Development of Streptococcus pneumoniae Vaccines Using Live Vectors
Abstract
:1. Introduction
2. Bacterial Vectors Deliver Protective Antigens
2.1. Salmonella-Vectored Vaccines
Strain 1 | Antigen | Antigen source 2 | Promoter/secretion signal | Location | Mice 3/rabbit | Schedule | Route/dose 4 | Immune responses 5,6 | Challenge Strain/Route/Dose 7 | Protection | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
Bacterial vectors | |||||||||||
S. typhimurium | |||||||||||
Single antigen | |||||||||||
C5 aroA | Ply (Pd-B, W433F) | Type 1 Ply overexpression strain | Native promoter | Cytoplasm | BALB/c | Day 0, 14, 28, 42 | Oral 1010 | Serum IgG, IgA | N.A | N.A | [41] |
Quackenbush mice Outbreed | Day 0, 14,28 | i.p. 106 | Serum Ig G IgA | N.A | N.A | ||||||
χ9101, χ9017, χ9241 | PsaA | Tigr 4 (4) | Ptrc, native SS, lpp, bla, Y.pestis psaA SS | Periplasm | BALB/c, C57BL/6 | Day 0, 42 | Oral 109 i.n. 109 | Serum IgG, Vaginal wash, nasal and lung IgA | WU2 (3), i.p. 2 × 104; L82016 (6B), E134 (23), i.n. 5 × 106; A66.1(3), D39 (2), i.n. 1 × 107 | i.p. no protection; i.n. reduce nasal colonization, but not lung | [42] |
SR-11 χ4550 | PspA Rx1 (aa 1–470) | Rx1 | Ptrc, native signal | Periplasm and cytoplasm | BALB/cJ, CBA/N xid | Day 0, 56, 140 | Oral 1.5 × 109 | Serum, VL, IL IgG, IgA, IgM, spleen, PP, PBMC PspA-specific IgG IgM IgA APC | WU2 (3), i.p. 3 × 103, i.v. 104 | 66% protection, passive protection by serum: i.v. 33%–89%; i.p. 43% | [43] |
New Zealand White rabbits | Day 0, 30 | Oral 1.6 × 1010 | Serum, VL IgG | [43] | |||||||
SL1344 χ8501 | PspA (aa 3–257) | Rx1 | Ptrc, bla SS | Periplasm/Supernatant | BALB/c | Day 0 or Day 0, 70 | Oral, 1.3–1.9 × 109 | Serum IgG, VL IgA | WU2 (3), i.p. 4.8 × 103 | 60% Protection | [44] |
SL1344 χ8501 | PspA (aa 3–257) | Rx1 | Ptrc, no signal or bla SS | Cytoplasm periplasm | BALB/c | Day 0 | Oral, 109 | Serum IgG, | NA | NA | [45] |
χ8937 | PspA (aa 3–257) | Rx1 | Ptrc, bla SS | Periplasm and lysed | BALB/c | Day 0, 7 | Oral 1.3 × 109 Boost 1.2 × 109 | Seum IgG, VL IgA | NA | NA | [46] |
χ9241, χ9277, χ9373, χ9402 | PspA (3–285) | Rx1 | Ptrc, bla SS | Periplasm | BALB/c | Day 0 | Oral 1 × 109 | Serum IgG, VL IgA. IL-4, IFN-γ ELISPOT, CD4, CD8, cytokines, memory T cell | WU2 (3), i.p. 2 × 104 | 46%–47% for strains with ΔsopB mutation | [47] |
χ9241 | PspA 3–285 | Rx1 | Ptrc, bla SS+CT | Periplasm | BALB/c and C57BL/6, BALB/c pIgR−/− , BALB/c and C57BL/6 MyD88−/−, MyD88−/−TRIF−/− | Day 0, 14, 28 or Day 0, 14 | i.g. 109, i.n. 108 | Serum, fecal IgG, IgA, Ag-specific CD4+ T cell proliferation, adoptive transfer | WU2 (3) i.v. 2 × 106 or 2 × 107, i.t. 5 × 107 | 0% in MyD88−/− mice | [48] |
χ8133, χ9088, χ9558 | PspA (3–257) | Rx1 | Ptrc, bla SS | Periplasm | BALB/c | Day 0, 56 | Oral 1 × 109 | Serum IgG, VL IgA. IL-4, IFN-γ ELISPOT, cytokines, Passive transfer of cells and sera | WU2 (3), i.p. 5 × 104 | 21%, 86%, 71% for χ8133, χ9088 and χ9558; passive protection by serum 80%, 100%, 100%; by spleen cells, 0%, 100%, 60% | [49] |
χ9241 | PspA (aa 3–285) PspC (aa 4–404) | Rx1 L81905 (4) | Ptrc, bla SS, bla SS+CT, phoA, ompA | Periplasm | BALB/c | Day 0 | Oral 109 | Serum IgG, VL IgA, ELISPOT IL-4, IFN-γ for PspA or PspC | WU2 (3), i.p. 2 × 104 for PspA D39 (2), i.p. 4 × 103 for PspC | bla SS–PspA, 63%; bla SS+CT–PspC 60% | [50] |
χ9241, χ9852, χ9884 | PspA 3–285 | Rx1 | Ptrc, bla SS | Periplasm | BALB/c | Day 0, 28 | Oral 109 | Serum IgG, VL IgA | WU2 (3). i.p. 4 × 104 | 23%–45% for different rfaH mutations | [51] |
χ9558 | PspA 3–285 | Rx1 | Ptrc, bla SS | Periplasm | BALB/c Neonatal (7-day-old) and infant (21-day-old) | Day 0, 21, 42 | Oral, i.n. 5 × 108 | Serum IgG , VL IgA . IL-4, IFN-γ ELISPOT | WU2 (3). i.p. 2 × 103 for oral route, 4 × 103 for i.n. | baby mice from immunized mother 40% (7 day) or 50% (21 day); from naïve mother 11% (7 day) or 10% (21 day) | [52] |
χ9241, χ9853, χ9885 | PspA 3–285 | Rx1 | Ptrc, bla SS | Periplasm | BALB/c | Day 0, 28 | Oral 109 | Serum IgG, VL IgA | WU2 (3). i.p. 4 × 104 | 55%–77% for different rfc mutations | [53] |
χ9095, χ9241, χ9555, χ9959 | PspA 3–285 | Rx1 | Ptrc, bla SS | Periplasm | BALB/c | Day 0, 42 | Oral 109 | Serum IgG, VL IgA | WU2 (3). i.p. 2 × 104 | 52% for relA198, 39% for relA 197 | [54] |
χ9241, χ9281 | PspA 3–285 | Rx1 | Ptrc, bla SS, bla S +CT | Periplasm | BALB/c | Day 0, 7, 14, 21 | i.n. OMV contain 350 ng PspA from Salmonella | Serum IgG, VL IgA | WU2 (3). i.p. 0.246–4 × 104 | 100% protection against low dose, 47% for high dose | [55] |
χ 9241, χ9555 | PspA 3–285 | Rx1 | PpagC, PssaG, Ptrc bla SS | Periplasm | BALB/c | Day 0, 42 | Oral 109 | Serum IgG, VL IgA, IL-4, IFN-γ ELISPOT | WU2 (3). i.p. 2 × 104 | 46% for regulated delayed antigen synthesis system, 39% for PpagC | [56] |
χ9241, χ9844, χ9845, χ9846, χ9881 | PspA 3–285 | Rx1 | Ptrc, bla SS | Periplasm | BALB/c | Day 0, 35 | Oral 109 | Serum IgG, VL IgA | WU2 (3). i.p. 4 × 104 | 1-dephosphorylated lipid A modifications do not affect protection | [57] |
χ9241, χ9884, χ9885, χ11313, χ11314, χ11315, χ11316, χ11317 | PspA 3–285 | Rx1 | Ptrc, bla SS | Periplasm | BALB/c | Day 0, 35 | Oral 109; i.n. 107; i.p. 106 | Serum IgG, VL IgA | NA | NA | [58] |
χ9241, χ9278, χ9848, χ9850, χ11318, χ11088 | PspA 3-285 | Rx1 | Ptrc, bla SS | Periplasm | BALB/c | Day 0, 35 | Oral 109 | Serum IgG, VL IgA | WU2 (3). i.p. 2 × 104 | 23%–37%, not affected by palmitoylation state of lipid A | [59] |
χ9241, χ11088, χ11089, χ11090, χ11091 | PspA 3-285 | Rx1 | Ptrc, bla SS | Periplasm | BALB/c | Day 0, 35 | Oral 109 | Serum IgG, VL IgA | WU2 (3). i.p. 2 × 104 | 23%–31%, not affected by phosphate groups of Lipid A | [60] |
χ9241 | PspA 3-285 | Rx1 | Ptrc, bla SS+CT | Periplasm | C57BL/6, Ccr2−/− | Day 0 | i.g. 109 | Serum IgG, IgA, BALF IgA | WU2 (3). i.t. 104 | long-term protection 80%; protect against 2nd pneumococcal pneumonia 80%–100%; Passive serum protection, 90% | [61] |
Multiple antigen | |||||||||||
χ9241 | PspA Rx1 (aa 3–285) EF5668 (aa 4–417) | Fusion of Rx1 and EF5668 (4) | Ptrc, bla SS | Periplasm | BALB/c | Day 1, 7, 42 | Oral 109 | Serum IgG, VL IgA, complement deposition | WU2 (3), i.p. 2 × 104; 3JYP2670 (3), i.v. 1 × 106; A66.1 (3), i.n. 1 × 108 | Rx1-EF5668 83%–100%; Rx1, 33%–53%; EF5668 26%–66% | [62] |
χ9760, χ9828, χ11018, χ11026 | PspA PspC | Rx1 L81905(4) | Ptrc, Plpp-lacO, bla SS | Periplasm | BALB/c | Day 0,42 | Oral 109 | Serum IgG | WU2 (3), i.p. 2 × 104; L81905 (4), i.v. 1 ×106; A66.1 (3), i.n. 1 × 108 | Dual-plasmid i.p. 75%; i.v. 100%; i.n. 80% | [63] |
DNA vaccine | |||||||||||
χ4550 | PspA PsaA | R6 (ATCC-255) | PCMV | Cytoplasm | BALB/c | Day 0, 35 | Oral 1.5 × 109 | Serum, NL IgG, IgA | D39 (2), i.n. 106 | PsaA + PspA is best in reducing nasal colonization | [64] |
S. typhi | |||||||||||
ISP1820, χ9633, Ty2, χ9639, χ9640 | PspA 3–285 | Rx1 | Ptrc, bla SS | Periplasm | BALB/c | Day 0, 42 | i.n. 1 ± 0.2 × 109 | Serum IgG , VL IgA, IL-4, IFN-γ ELISPOT | WU2 (3), i.p. 1 × 104 | 50% for χ9633, 75% for χ9639; 81% for χ9640 | [65] |
ISP1820, χ9633, Ty2, χ9639, χ9640 | PspA 3–285 | Rx1 | Ptrc, bla SS | Periplasm | Neonatal(7 day) and Infant (21 day) BALB/c | Day 0, 14, 28, 42 | i.n. 5 × 108 | Serum IgG , VL IgA, IL-4, IFN-γ ELISPOT | WU2 (3), i.p. 4 × 103 | neonatal mice 33%–65%; infant mice 40%–75% | [66] |
ISP1820, χ9633, Ty2, χ9639, χ9640 | PspA 3–285 | Rx1 | Ptrc, bla SS | Periplasm | Adult human | Day 0 | Oral 107, 108, 109, 1010 | ELISPOT IgA, serum IgA, IgG | N.A | Induce limited IgA response | [40] |
Lactococci and Lactobacilli | |||||||||||
Protein antigen | |||||||||||
L. casei CECT5275 L. plantarum NCDO1193 L. helveticus ATCC 15009 L. lactis MG1363 | PsaA | 472/96 (6B) | lactococcal P1 promoter, usp45 SS | Cell wall | C57Bl/6 | Day 0, 1, 14, 15, 28, 29 | i.n. 109 | Saliva, NL, BAL IgA Serum IgG | ATCC0603 (6B), i.n. 5 × 106 | Reduce nasal colonization only in L. helveticus-PsaA | [67] |
L. lactis F17847 | PspA aa 1–418 | Tigr4 (4) | Pnis | Cytoplasm | CBA/ca | Day 0, 21, 42 | i.n. 109 | Serum and LL IgG, LL IgA | Tigr4 (4), i.p. 2 × 105, i.n. 1–2 × 106, | i.p.: LAB vaccine40%, protein 15%–20%; extend survival time against i.n. challenge | [68] |
L. casei CECT5275 | PspA (clade 1) | 435/96 (14) | constitute P1 promoter | Cytoplasm | C57Bl/6 | Day 0, 1, 14, 15, 28, 29 | i.n. 109 | Serum IgG, NO Saliva, NL IgA; complement deposition assay | A66.1(3), i.p. 102, heterologous challenge | 33% | [69] |
L. casei CECT5275 | PspA (clade 5) PspC | 122/02 (23F) 491/00 (6B) | constitute P1 promoter | Cytoplasm | C57BL/6 | Days 0, 1, 14, 15, 28, 29 | i.n. 109 | Serum, VW, BAL IgG, IgA, cytokines | ATCC 6303 (3), i.n. 105 | PspA 40%–60%; PspC 12.5%–20% | [70] |
L. casei CECT5275 | PspC | 491/00 (6B) | constitute P1 promoter, w/wo usp45 SS | Cell wall or cytoplasm | C57BL/6 | Day 0, 1, 14, 15, 28, 29; Day 0, 14, 28 or Day 0, 1, 14, 15, | i.n. 109 sublingual. 109 prime-boost | No IgG and IgA in nasal sublingual | ATCC 0603(6B), i.n. 5 × 106 | Reduce nasal colonization by i.n. immunization, antibody primed after challenge | [71] |
L. lactis NZ9000 | PppA | T14 (14) | PnisA, usp45 SS | Cell wall | 3 weeks (young) and 6 weeks (adult) Swiss Albino mice | Day 0, 14,28 | i.n. 108 | Serum BAL IgM, IgG, IgA | T14(14), i.p. 108, AV3(3), AV6(6B), AV14(14), AV23(23F), i.n. 106 | T14, i.p. 60%–70%; passive protection 40%–50%; i.n. reduce lung colonization of CPS type 3, 6B, 14, and 23F | [72] |
L. lactis NZ9000 | PppA | T14 (14) | PnisA, usp45 SS | Cell wall | Male Swiss Albino mice | Day 0, 1, 2, 3, 4, boost at 2 weeks interval | Oral, 108 | Serum, BAL, IF-4 IgM, IgG, IgA, Opsonophagocytosis , Spleen IL-4, IFN-γ | T14(14) , AV3(3) , AV6(6B), AV14(14), AV23(23F), i.n. 106 | Reduce lung colonization of CPS type 3, 6B, 14, and 23F | [73] |
L. lactis NZ9000 | PppA | T14 (14) | PnisA, usp45 SS | Cell wall | 3 weeks, Swiss albino mice | Days 0, 14, 28 | i.n. 108 | Serum, BAL IgA, IgG , BAL cytokine | CPS type 3, type 14, i.n. 106 | With probotic, reduce lung and blood colonization of CPS type 3 and 14 | [74] |
L. lactis NZ9000 | PppA | T14 (14) | PnisA, usp45 SS | Cell wall | 3 weeks, Male Swiss albino mice | Day 0, 1, 2, 3, 4, boost at 2 weeks interval | Oral 108 | Serum, IgM IgG; BAL, IgM, IgG, IgA; IF, IgA , Opsonophagocytosis , cytokines | AV3(3), AV6(6B), AV14(14), AV23(23F), i.n. 106 | prevent bacteremia of CPS types 6B, 14, and 23F, decreased lung colonization of CPS type 3 | [75] |
Capsular polysaccharide antigen | |||||||||||
L. lactis MG1363 | Type 3 capsular polysaccharide | WU2 (3) | natural promoter | Mainly associated with cells | BALB/c | Day 0 and 49 | i.p. 3.5 × 106 | serum IgM, IgG, IgG1 and IgG3 | N.A. | N.A. | [76] |
L. lactis NZ9000 | Type 14 capsular polysaccharide | N.A. | natural promoters for structure gens and PnisA for regulatory gene | Mainly supernatant | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | [77] |
Bacillus Calmette-Guérin | |||||||||||
BCG | PspA | Rx1 | Phsp60, natural SS signal, mtb19 lipoprotein SS | Cytoplasm, secreted, membrane associate | BALB/c C3H/HeJ | Day 0 and 119 | i.p. 106 | Serum IgG, passive protection | WU2 (3), i.p. 104 | Secret, membrane associated protein, 50%–80% in C3H mice, 70%–100% in BALB/c mice, passive protection by serum:100% protect PspA clade 1, 13, 24, 0% for clade 18 | [78] |
Viral vector | |||||||||||
Adenovirus | PsaA PspA PdB | D39 (2) | PCMV | N.A. | BALB/C | Day 0, 28, 56 | i.n. 3 × 107 | IgG | D39 (2), i.n. 107 | Combination of two or three rAds reduce lung colonization | [79] |
2.1.1. S. typhimurium Delivers Single Protective Antigen
2.1.1.1. Ply
2.1.1.2. PsaA
2.1.1.3. PspA
2.1.1.4. PspC
2.1.2. S. typhimurium Delivers Multiple Antigens
2.1.3. S. typhimurium Delivers DNA Vaccine
2.1.4. S. typhi Clinical Trial
2.1.5. Issues
2.2. LAB Deliver Pneumococcal Antigens
2.2.1. Benefit of LAB: Safety, Adjuvant and Prevention of S. pneumoniae
2.2.2. LAB System: Promoters and Strains
2.2.3. Antigens
2.2.3.1. PsaA
2.2.3.2. PspA
2.2.3.3. PspC
2.2.3.4. PppA
2.2.3.5. CPS Antigens
2.2.4. Issues
2.2.4.1. Multi-dose and Immunization Route
2.2.4.2. Antibiotic Selection
2.2.4.3. Selection of Different LAB
2.3. BCG Delivers PspA
3. Viral Vector Delivers Pneumococcal Antigens
4. Conclusions
Acknowledgements
Conflicts of Interest
References
- O’Brien, K.L.; Wolfson, L.J.; Watt, J.P.; Henkle, E.; Deloria-Knoll, M.; McCall, N.; Lee, E.; Mulholland, K.; Levine, O.S.; Cherian, T. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: Global estimates. Lancet 2009, 374, 893–902. [Google Scholar] [CrossRef]
- Blasi, F.; Mantero, M.; Santus, P.; Tarsia, P. Understanding the burden of pneumococcal disease in adults. Clin. Microbiol. Infect. 2012, 18, 7–14. [Google Scholar] [CrossRef]
- Welte, T.; Torres, A.; Nathwani, D. Clinical and economic burden of community-acquired pneumonia among adults in Europe. Thorax 2012, 67, 71–79. [Google Scholar] [CrossRef]
- Huang, S.S.; Johnson, K.M.; Ray, G.T.; Wroe, P.; Lieu, T.A.; Moore, M.R.; Zell, E.R.; Linder, J.A.; Grijalva, C.G.; Metlay, J.P.; et al. Healthcare utilization and cost of pneumococcal disease in the United States. Vaccine 2011, 29, 3398–3412. [Google Scholar] [CrossRef]
- Weycker, D.; Strutton, D.; Edelsberg, J.; Sato, R.; Jackson, L.A. Clinical and economic burden of pneumococcal disease in older US adults. Vaccine 2010, 28, 4955–4960. [Google Scholar] [CrossRef]
- Moffitt, K.L.; Malley, R. Next generation pneumococcal vaccines. Curr. Opin. Immunol. 2011, 23, 407–413. [Google Scholar] [CrossRef]
- Pittet, L.F.; Posfay-Barbe, K.M. Pneumococcal vaccines for children: A global public health priority. Clin. Microbiol. Infect. 2012, 18, 25–36. [Google Scholar]
- Miyaji, E.N.; Oliveira, M.L.; Carvalho, E.; Ho, P.L. Serotype-independent pneumococcal vaccines. Cell Mol. Life Sci. 2012, 70, 3303–3326. [Google Scholar]
- Malley, R. Antibody and cell-mediated immunity to Streptococcus pneumoniae: Implications for vaccine development. J. Mol. Med. 2010, 88, 135–142. [Google Scholar] [CrossRef]
- Pollard, A.J.; Perrett, K.P.; Beverley, P.C. Maintaining protection against invasive bacteria with protein-polysaccharide conjugate vaccines. Nat. Rev. Immunol. 2009, 9, 213–220. [Google Scholar] [CrossRef]
- Moberley, S.; Holden, J.; Tatham, D.P.; Andrews, R.M. Vaccines for preventing pneumococcal infection in adults. Cochrane Database Syst. Rev. 2013, 1. [Google Scholar] [CrossRef]
- Fine, M.J.; Smith, M.A.; Carson, C.A.; Meffe, F.; Sankey, S.S.; Weissfeld, L.A.; Detsky, A.S.; Kapoor, W.N. Efficacy of pneumococcal vaccination in adults. A meta-analysis of randomized controlled trials. Arch. Intern. Med. 1994, 154, 2666–2677. [Google Scholar]
- Huss, A.; Scott, P.; Stuck, A.E.; Trotter, C.; Egger, M. Efficacy of pneumococcal vaccination in adults: A meta-analysis. Can. Med. Assoc. J. 2009, 180, 48–58. [Google Scholar] [CrossRef]
- Avci, F.Y.; Li, X.; Tsuji, M.; Kasper, D.L. A mechanism for glycoconjugate vaccine activation of the adaptive immune system and its implications for vaccine design. Nat. Med. 2011, 17, 1602–1609. [Google Scholar] [CrossRef]
- De Roux, A.; Schmole-Thoma, B.; Siber, G.R.; Hackell, J.G.; Kuhnke, A.; Ahlers, N.; Baker, S.A.; Razmpour, A.; Emini, E.A.; Fernsten, P.D.; et al. Comparison of pneumococcal conjugate polysaccharide and free polysaccharide vaccines in elderly adults: Conjugate vaccine elicits improved antibacterial immune responses and immunological memory. Clin. Infect. Dis. 2008, 46, 1015–1023. [Google Scholar] [CrossRef]
- Musher, D.M.; Manof, S.B.; Liss, C.; McFetridge, R.D.; Marchese, R.D.; Bushnell, B.; Alvarez, F.; Painter, C.; Blum, M.D.; Silber, J.L. Safety and antibody response, including antibody persistence for 5 years, after primary vaccination or revaccination with pneumococcal polysaccharide vaccine in middle-aged and older adults. J. Infect. Dis. 2010, 201, 516–524. [Google Scholar] [CrossRef]
- Nunes, M.C.; Madhi, S.A. Review on the immunogenicity and safety of PCV-13 in infants and toddlers. Expert Rev. Vaccines 2011, 10, 951–980. [Google Scholar] [CrossRef]
- Pilishvili, T.; Lexau, C.; Farley, M.M.; Hadler, J.; Harrison, L.H.; Bennett, N.M.; Reingold, A.; Thomas, A.; Schaffner, W.; Craig, A.S.; et al. Sustained reductions in invasive pneumococcal disease in the era of conjugate vaccine. J. Infect. Dis. 2010, 201, 32–41. [Google Scholar] [CrossRef]
- Poehling, K.A.; Talbot, T.R.; Griffin, M.R.; Craig, A.S.; Whitney, C.G.; Zell, E.; Lexau, C.A.; Thomas, A.R.; Harrison, L.H.; Reingold, A.L.; et al. Invasive pneumococcal disease among infants before and after introduction of pneumococcal conjugate vaccine. JAMA 2006, 295, 1668–1674. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Direct and indirect effects of routine vaccination of children with 7-valent pneumococcal conjugate vaccine on incidence of invasive pneumococcal disease—United States, 1998–2003. MMWR Morb. Mortal. Wkly. Rep. 2005, 54, 893–897. [Google Scholar]
- Lim, G.H.; Wormsbecker, A.E.; McGeer, A.; Pillai, D.R.; Gubbay, J.B.; Rudnick, W.; Low, D.E.; Green, K.; Crowcroft, N.S.; Deeks, S.L. Have changing pneumococcal vaccination programmes impacted disease in Ontario? Vaccine 2013, 31, 2680–2685. [Google Scholar] [CrossRef]
- Singleton, R.J.; Hennessy, T.W.; Bulkow, L.R.; Hammitt, L.L.; Zulz, T.; Hurlburt, D.A.; Butler, J.C.; Rudolph, K.; Parkinson, A. Invasive pneumococcal disease caused by nonvaccine serotypes among Alaska native children with high levels of 7-valent pneumococcal conjugate vaccine coverage. JAMA 2007, 297, 1784–1792. [Google Scholar] [CrossRef]
- Hsu, H.E.; Shutt, K.A.; Moore, M.R.; Beall, B.W.; Bennett, N.M.; Craig, A.S.; Farley, M.M.; Jorgensen, J.H.; Lexau, C.A.; Petit, S.; et al. Effect of pneumococcal conjugate vaccine on pneumococcal meningitis. N. Engl. J. Med. 2009, 360, 244–256. [Google Scholar] [CrossRef]
- Weinberger, D.M.; Malley, R.; Lipsitch, M. Serotype replacement in disease after pneumococcal vaccination. Lancet 2011, 378, 1962–1973. [Google Scholar] [CrossRef]
- Gonzalez-Fernandez, A.; Faro, J.; Fernandez, C. Immune responses to polysaccharides: Lessons from humans and mice. Vaccine 2008, 26, 292–300. [Google Scholar] [CrossRef]
- Ginsburg, A.S.; Nahm, M.H.; Khambaty, F.M.; Alderson, M.R. Issues and challenges in the development of pneumococcal protein vaccines. Expert Rev. Vaccines 2012, 11, 279–285. [Google Scholar] [CrossRef]
- Jambo, K.C.; Sepako, E.; Heyderman, R.S.; Gordon, S.B. Potential role for mucosally active vaccines against pneumococcal pneumonia. Trends Microbiol. 2010, 18, 81–89. [Google Scholar] [CrossRef]
- Malley, R.; Anderson, P.W. Serotype-independent pneumococcal experimental vaccines that induce cellular as well as humoral immunity. Proc. Natl. Acad. Sci. USA 2012, 109, 3623–3627. [Google Scholar] [CrossRef]
- Chiavolini, D.; Pozzi, G.; Ricci, S. Animal models of Streptococcus pneumoniae disease. Clin. Microbiol. Rev. 2008, 21, 666–685. [Google Scholar] [CrossRef]
- Sabirov, A.; Metzger, D.W. Mouse models for the study of mucosal vaccination against otitis media. Vaccine 2008, 26, 1501–1524. [Google Scholar] [CrossRef]
- Gamez, G.; Hammerschmidt, S. Combat pneumococcal infections: Adhesins as candidates for protein-based vaccine development. Curr. Drug Targets 2012, 13, 323–337. [Google Scholar] [CrossRef]
- Tai, S.S. Streptococcus pneumoniae protein vaccine candidates: Properties, activities and animal studies. Crit. Rev. Microbiol. 2006, 32, 139–153. [Google Scholar] [CrossRef]
- Rajam, G.; Anderton, J.M.; Carlone, G.M.; Sampson, J.S.; Ades, E.W. Pneumococcal surface adhesin A (PsaA): A review. Crit. Rev. Microbiol. 2008, 34, 131–142. [Google Scholar] [CrossRef]
- Simell, B.; Auranen, K.; Kayhty, H.; Goldblatt, D.; Dagan, R.; O’Brien, K.L. The fundamental link between pneumococcal carriage and disease. Expert Rev. Vaccines 2012, 11, 841–855. [Google Scholar] [CrossRef]
- Curtiss, R., III; Xin, W.; Li, Y.; Kong, W.; Wanda, S.Y.; Gunn, B.; Wang, S. New technologies in using recombinant attenuated Salmonella vaccine vectors. Crit. Rev. Immunol. 2010, 30, 255–270. [Google Scholar] [CrossRef]
- Wang, S.; Kong, Q.; Curtiss, R., III. New technologies in developing recombinant attenuated Salmonella vaccine vectors. Microbial. Pathog. 2013, 58, 17–28. [Google Scholar] [CrossRef]
- Moon, J.J.; McSorley, S.J. Tracking the dynamics of Salmonella specific T cell responses. Curr. Top. Microbiol. Immunol. 2009, 334, 179–198. [Google Scholar]
- Griffin, A.J.; McSorley, S.J. Development of protective immunity to Salmonella, a mucosal pathogen with a systemic agenda. Mucosal. Immunol. 2011, 4, 371–382. [Google Scholar] [CrossRef]
- Broz, P.; Ohlson, M.B.; Monack, D.M. Innate immune response to Salmonella typhimurium, a model enteric pathogen. Gut Microbes 2012, 3, 62–70. [Google Scholar] [CrossRef]
- Frey, S.E.; Lottenbach, K.R.; Hill, H.; Blevins, T.P.; Yu, Y.; Zhang, Y.; Brenneman, K.E.; Kelly-Aehle, S.M.; McDonald, C.; Jansen, A.; et al. A Phase I, dose-escalation trial in adults of three recombinant attenuated Salmonella typhi vaccine vectors producing Streptococcus pneumoniae surface protein antigen PspA. Vaccine 2013, 31, 4874–4880. [Google Scholar] [CrossRef]
- Paton, J.C.; Morona, J.K.; Harrer, S.; Hansman, D.; Morona, R. Immunization of mice with Salmonella typhimurium C5 aroA expressing a genetically toxoided derivative of the pneumococcal toxin pneumolysin. Microb. Pathog. 1993, 14, 95–102. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Shi, H.; Scarpellini, G.; Torres-Escobar, A.; Roland, K.L.; Curtiss, R., III. Immune responses to recombinant pneumococcal PsaA antigen delivered by a live attenuated Salmonella vaccine. Infect. Immun. 2010, 78, 3258–3271. [Google Scholar] [CrossRef]
- Nayak, A.R.; Tinge, S.A.; Tart, R.C.; McDaniel, L.S.; Briles, D.E.; Curtiss, R., III. A live recombinant avirulent oral Salmonella vaccine expressing pneumococcal surface protein A induces protective responses against Streptococcus pneumoniae. Infect. Immun. 1998, 66, 3744–3751. [Google Scholar]
- Kang, H.Y.; Srinivasan, J.; Curtiss, R., III. Immune responses to recombinant pneumococcal PspA antigen delivered by live attenuated Salmonella enterica serovar typhimurium vaccine. Infect. Immun. 2002, 70, 1739–1749. [Google Scholar] [CrossRef]
- Kang, H.Y.; Curtiss, R., III. Immune responses dependent on antigen location in recombinant attenuated Salmonella typhimurium vaccines following oral immunization. FEMS Immunol. Med. Microbiol. 2003, 37, 99–104. [Google Scholar] [CrossRef]
- Kong, W.; Wanda, S.Y.; Zhang, X.; Bollen, W.; Tinge, S.A.; Roland, K.L.; Curtiss, R., III. Regulated programmed lysis of recombinant Salmonella in host tissues to release protective antigens and confer biological containment. Proc. Natl. Acad. Sci. USA 2008, 105, 9361–9366. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Xin, W.; Scarpellini, G.; Shi, Z.; Gunn, B.; Roland, K.L.; Curtiss, R., III. A sopB deletion mutation enhances the immunogenicity and protective efficacy of a heterologous antigen delivered by live attenuated Salmonella enterica vaccines. Infect. Immun. 2008, 76, 5238–5246. [Google Scholar] [CrossRef]
- Park, S.M.; Ko, H.J.; Shim, D.H.; Yang, J.Y.; Park, Y.H.; Curtiss, R., III; Kweon, M.N. MyD88 signaling is not essential for induction of antigen-specific B cell responses but is indispensable for protection against Streptococcus pneumoniae infection following oral vaccination with attenuated Salmonella expressing PspA antigen. J. Immunol. 2008, 181, 6447–6455. [Google Scholar]
- Li, Y.; Wang, S.; Scarpellini, G.; Gunn, B.; Xin, W.; Wanda, S.Y.; Roland, K.L.; Curtiss, R., III. Evaluation of new generation Salmonella enterica serovar typhimurium vaccines with regulated delayed attenuation to induce immune responses against PspA. Proc. Natl. Acad. Sci. USA 2009, 106, 593–598. [Google Scholar]
- Xin, W.; Wanda, S.Y.; Li, Y.; Wang, S.; Mo, H.; Curtiss, R., III. Analysis of type II secretion of recombinant pneumococcal PspA and PspC in a Salmonella enterica serovar typhimurium vaccine with regulated delayed antigen synthesis. Infect. Immun. 2008, 76, 3241–3254. [Google Scholar] [CrossRef]
- Kong, Q.; Liu, Q.; Roland, K.L.; Curtiss, R., III. Regulated delayed expression of rfaH in an attenuated Salmonella enterica serovar typhimurium vaccine enhances immunogenicity of outer membrane proteins and a heterologous antigen. Infect. Immun. 2009, 77, 5572–5582. [Google Scholar]
- Shi, H.; Wang, S.; Roland, K.L.; Gunn, B.M.; Curtiss, R., III. Immunogenicity of a live recombinant Salmonella enterica serovar typhimurium vaccine expressing pspA in neonates and infant mice born from naive and immunized mothers. Clin. Vaccine Immunol. 2010, 17, 363–371. [Google Scholar] [CrossRef]
- Kong, Q.; Liu, Q.; Jansen, A.; Curtiss, R., III. Regulated delayed expression of rfc enhances the immunogenicity and protective efficacy of a heterologous antigen delivered by live attenuated Salmonella enterica vaccines. Vaccine 2010, 28, 6094–6103. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Scarpellini, G.; Kong, W.; Shi, H.; Baek, C.H.; Gunn, B.; Wanda, S.Y.; Roland, K.L.; Zhang, X.; et al. Salmonella vaccine vectors displaying delayed antigen synthesis in vivo to enhance immunogenicity. Infect. Immun. 2010, 78, 3969–3980. [Google Scholar] [CrossRef]
- Muralinath, M.; Kuehn, M.J.; Roland, K.L.; Curtiss, R., III. Immunization with Salmonella enterica serovar typhimurium-derived outer membrane vesicles delivering the pneumococcal protein PspA confers protection against challenge with Streptococcus pneumoniae. Infect. Immun. 2011, 79, 887–894. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Shi, H.; Sun, W.; Roland, K.L.; Curtiss, R., III. Comparison of a regulated delayed antigen synthesis system with in vivo-inducible promoters for antigen delivery by live attenuated Salmonella vaccines. Infect. Immun. 2011, 79, 937–949. [Google Scholar] [CrossRef]
- Kong, Q.; Six, D.A.; Roland, K.L.; Liu, Q.; Gu, L.; Reynolds, C.M.; Wang, X.; Raetz, C.R.; Curtiss, R., III. Salmonella synthesizing 1-dephosphorylated lipopolysaccharide exhibits low endotoxic activity while retaining its immunogenicity. J. Immunol. 2011, 187, 412–423. [Google Scholar] [CrossRef]
- Kong, Q.; Yang, J.; Liu, Q.; Alamuri, P.; Roland, K.L.; Curtiss, R., III. Effect of deletion of genes involved in lipopolysaccharide core and O-antigen synthesis on virulence and immunogenicity of Salmonella enterica serovar typhimurium. Infect. Immun. 2011, 79, 4227–4239. [Google Scholar] [CrossRef]
- Kong, Q.; Six, D.A.; Liu, Q.; Gu, L.; Roland, K.L.; Raetz, C.R.; Curtiss, R., III. Palmitoylation state impacts induction of innate and acquired immunity by the Salmonella enterica serovar typhimurium msbB mutant. Infect. Immun. 2011, 79, 5027–5038. [Google Scholar] [CrossRef]
- Kong, Q.; Six, D.A.; Liu, Q.; Gu, L.; Wang, S.; Alamuri, P.; Raetz, C.R.; Curtiss, R., III. Phosphate groups of Lipid A are essential for Salmonella enterica serovar typhimurium virulence and affect innate and adaptive immunity. Infect. Immun. 2012, 80, 3215–3224. [Google Scholar] [CrossRef]
- Seo, S.U.; Kim, J.J.; Yang, H.; Kwon, H.J.; Yang, J.Y.; Curtiss, R., III; Kweon, M.N. Effective protection against secondary pneumococcal pneumonia by oral vaccination with attenuated Salmonella delivering PspA antigen in mice. Vaccine 2012, 30, 6816–6823. [Google Scholar] [CrossRef]
- Xin, W.; Li, Y.; Mo, H.; Roland, K.L.; Curtiss, R., III. PspA family fusion proteins delivered by attenuated Salmonella enterica serovar typhimurium extend and enhance protection against Streptococcus pneumoniae. Infect. Immun. 2009, 77, 4518–4528. [Google Scholar] [CrossRef]
- Xin, W.; Wanda, S.Y.; Zhang, X.; Santander, J.; Scarpellini, G.; Ellis, K.; Alamuri, P.; Curtiss, R., III. The Asd+-DadB+ dual-plasmid system offers a novel means to deliver multiple protective antigens by a recombinant attenuated Salmonella vaccine. Infect. Immun. 2012, 80, 3621–3633. [Google Scholar] [CrossRef]
- Zhang, Q.; Ma, Q.; Li, Q.; Yao, W.; Wang, C. Enhanced protection against nasopharyngeal carriage of Streptococcus pneumoniae elicited by oral multiantigen DNA vaccines delivered in attenuated Salmonella typhimurium. Mol. Biol. Rep. 2011, 38, 1209–1217. [Google Scholar] [CrossRef]
- Shi, H.; Santander, J.; Brenneman, K.E.; Wanda, S.Y.; Wang, S.; Senechal, P.; Sun, W.; Roland, K.L.; Curtiss, R., III. Live recombinant Salmonella typhi vaccines constructed to investigate the role of rpoS in eliciting immunity to a heterologous antigen. PLoS One 2010, 5, e11142. [Google Scholar] [CrossRef]
- Shi, H.; Wang, S.; Curtiss, R., III. Evaluation of regulated delayed attenuation strategies for Salmonella enterica serovar Typhi vaccine vectors in neonatal and infant mice. Clin. Vaccine Immunol. 2013, 20, 931–944. [Google Scholar] [CrossRef]
- Oliveira, M.L.; Areas, A.P.; Campos, I.B.; Monedero, V.; Perez-Martinez, G.; Miyaji, E.N.; Leite, L.C.; Aires, K.A.; Lee Ho, P. Induction of systemic and mucosal immune response and decrease in Streptococcus pneumoniae colonization by nasal inoculation of mice with recombinant lactic acid bacteria expressing pneumococcal surface antigen A. Microbes Infect. 2006, 8, 1016–1024. [Google Scholar] [CrossRef]
- Hanniffy, S.B.; Carter, A.T.; Hitchin, E.; Wells, J.M. Mucosal delivery of a pneumococcal vaccine using Lactococcus lactis affords protection against respiratory infection. J. Infect. Dis. 2007, 195, 185–193. [Google Scholar] [CrossRef]
- Campos, I.B.; Darrieux, M.; Ferreira, D.M.; Miyaji, E.N.; Silva, D.A.; Areas, A.P.; Aires, K.A.; Leite, L.C.; Ho, P.L.; Oliveira, M.L. Nasal immunization of mice with Lactobacillus casei expressing the Pneumococcal Surface Protein A: Induction of antibodies, complement deposition and partial protection against Streptococcus pneumoniae challenge. Microbes Infect. 2008, 10, 481–488. [Google Scholar] [CrossRef]
- Ferreira, D.M.; Darrieux, M.; Silva, D.A.; Leite, L.C.; Ferreira, J.M., Jr.; Ho, P.L.; Miyaji, E.N.; Oliveira, M.L. Characterization of protective mucosal and systemic immune responses elicited by pneumococcal surface protein PspA and PspC nasal vaccines against a respiratory pneumococcal challenge in mice. Clin. Vaccine Immunol. 2009, 16, 636–645. [Google Scholar] [CrossRef]
- De Lúcia Hernani, M.; Ferreira, P.C.; Ferreira, D.M.; Miyaji, E.N.; Ho, P.L.; Oliveira, M.L. Nasal immunization of mice with Lactobacillus casei expressing the pneumococcal surface protein C primes the immune system and decreases pneumococcal nasopharyngeal colonization in mice. FEMS Immunol. Med. Microbiol. 2011, 62, 263–272. [Google Scholar] [CrossRef]
- Medina, M.; Villena, J.; Vintiñi, E.; Hebert, E.M.; Raya, R.; Alvarez, S. Nasal immunization with Lactococcus lactis expressing the pneumococcal protective protein A induces protective immunity in mice. Infect. Immun. 2008, 76, 2696–2705. [Google Scholar] [CrossRef]
- Villena, J.; Medina, M.; Raya, R.; Alvarez, S. Oral immunization with recombinant Lactococcus lactis confers protection against respiratory pneumococcal infection. Can. J. Microbiol. 2008, 54, 845–853. [Google Scholar] [CrossRef]
- Vintiñi, E.; Villena, J.; Alvarez, S.; Medina, M. Administration of a probiotic associated with nasal vaccination with inactivated Lactococcus lactis-PppA induces effective protection against pneumoccocal infection in young mice. Clin. Exp. Immunol. 2010, 159, 351–362. [Google Scholar] [CrossRef]
- Villena, J.; Medina, M.; Racedo, S.; Alvarez, S. Resistance of young mice to pneumococcal infection can be improved by oral vaccination with recombinant Lactococcus lactis. J. Microbiol. Immunol. Infect. 2010, 43, 1–10. [Google Scholar] [CrossRef]
- Gilbert, C.; Robinson, K.; le Page, R.W.; Wells, J.M. Heterologous expression of an immunogenic pneumococcal type 3 capsular polysaccharide in Lactococcus lactis. Infect. Immun. 2000, 68, 3251–3260. [Google Scholar] [CrossRef]
- Nierop Groot, M.N.; Godefrooij, J.; Kleerebezem, M. Heterologous expression of the pneumococcal serotype 14 polysaccharide in Lactococcus lactis requires lactococcal epsABC regulatory genes. Appl. Environ. Microbiol. 2008, 74, 912–915. [Google Scholar] [CrossRef]
- Langermann, S.; Palaszynski, S.R.; Burlein, J.E.; Koenig, S.; Hanson, M.S.; Briles, D.E.; Stover, C.K. Protective humoral response against pneumococcal infection in mice elicited by recombinant bacille Calmette-Guerin vaccines expressing pneumococcal surface protein A. J. Exp. Med. 1994, 180, 2277–2286. [Google Scholar] [CrossRef]
- Arévalo, M.T.; Xu, Q.; Paton, J.C.; Hollingshead, S.K.; Pichichero, M.E.; Briles, D.E.; Girgis, N.; Zeng, M. Mucosal vaccination with a multicomponent adenovirus-vectored vaccine protects against Streptococcus pneumoniae infection in the lung. FEMS Immunol. Med. Microbiol. 2009, 55, 346–351. [Google Scholar] [CrossRef]
- Wang, S.; Shi, H.; Li, Y.; Shi, Z.; Zhang, X.; Baek, C.H.; Mothershead, T.; Curtiss, R., III. A colanic acid operon deletion mutation enhances induction of early antibody responses by live attenuated Salmonella vaccines. Infect. Immun. 2013, 81, 3148–3162. [Google Scholar] [CrossRef]
- Jedrzejas, M.J. Pneumococcal virulence factors: Structure and function. Microbiol. Mol. Biol. Rev. 2001, 65, 187–207. [Google Scholar] [CrossRef]
- Morrison, K.E.; Lake, D.; Crook, J.; Carlone, G.M.; Ades, E.; Facklam, R.; Sampson, J.S. Confirmation of psaA in all 90 serotypes of Streptococcus pneumoniae by PCR and potential of this assay for identification and diagnosis. J. Clin. Microbiol. 2000, 38, 434–437. [Google Scholar]
- Crook, J.; Tharpe, J.A.; Johnson, S.E.; Williams, D.B.; Stinson, A.R.; Facklam, R.R.; Ades, E.W.; Carlone, G.M.; Sampson, J.S. Immunoreactivity of five monoclonal antibodies against the 37-kilodalton common cell wall protein (PsaA) of Streptococcus pneumoniae. Clin. Diagn. Lab. Immunol. 1998, 5, 205–210. [Google Scholar]
- Sampson, J.S.; Furlow, Z.; Whitney, A.M.; Williams, D.; Facklam, R.; Carlone, G.M. Limited diversity of Streptococcus pneumoniae psaA among pneumococcal vaccine serotypes. Infect. Immun. 1997, 65, 1967–1971. [Google Scholar]
- Briles, D.E.; Tart, R.C.; Swiatlo, E.; Dillard, J.P.; Smith, P.; Benton, K.A.; Ralph, B.A.; Brooks-Walter, A.; Crain, M.J.; Hollingshead, S.K.; et al. Pneumococcal diversity: Considerationsfor new vaccine strategies with emphasis on pneumococcal surface protein A (PspA). Clin. Microbiol. Rev. 1998, 11, 645–657. [Google Scholar]
- Hollingshead, S.K.; Becker, R.; Briles, D.E. Diversity of PspA: Mosaic genes and evidence for past recombination in Streptococcus pneumoniae. Infect. Immun. 2000, 68, 5889–5900. [Google Scholar] [CrossRef]
- Hollingshead, S.K.; Baril, L.; Ferro, S.; King, J.; Coan, P.; Briles, D.E. Pneumococcal surface protein A (PspA) family distribution among clinical isolates from adults over 50 years of age collected in seven countries. J. Med. Microbiol. 2006, 55, 215–221. [Google Scholar] [CrossRef]
- Croney, C.M.; Coats, M.T.; Nahm, M.H.; Briles, D.E.; Crain, M.J. PspA family distribution, unlike capsular serotype, remains unaltered following introduction of the heptavalent pneumococcal conjugate vaccine. Clin. Vaccine Immunol. 2012, 19, 891–896. [Google Scholar] [CrossRef]
- McDaniel, L.S.; Sheffield, J.S.; Delucchi, P.; Briles, D.E. PspA, a surface protein of Streptococcus pneumoniae, is capable of eliciting protection against pneumococci of more than one capsular type. Infect. Immun. 1991, 59, 222–228. [Google Scholar]
- Tart, R.C.; McDaniel, L.S.; Ralph, B.A.; Briles, D.E. Truncated Streptococcus pneumoniae PspA molecules elicit cross-protective immunity against pneumococcal challenge in mice. J. Infect. Dis. 1996, 173, 380–386. [Google Scholar] [CrossRef]
- Gunn, B.M.; Wanda, S.Y.; Burshell, D.; Wang, C.; Curtiss, R., III. Construction of recombinant attenuated Salmonella enterica serovar typhimurium vaccine vector strains for safety in newborn and infant mice. Clin. Vaccine Immunol. 2010, 17, 354–362. [Google Scholar] [CrossRef]
- Bollen, W.S.; Gunn, B.M.; Mo, H.; Lay, M.K.; Curtiss, R., III. Presence of wild-type and attenuated Salmonella enterica strains in brain tissues following inoculation of mice by different routes. Infect. Immun. 2008, 76, 3268–3272. [Google Scholar] [CrossRef]
- Iannelli, F.; Oggioni, M.R.; Pozzi, G. Allelic variation in the highly polymorphic locus pspC of Streptococcus pneumoniae. Gene 2002, 284, 63–71. [Google Scholar] [CrossRef]
- Brooks-Walter, A.; Briles, D.E.; Hollingshead, S.K. The pspC gene of Streptococcus pneumoniae encodes a polymorphic protein, PspC, which elicits cross-reactive antibodies to PspA and provides immunity to pneumococcal bacteremia. Infect. Immun. 1999, 67, 6533–6542. [Google Scholar]
- Balachandran, P.; Brooks-Walter, A.; Virolainen-Julkunen, A.; Hollingshead, S.K.; Briles, D.E. Role of pneumococcal surface protein C in nasopharyngeal carriage and pneumonia and its ability to elicit protection against carriage of Streptococcus pneumoniae. Infect. Immun. 2002, 70, 2526–2534. [Google Scholar] [CrossRef]
- Ogunniyi, A.D.; Woodrow, M.C.; Poolman, J.T.; Paton, J.C. Protection against Streptococcus pneumoniae elicited by immunization with pneumolysin and CbpA. Infect. Immun. 2001, 69, 5997–6003. [Google Scholar] [CrossRef]
- Daniels, C.C.; Coan, P.; King, J.; Hale, J.; Benton, K.A.; Briles, D.E.; Hollingshead, S.K. The proline-rich region of pneumococcal surface proteins A and C contains surface-accessible epitopes common to all pneumococci and elicits antibody-mediated protection against sepsis. Infect. Immun. 2010, 78, 2163–2172. [Google Scholar] [CrossRef]
- Miyaji, E.N.; Dias, W.O.; Gamberini, M.; Gebara, V.C.; Schenkman, R.P.; Wild, J.; Riedl, P.; Reimann, J.; Schirmbeck, R.; Leite, L.C. PsaA (pneumococcal surface adhesin A) and PspA (pneumococcal surface protein A) DNA vaccines induce humoral and cellular immune responses against Streptococcus pneumoniae. Vaccine 2001, 20, 805–812. [Google Scholar] [CrossRef]
- Rubins, J.B.; Pomeroy, C. Role of gamma interferon in the pathogenesis of bacteremic pneumococcal pneumonia. Infect. Immun. 1997, 65, 2975–2977. [Google Scholar]
- Kerr, A.R.; Irvine, J.J.; Search, J.J.; Gingles, N.A.; Kadioglu, A.; Andrew, P.W.; McPheat, W.L.; Booth, C.G.; Mitchell, T.J. Role of inflammatory mediators in resistance and susceptibility to pneumococcal infection. Infect. Immun. 2002, 70, 1547–1557. [Google Scholar] [CrossRef]
- Williams, J.A.; Carnes, A.E.; Hodgson, C.P. Plasmid DNA vaccine vector design: Impact on efficacy, safety and upstream production. Biotechnol. Adv. 2009, 27, 353–370. [Google Scholar] [CrossRef]
- Ashraf, S.; Kong, W.; Wang, S.; Yang, J.; Curtiss, R., III. Protective cellular responses elicited by vaccination with influenza nucleoprotein delivered by a live recombinant attenuated Salmonella vaccine. Vaccine 2011, 29, 3990–4002. [Google Scholar] [CrossRef]
- Beuzón, C.R.; Meresse, S.; Unsworth, K.E.; Ruiz-Albert, J.; Garvis, S.; Waterman, S.R.; Ryder, T.A.; Boucrot, E.; Holden, D.W. Salmonella maintains the integrity of its intracellular vacuole through the action of SifA. EMBO J. 2000, 19, 3235–3249. [Google Scholar] [CrossRef]
- De Jong, H.K.; Parry, C.M.; van der Poll, T.; Wiersinga, W.J. Host-pathogen interaction in invasive Salmonellosis. PLoS Pathog. 2012, 8, e1002933. [Google Scholar] [CrossRef]
- Roland, K.L.; Brenneman, K.E. Salmonella as a vaccine delivery vehicle. Expert Rev. Vaccines 2013, 12, 1033–1045. [Google Scholar] [CrossRef]
- Mestas, J.; Hughes, C.C. Of mice and not men: Differences between mouse and human immunology. J. Immunol. 2004, 172, 2731–2738. [Google Scholar]
- Gibbons, D.L.; Spencer, J. Mouse and human intestinal immunity: Same ballpark, different players; different rules, same score. Mucosal. Immunol. 2011, 4, 148–157. [Google Scholar]
- Mian, M.F.; Pek, E.A.; Chenoweth, M.J.; Coombes, B.K.; Ashkar, A.A. Humanized mice for Salmonella typhi infection: New tools for an old problem. Virulence 2011, 2, 248–252. [Google Scholar] [CrossRef]
- Firoz Mian, M.; Pek, E.A.; Chenoweth, M.J.; Ashkar, A.A. Humanized mice are susceptible to Salmonella typhi infection. Cell. Mol. Immunol. 2011, 8, 83–87. [Google Scholar]
- Libby, S.J.; Brehm, M.A.; Greiner, D.L.; Shultz, L.D.; McClelland, M.; Smith, K.D.; Cookson, B.T.; Karlinsey, J.E.; Kinkel, T.L.; Porwollik, S.; et al. Humanized nonobese diabetic-scid IL2rgnull mice are susceptible to lethal Salmonella Typhi infection. Proc. Natl. Acad. Sci. USA 2010, 107, 15589–15594. [Google Scholar] [CrossRef]
- Song, J.; Willinger, T.; Rongvaux, A.; Eynon, E.E.; Stevens, S.; Manz, M.G.; Flavell, R.A.; Galan, J.E. A mouse model for the human pathogen Salmonella typhi. Cell Host Microbe 2010, 8, 369–376. [Google Scholar] [CrossRef] [Green Version]
- Frasca, D.; Blomberg, B.B. Effects of aging on B cell function. Curr. Opin. Immunol. 2009, 21, 425–430. [Google Scholar] [CrossRef]
- Haynes, L.; Maue, A.C. Effects of aging on T cell function. Curr. Opin. Immunol. 2009, 21, 414–417. [Google Scholar] [CrossRef]
- Frasca, D.; Diaz, A.; Romero, M.; Landin, A.M.; Blomberg, B.B. Age effects on B cells and humoral immunity in humans. Ageing Res. Rev. 2011, 10, 330–335. [Google Scholar] [CrossRef]
- Agrawal, A.; Gupta, S. Impact of aging on dendritic cell functions in humans. Ageing Res. Rev. 2011, 10, 336–345. [Google Scholar] [CrossRef]
- Solana, R.; Tarazona, R.; Gayoso, I.; Lesur, O.; Dupuis, G.; Fulop, T. Innate immunosenescence: Effect of aging on cells and receptors of the innate immune system in humans. Semin. Immunol. 2012, 24, 331–341. [Google Scholar] [CrossRef]
- Mahbub, S.; Brubaker, A.L.; Kovacs, E.J. Aging of the innate immune system: An update. Curr. Immunol. Rev. 2011, 7, 104–115. [Google Scholar] [CrossRef]
- Shaw, A.C.; Joshi, S.; Greenwood, H.; Panda, A.; Lord, J.M. Aging of the innate immune system. Curr. Opin. Immunol. 2010, 22, 507–513. [Google Scholar] [CrossRef]
- Gomez, C.R.; Boehmer, E.D.; Kovacs, E.J. The aging innate immune system. Curr. Opin. Immunol. 2005, 17, 457–462. [Google Scholar] [CrossRef]
- Adkins, B.; Leclerc, C.; Marshall-Clarke, S. Neonatal adaptive immunity comes of age. Nat. Rev. Immunol. 2004, 4, 553–564. [Google Scholar] [CrossRef]
- Levy, O. Innate immunity of the newborn: Basic mechanisms and clinical correlates. Nat. Rev. Immunol. 2007, 7, 379–390. [Google Scholar] [CrossRef]
- Siegrist, C.A. The challenges of vaccine responses in early life: Selected examples. J. Comp. Pathol. 2007, 137, S4–S9. [Google Scholar] [CrossRef]
- Wells, J.M.; Mercenier, A. Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat. Rev. Microbiol. 2008, 6, 349–362. [Google Scholar] [CrossRef]
- Johnston, B.C.; Ma, S.S.; Goldenberg, J.Z.; Thorlund, K.; Vandvik, P.O.; Loeb, M.; Guyatt, G.H. Probiotics for the prevention of Clostridium difficile-associated diarrhea: A systematic review and meta-analysis. Ann. Intern. Med. 2012, 157, 878–888. [Google Scholar] [CrossRef]
- Ritchie, M.L.; Romanuk, T.N. A meta-analysis of probiotic efficacy for gastrointestinal diseases. PLoS One 2012, 7, e34938. [Google Scholar] [CrossRef]
- Dongarra, M.L.; Rizzello, V.; Muccio, L.; Fries, W.; Cascio, A.; Bonaccorsi, I.; Ferlazzo, G. Mucosal immunology and probiotics. Curr. Allergy Asthma Rep. 2013, 13, 19–26. [Google Scholar] [CrossRef]
- Tsai, Y.T.; Cheng, P.C.; Pan, T.M. The immunomodulatory effects of lactic acid bacteria for improving immune functions and benefits. Appl. Microbiol. Biotechnol. 2012, 96, 853–862. [Google Scholar] [CrossRef]
- Rizzello, V.; Bonaccorsi, I.; Dongarra, M.L.; Fink, L.N.; Ferlazzo, G. Role of natural killer and dendritic cell crosstalk in immunomodulation by commensal bacteria probiotics. J. Biomed. Biotechnol. 2011, 2011. [Google Scholar] [CrossRef]
- Fink, L.N.; Zeuthen, L.H.; Christensen, H.R.; Morandi, B.; Frokiaer, H.; Ferlazzo, G. Distinct gut-derived lactic acid bacteria elicit divergent dendritic cell-mediated NK cell responses. Int. Immunol. 2007, 19, 1319–1327. [Google Scholar] [CrossRef]
- Van Huynegem, K.; Loos, M.; Steidler, L. Immunomodulation by genetically engineered lactic acid bacteria. Front. Biosci. 2009, 14, 4825–4835. [Google Scholar] [CrossRef]
- Detmer, A.; Glenting, J. Live bacterial vaccines—A review and identification of potential hazards. Microb. Cell Fact. 2006, 5. [Google Scholar] [CrossRef]
- Christensen, H.R.; Frokiaer, H.; Pestka, J.J. Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J. Immunol. 2002, 168, 171–178. [Google Scholar]
- Pontes, D.S.; de Azevedo, M.S.; Chatel, J.M.; Langella, P.; Azevedo, V.; Miyoshi, A. Lactococcus lactis as a live vector: Heterologous protein production and DNA delivery systems. Protein Expr. Purif. 2011, 79, 165–175. [Google Scholar] [CrossRef]
- Nouaille, S.; Ribeiro, L.A.; Miyoshi, A.; Pontes, D.; le Loir, Y.; Oliveira, S.C.; Langella, P.; Azevedo, V. Heterologous protein production and delivery systems for Lactococcus lactis. Genet. Mol. Res. 2003, 2, 102–111. [Google Scholar]
- Bermudez-Humaran, L.G.; Kharrat, P.; Chatel, J.M.; Langella, P. Lactococci and lactobacilli as mucosal delivery vectors for therapeutic proteins and DNA vaccines. Microb. Cell Fact. 2011, 10. [Google Scholar] [CrossRef]
- Vintiñi, E.O.; Medina, M.S. Host immunity in the protective response to nasal immunization with a pneumococcal antigen associated to live and heat-killed Lactobacillus casei. BMC Immunol. 2011, 12. [Google Scholar] [CrossRef]
- Wong, S.S.; Quan Toh, Z.; Dunne, E.M.; Mulholland, E.K.; Tang, M.L.; Robins-Browne, R.M.; Licciardi, P.V.; Satzke, C. Inhibition of Streptococcus pneumoniae adherence to human epithelial cells in vitro by the probiotic Lactobacillus rhamnosus GG. BMC Res. Notes 2013, 6. [Google Scholar] [CrossRef]
- Gluck, U.; Gebbers, J.O. Ingested probiotics reduce nasal colonization with pathogenic bacteria (Staphylococcus aureus, Streptococcus pneumoniae, and beta-hemolytic streptococci). Am. J. Clin. Nutr. 2003, 77, 517–520. [Google Scholar]
- Villena, J.; Racedo, S.; Aguero, G.; Bru, E.; Medina, M.; Alvarez, S. Lactobacillus casei improves resistance to pneumococcal respiratory infection in malnourished mice. J. Nutr. 2005, 135, 1462–1469. [Google Scholar]
- Racedo, S.; Villena, J.; Medina, M.; Aguero, G.; Rodriguez, V.; Alvarez, S. Lactobacillus casei administration reduces lung injuries in a Streptococcus pneumoniae infection in mice. Microbes Infect. 2006, 8, 2359–2366. [Google Scholar] [CrossRef]
- Villena, J.; Medina, M.; Vintiñi, E.; Alvarez, S. Stimulation of respiratory immunity by oral administration of Lactococcus lactis. Can. J. Microbiol. 2008, 54, 630–638. [Google Scholar] [CrossRef]
- Cangemi de Gutierrez, R.; Santos, V.; Nader-Macias, M.E. Protective effect of intranasally inoculated Lactobacillus fermentum against Streptococcus pneumoniae challenge on the mouse respiratory tract. FEMS Immunol. Med. Microbiol. 2001, 31, 187–195. [Google Scholar] [CrossRef]
- Medina, M.; Villena, J.; Salva, S.; Vintiñi, E.; Langella, P.; Alvarez, S. Nasal administration of Lactococcus lactis improves local and systemic immune responses against Streptococcus pneumoniae. Microbiol. Immunol. 2008, 52, 399–409. [Google Scholar] [CrossRef]
- Miettinen, M.; Vuopio-Varkila, J.; Varkila, K. Production of human tumor necrosis factor alpha, interleukin-6, and interleukin-10 is induced by lactic acid bacteria. Infect. Immun. 1996, 64, 5403–5405. [Google Scholar]
- Medina, M.; Vintiñi, E.; Villena, J.; Raya, R.; Alvarez, S. Lactococcus lactis as an adjuvant and delivery vehicle of antigens against pneumococcal respiratory infections. Bioeng. Bugs 2010, 1, 313–325. [Google Scholar] [CrossRef]
- Villena, J.; Oliveira, M.L.; Ferreira, P.C.; Salva, S.; Alvarez, S. Lactic acid bacteria in the prevention of pneumococcal respiratory infection: Future opportunities and challenges. Int. Immunopharmacol. 2011, 11, 1633–1645. [Google Scholar] [CrossRef]
- Kleerebezem, M.; Beerthuyzen, M.M.; Vaughan, E.E.; de Vos, W.M.; Kuipers, O.P. Controlled gene expression systems for lactic acid bacteria: Transferable nisin-inducible expression cassettes for Lactococcus, Leuconostoc and Lactobacillus spp. Appl. Environ. Microbiol. 1997, 63, 4581–4584. [Google Scholar]
- Kuipers, O.P.; de Ruyter, P.G.; Kleerebezem, M.; de Vos, W.M. Controlled overproduction of proteins by lactic acid bacteria. Trends Biotechnol. 1997, 15, 135–140. [Google Scholar] [CrossRef]
- Bosma, T.; Kanninga, R.; Neef, J.; Audouy, S.A.; van Roosmalen, M.L.; Steen, A.; Buist, G.; Kok, J.; Kuipers, O.P.; Robillard, G.; et al. Novel surface display system for proteins on non-genetically modified gram-positive bacteria. Appl. Environ. Microbiol. 2006, 72, 880–889. [Google Scholar] [CrossRef]
- Audouy, S.A.; van Selm, S.; van Roosmalen, M.L.; Post, E.; Kanninga, R.; Neef, J.; Estevao, S.; Nieuwenhuis, E.E.; Adrian, P.V.; Leenhouts, K.; et al. Development of lactococcal GEM-based pneumococcal vaccines. Vaccine 2007, 25, 2497–2506. [Google Scholar] [CrossRef]
- Van Roosmalen, M.L.; Kanninga, R.; El Khattabi, M.; Neef, J.; Audouy, S.; Bosma, T.; Kuipers, A.; Post, E.; Steen, A.; Kok, J.; et al. Mucosal vaccine delivery of antigens tightly bound to an adjuvant particle made from food-grade bacteria. Methods 2006, 38, 144–149. [Google Scholar] [CrossRef]
- Audouy, S.A.; van Roosmalen, M.L.; Neef, J.; Kanninga, R.; Post, E.; van Deemter, M.; Metselaar, H.; van Selm, S.; Robillard, G.T.; Leenhouts, K.J.; et al. Lactococcus lactis GEM particles displaying pneumococcal antigens induce local and systemic immune responses following intranasal immunization. Vaccine 2006, 24, 5434–5441. [Google Scholar] [CrossRef]
- Oliveira, M.L.; Monedero, V.; Miyaji, E.N.; Leite, L.C.; Lee Ho, P.; Perez-Martinez, G. Expression of Streptococcus pneumoniae antigens, PsaA (pneumococcal surface antigen A) and PspA (pneumococcal surface protein A) by Lactobacillus casei. FEMS Microbiol. Lett. 2003, 227, 25–31. [Google Scholar] [CrossRef]
- Waterfield, N.R.; le Page, R.W.; Wilson, P.W.; Wells, J.M. The isolation of lactococcal promoters and their use in investigating bacterial luciferase synthesis in Lactococcus lactis. Gene 1995, 165, 9–15. [Google Scholar] [CrossRef]
- De Ruyter, P.G.; Kuipers, O.P.; de Vos, W.M. Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl. Environ. Microbiol. 1996, 62, 3662–3667. [Google Scholar]
- Eichenbaum, Z.; Federle, M.J.; Marra, D.; de Vos, W.M.; Kuipers, O.P.; Kleerebezem, M.; Scott, J.R. Use of the lactococcal nisA promoter to regulate gene expression in gram-positive bacteria: Comparison of induction level and promoter strength. Appl. Environ. Microbiol. 1998, 64, 2763–2769. [Google Scholar]
- De Vos, W.M. Gene expression systems for lactic acid bacteria. Curr. Opin. Microbiol. 1999, 2, 289–295. [Google Scholar] [CrossRef]
- Leenhouts, K.; Buist, G.; Kok, J. Anchoring of proteins to lactic acid bacteria. Antonie Van Leeuwenhoek 1999, 76, 367–376. [Google Scholar] [CrossRef]
- Le Loir, Y.; Gruss, A.; Ehrlich, S.D.; Langella, P. A nine-residue synthetic propeptide enhances secretion efficiency of heterologous proteins in Lactococcus lactis. J. Bacteriol. 1998, 180, 1895–1903. [Google Scholar]
- Le Loir, Y.; Nouaille, S.; Commissaire, J.; Bretigny, L.; Gruss, A.; Langella, P. Signal peptide and propeptide optimization for heterologous protein secretion in Lactococcus lactis. Appl. Environ. Microbiol. 2001, 67, 4119–4127. [Google Scholar] [CrossRef]
- Reveneau, N.; Geoffroy, M.C.; Locht, C.; Chagnaud, P.; Mercenier, A. Comparison of the immune responses induced by local immunizations with recombinant Lactobacillus plantarum producing tetanus toxin fragment C in different cellular locations. Vaccine 2002, 20, 1769–1777. [Google Scholar] [CrossRef]
- Asensi, G.F.; de Sales, N.F.; Dutra, F.F.; Feijo, D.F.; Bozza, M.T.; Ulrich, R.G.; Miyoshi, A.; de Morais, K.; Azevedo, V.A.; Silva, J.T.; et al. Oral immunization with Lactococcus lactis secreting attenuated recombinant staphylococcal enterotoxin B induces a protective immune response in a murine model. Microb. Cell Fact. 2013, 12. [Google Scholar] [CrossRef]
- Marelli, B.; Perez, A.R.; Banchio, C.; De Mendoza, D.; Magni, C. Oral immunization with live Lactococcus lactis expressing rotavirus VP8 subunit induces specific immune response in mice. J. Virol. Methods 2011, 175, 28–37. [Google Scholar] [CrossRef]
- Wu, H.Y.; Nahm, M.H.; Guo, Y.; Russell, M.W.; Briles, D.E. Intranasal immunization of mice with PspA (pneumococcal surface protein A) can prevent intranasal carriage, pulmonary infection, and sepsis with Streptococcus pneumonia. J. Infect. Dis. 1997, 175, 839–846. [Google Scholar] [CrossRef]
- Yamamoto, M.; McDaniel, L.S.; Kawabata, K.; Briles, D.E.; Jackson, R.J.; McGhee, J.R.; Kiyono, H. Oral immunization with PspA elicits protective humoral immunity against Streptococcus pneumoniae infection. Infect. Immun. 1997, 65, 640–644. [Google Scholar]
- Green, B.A.; Zhang, Y.; Masi, A.W.; Barniak, V.; Wetherell, M.; Smith, R.P.; Reddy, M.S.; Zhu, D. PppA, a surface-exposed protein of Streptococcus pneumoniae, elicits cross-reactive antibodies that reduce colonization in a murine intranasal immunization and challenge model. Infect. Immun. 2005, 73, 981–989. [Google Scholar] [CrossRef]
- Kiyono, H.; Fukuyama, S. NALT- versus Peyer’s-patch-mediated mucosal immunity. Nat. Rev. Immunol. 2004, 4, 699–710. [Google Scholar] [CrossRef]
- Bienenstock, J.; McDermott, M.R. Bronchus- and nasal-associated lymphoid tissues. Immunol. Rev. 2005, 206, 22–31. [Google Scholar] [CrossRef]
- Davidson, L.E.; Fiorino, A.M.; Snydman, D.R.; Hibberd, P.L. Lactobacillus GG as an immune adjuvant for live-attenuated influenza vaccine in healthy adults: A randomized double-blind placebo-controlled trial. Eur. J. Clin. Nutr. 2011, 65, 501–507. [Google Scholar] [CrossRef]
- International Centre for Diarrhoeal Disease Research, Bangladesh. Effect of probiotic on immunogenicity of oral cholera vaccine: 2007–2012. Available online: http://clinicaltrials.gov/show/NCT00464867 (accessed on 11 October 2013).
- Program for Appropriate Technology in Health. Zinc and/or probiotic supplementation of rotavirus and oral polio virus vaccines: 2012–2013. Available online: http://clinicaltrials.gov/show/NCT01616693 (accessed on 11 October 2013).
- Wells, J.M.; Mercenier, A. Lactic acid bacteria as mucosal delivery systems. In Genetics of Lactic Acid Bacteria; Wood, B.J.B., Warner, P.J., Eds.; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2003; pp. 261–290. [Google Scholar]
- Islam, M.R.; Nagao, J.; Zendo, T.; Sonomoto, K. Antimicrobial mechanism of lantibiotics. Biochem. Soc. Trans. 2012, 40, 1528–1533. [Google Scholar] [CrossRef]
- Toomey, N.; Monaghan, A.; Fanning, S.; Bolton, D.J. Assessment of antimicrobial resistance transfer between lactic acid bacteria and potential foodborne pathogens using in vitro methods and mating in a food matrix. Foodborne Pathog. Dis. 2009, 6, 925–933. [Google Scholar] [CrossRef]
- Begde, D.; Bundale, S.; Mashitha, P.; Rudra, J.; Nashikkar, N.; Upadhyay, A. Immunomodulatory efficacy of nisin—A bacterial lantibiotic peptide. J. Pept. Sci. 2011, 17, 438–444. [Google Scholar] [CrossRef]
- Sorensen, K.I.; Larsen, R.; Kibenich, A.; Junge, M.P.; Johansen, E. A food-grade cloning system for industrial strains of Lactococcus lactis. Appl. Environ. Microbiol. 2000, 66, 1253–1258. [Google Scholar] [CrossRef]
- Glenting, J.; Madsen, S.M.; Vrang, A.; Fomsgaard, A.; Israelsen, H. A plasmid selection system in Lactococcus lactis and its use for gene expression in L. lactis and human kidney fibroblasts. Appl. Environ. Microbiol. 2002, 68, 5051–5056. [Google Scholar] [CrossRef]
- Bron, P.A.; Benchimol, M.G.; Lambert, J.; Palumbo, E.; Deghorain, M.; Delcour, J.; de Vos, W.M.; Kleerebezem, M.; Hols, P. Use of the alr gene as a food-grade selection marker in lactic acid bacteria. Appl. Environ. Microbiol. 2002, 68, 5663–5670. [Google Scholar] [CrossRef]
- Steidler, L.; Neirynck, S.; Huyghebaert, N.; Snoeck, V.; Vermeire, A.; Goddeeris, B.; Cox, E.; Remon, J.P.; Remaut, E. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat. Biotechnol. 2003, 21, 785–789. [Google Scholar] [CrossRef]
- Dickely, F.; Nilsson, D.; Hansen, E.B.; Johansen, E. Isolation of Lactococcus lactis nonsense suppressors and construction of a food-grade cloning vector. Mol. Microbiol. 1995, 15, 839–847. [Google Scholar] [CrossRef]
- Maassen, C.B.; van Holten-Neelen, C.; Balk, F.; den Bak-Glashouwer, M.J.; Leer, R.J.; Laman, J.D.; Boersma, W.J.; Claassen, E. Strain-dependent induction of cytokine profiles in the gut by orally administered Lactobacillus strains. Vaccine 2000, 18, 2613–2623. [Google Scholar] [CrossRef]
- Perdigón, G.; Galdeano, C.M.; Valdez, J.C.; Medici, M. Interaction of lactic acid bacteria with the gut immune system. Eur. J. Clin. Nutr. 2002, 56, S21–S26. [Google Scholar] [CrossRef]
- Fang, H.; Elina, T.; Heikki, A.; Seppo, S. Modulation of humoral immune response through probiotic intake. FEMS Immunol. Med. Microbiol. 2000, 29, 47–52. [Google Scholar] [CrossRef]
- Maassen, C.B.; Boersma, W.J.; van Holten-Neelen, C.; Claassen, E.; Laman, J.D. Growth phase of orally administered Lactobacillus strains differentially affects IgG1/IgG2a ratio for soluble antigens: Implications for vaccine development. Vaccine 2003, 21, 2751–2757. [Google Scholar] [CrossRef]
- Pelto, L.; Isolauri, E.; Lilius, E.M.; Nuutila, J.; Salminen, S. Probiotic bacteria down-regulate the milk-induced inflammatory response in milk-hypersensitive subjects but have an immunostimulatory effect in healthy subjects. Clin. Exp. Allergy 1998, 28, 1474–1479. [Google Scholar] [CrossRef]
- Hanson, M.S.; Lapcevich, C.V.; Haun, S.L. Progress on development of the live BCG recombinant vaccine vehicle for combined vaccine delivery. Ann. NY Acad. Sci. 1995, 754, 214–221. [Google Scholar] [CrossRef]
- Ritz, N.; Mui, M.; Balloch, A.; Curtis, N. Non-specific effect of Bacille Calmette-Guerin vaccine on the immune response to routine immunisations. Vaccine 2013, 31, 3098–3103. [Google Scholar] [CrossRef]
- Briles, D.E.; Nahm, M.; Schroer, K.; Davie, J.; Baker, P.; Kearney, J.; Barletta, R. Antiphosphocholine antibodies found in normal mouse serum are protective against intravenous infection with type 3 Streptococcus pneumoniae. J. Exp. Med. 1981, 153, 694–705. [Google Scholar] [CrossRef]
- Bastos, R.G.; Borsuk, S.; Seixas, F.K.; Dellagostin, O.A. Recombinant Mycobacterium bovis BCG. Vaccine 2009, 27, 6495–6503. [Google Scholar] [CrossRef]
- Tatsis, N.; Ertl, H.C. Adenoviruses as vaccine vectors. Mol. Ther. 2004, 10, 616–629. [Google Scholar] [CrossRef]
- He, T.C.; Zhou, S.; da Costa, L.T.; Yu, J.; Kinzler, K.W.; Vogelstein, B. A simplified system for generating recombinant adenoviruses. Proc. Natl. Acad. Sci. USA 1998, 95, 2509–2514. [Google Scholar]
- Iyer, V.; Hu, L.; Liyanage, M.R.; Esfandiary, R.; Reinisch, C.; Meinke, A.; Maisonneuve, J.; Volkin, D.B.; Joshi, S.B.; Middaugh, C.R. Preformulation characterization of an aluminum salt-adjuvanted trivalent recombinant protein-based vaccine candidate against Streptococcus pneumoniae. J. Pharm. Sci. 2012, 101, 3078–3090. [Google Scholar] [CrossRef]
- Lal, M.; Priddy, S.; Bourgeois, L.; Walker, R.; Pebley, W.; Brown, J.; Desai, J.; Darsley, M.J.; Kristensen, D.; Chen, D. Development of a fast-dissolving tablet formulation of a live attenuated enterotoxigenic E. coli vaccine candidate. Vaccine 2013, 31, 4759–4764. [Google Scholar] [CrossRef]
- Curtiss, R., III. Arizona State University: Tempe, AZ, USA, Unpublished data. 2013.
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Wang, S.; Curtiss III, R. Development of Streptococcus pneumoniae Vaccines Using Live Vectors. Vaccines 2014, 2, 49-88. https://doi.org/10.3390/vaccines2010049
Wang S, Curtiss III R. Development of Streptococcus pneumoniae Vaccines Using Live Vectors. Vaccines. 2014; 2(1):49-88. https://doi.org/10.3390/vaccines2010049
Chicago/Turabian StyleWang, Shifeng, and Roy Curtiss III. 2014. "Development of Streptococcus pneumoniae Vaccines Using Live Vectors" Vaccines 2, no. 1: 49-88. https://doi.org/10.3390/vaccines2010049
APA StyleWang, S., & Curtiss III, R. (2014). Development of Streptococcus pneumoniae Vaccines Using Live Vectors. Vaccines, 2(1), 49-88. https://doi.org/10.3390/vaccines2010049