaccines13090911
APA StyleNg, C. S. (2025). Immunotherapy of Oncovirus-Induced Cancers: A Review on the Development and Efficacy of Targeted Vaccines. Vaccines, 13(9), 911. https://doi.org/10.3390/vaccines13090911