The Emerging Role of Pattern Recognition Receptors in the Pathogenesis of Malaria
Abstract
:1. Introduction
2. Plasmodium Life Cycle and Main Symptoms of the Infection
3. Innate Immunity and Malaria
4. Sensors of Plasmodial Components
5. GPI Anchors
6. Hemozoin
7. Plasmodial Nucleic Acids
8. TLR Polymorphism in Malaria
9. TLRs as Adjuvants and Malaria Vaccine
10. Conclusions
Conflicts of Interest
References
- Snow, R.W.; Guerra, C.A.; Noor, A.M.; Myint, H.Y.; Hay, S.I. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 2005, 434, 214–217. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.; Rosenfeld, L.C.; Lim, S.S.; Andrews, K.G.; Foreman, K.J.; Haring, D.; Fullman, N.; Naghavi, M.; Lozano, R.; Lopez, A.D. Global malaria mortality between 1980 and 2010: A systematic analysis. Lancet 2012, 379, 413–431. [Google Scholar] [CrossRef]
- Singh, B.; Kim Sung, L.; Matusop, A.; Radhakrishnan, A.; Shamsul, S.S.; Cox-Singh, J.; Thomas, A.; Conway, D.J. A large focus of naturally acquired Plasmodium knowlesi infections in human beings. Lancet 2004, 363, 1017–1024. [Google Scholar] [CrossRef]
- Clark, I.A.; Budd, A.C.; Alleva, L.M.; Cowden, W.B. Human malarial disease: A consequence of inflammatory cytokine release. Malar. J. 2006, 5, 85. [Google Scholar] [CrossRef] [PubMed]
- Gazzinelli, R.T.; Kalantari, P.; Fitzgerald, K.A.; Golenbock, D.T. Innate sensing of malaria parasites. Nat. Rev. Immunol. 2014, 14, 744–757. [Google Scholar] [CrossRef] [PubMed]
- Dolasia, K.; Bisht, M.K.; Pradhan, G.; Udgata, A.; Mukhopadhyay, S. TLRs/NLRs: Shaping the landscape of host immunity. Int. Rev. Immunol 2018, 37, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Mogensen, T.H. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin. Microbiol. Rev. 2009, 22, 240–273. [Google Scholar] [CrossRef] [PubMed]
- Brubaker, S.W.; Bonham, K.S.; Zanoni, I.; Kagan, J.C. Innate immune pattern recognition: A cell biological perspective. Annu. Rev. Immunol. 2015, 33, 257–290. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, O.; Akira, S. Pattern recognition receptors and inflammation. Cell 2010, 140, 805–820. [Google Scholar] [CrossRef] [PubMed]
- Ockenhouse, C.F.; Hu, W.C.; Kester, K.E.; Cummings, J.F.; Stewart, A.; Heppner, D.G.; Jedlicka, A.E.; Scott, A.L.; Wolfe, N.D.; Vahey, M.; et al. Common and divergent immune response signaling pathways discovered in peripheral blood mononuclear cell gene expression patterns in presymptomatic and clinically apparent malaria. Infect. Immun. 2006, 74, 5561–5573. [Google Scholar] [CrossRef] [PubMed]
- Coban, C.; Ishii, K.J.; Uematsu, S.; Arisue, N.; Sato, S.; Yamamoto, M.; Kawai, T.; Takeuchi, O.; Hisaeda, H.; Horii, T.; et al. Pathological role of Toll-like receptor signaling in cerebral malaria. Int. Immunol. 2007, 19, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Spaulding, E.; Fooksman, D.; Moore, J.M.; Saidi, A.; Feintuch, C.M.; Reizis, B.; Chorro, L.; Daily, J.; Lauvau, G. STING-Licensed Macrophages Prime Type I IFN Production by Plasmacytoid Dendritic Cells in the Bone Marrow during Severe Plasmodium yoelii Malaria. PLoS Pathog. 2016, 12, e1005975. [Google Scholar] [CrossRef] [PubMed]
- Scragg, I.G.; Hensmann, M.; Bate, C.A.; Kwiatkowski, D. Early cytokine induction by Plasmodium falciparum is not a classical endotoxin-like process. Eur. J. Immunol. 1999, 29, 2636–2644. [Google Scholar] [CrossRef]
- Artavanis-Tsakonas, K.; Riley, E.M. Innate immune response to malaria: Rapid induction of IFN-gamma from human NK cells by live Plasmodium falciparum-infected erythrocytes. J. Immunol. 2002, 169, 2956–2963. [Google Scholar] [CrossRef] [PubMed]
- Walther, M.; Woodruff, J.; Edele, F.; Jeffries, D.; Tongren, J.E.; King, E.; Andrews, L.; Bejon, P.; Gilbert, S.C.; De Souza, J.B.; et al. Innate immune responses to human malaria: Heterogeneous cytokine responses to blood-stage Plasmodium falciparum correlate with parasitological and clinical outcomes. J. Immunol. 2006, 177, 5736–5745. [Google Scholar] [CrossRef] [PubMed]
- Clark, I.A.; Rockett, K.A. The cytokine theory of human cerebral malaria. Parasitol. Today 1994, 10, 410–412. [Google Scholar] [CrossRef]
- Haldar, K.; Mohandas, N. Malaria, erythrocytic infection, and anemia. Hematology Am. Soc. Hematol. Educ. Program 2009. [Google Scholar] [CrossRef] [PubMed]
- Medzhitov, R. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 2001, 1, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Campos, M.A.; Almeida, I.C.; Takeuchi, O.; Akira, S.; Valente, E.P.; Procopio, D.O.; Travassos, L.R.; Smith, J.A.; Golenbock, D.T.; Gazzinelli, R.T. Activation of Toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite. J. Immunol. 2001, 167, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Gazzinelli, R.T.; Denkers, E.Y. Protozoan encounters with Toll-like receptor signalling pathways: Implications for host parasitism. Nat. Rev. Immunol. 2006, 6, 895–906. [Google Scholar] [CrossRef] [PubMed]
- Krishnegowda, G.; Hajjar, A.M.; Zhu, J.; Douglass, E.J.; Uematsu, S.; Akira, S.; Woods, A.S.; Gowda, D.C. Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: Cell signaling receptors, glycosylphosphatidylinositol (GPI) structural requirement, and regulation of GPI activity. J. Biol. Chem. 2005, 280, 8606–8616. [Google Scholar] [CrossRef] [PubMed]
- Coban, C.; Ishii, K.J.; Kawai, T.; Hemmi, H.; Sato, S.; Uematsu, S.; Yamamoto, M.; Takeuchi, O.; Itagaki, S.; Kumar, N.; et al. Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J. Exp. Med. 2005, 201, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Parroche, P.; Lauw, F.N.; Goutagny, N.; Latz, E.; Monks, B.G.; Visintin, A.; Halmen, K.A.; Lamphier, M.; Olivier, M.; Bartholomeu, D.C.; et al. Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc. Natl. Acad. Sci. USA 2007, 104, 1919–1924. [Google Scholar] [CrossRef] [PubMed]
- Hunt, N.H.; Grau, G.E. Cytokines: Accelerators and brakes in the pathogenesis of cerebral malaria. Trends Immunol. 2003, 24, 491–499. [Google Scholar] [CrossRef]
- Franklin, B.S.; Rodrigues, S.O.; Antonelli, L.R.; Oliveira, R.V.; Goncalves, A.M.; Sales-Junior, P.A.; Valente, E.P.; Alvarez-Leite, J.I.; Ropert, C.; Golenbock, D.T.; et al. MyD88-dependent activation of dendritic cells and CD4(+) T lymphocytes mediates symptoms, but is not required for the immunological control of parasites during rodent malaria. Microbes Infect. 2007, 9, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Adachi, K.; Tsutsui, H.; Kashiwamura, S.; Seki, E.; Nakano, H.; Takeuchi, O.; Takeda, K.; Okumura, K.; Van Kaer, L.; Okamura, H.; et al. Plasmodium berghei infection in mice induces liver injury by an IL-12- and toll-like receptor/myeloid differentiation factor 88-dependent mechanism. J. Immunol. 2001, 167, 5928–5934. [Google Scholar] [CrossRef] [PubMed]
- Gowda, N.M.; Wu, X.; Gowda, D.C. TLR9 and MyD88 are crucial for the development of protective immunity to malaria. J. Immunol. 2012, 188, 5073–5085. [Google Scholar] [CrossRef] [PubMed]
- Cramer, J.P.; Lepenies, B.; Kamena, F.; Holscher, C.; Freudenberg, M.A.; Burchard, G.D.; Wagner, H.; Kirschning, C.J.; Liu, X.; Seeberger, P.H.; et al. MyD88/IL-18-dependent pathways rather than TLRs control early parasitaemia in non-lethal Plasmodium yoelii infection. Microbes Infect. 2008, 10, 1259–1265. [Google Scholar] [CrossRef] [PubMed]
- Coban, C.; Ishii, K.J.; Horii, T.; Akira, S. Manipulation of host innate immune responses by the malaria parasite. Trends Microbiol. 2007, 15, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Tian, L.; Yu, X.; Pattaradilokrat, S.; Li, J.; Wang, M.; Yu, W.; Qi, Y.; Zeituni, A.E.; Nair, S.C.; et al. Strain-specific innate immune signaling pathways determine malaria parasitemia dynamics and host mortality. Proc. Natl. Acad. Sci. USA 2014, 111, E511–E520. [Google Scholar] [CrossRef] [PubMed]
- Franklin, B.S.; Ishizaka, S.T.; Lamphier, M.; Gusovsky, F.; Hansen, H.; Rose, J.; Zheng, W.; Ataide, M.A.; de Oliveira, R.B.; Golenbock, D.T.; et al. Therapeutical targeting of nucleic acid-sensing Toll-like receptors prevents experimental cerebral malaria. Proc. Natl. Acad. Sci. USA 2011, 108, 3689–3694. [Google Scholar] [CrossRef] [PubMed]
- Franklin, B.S.; Parroche, P.; Ataide, M.A.; Lauw, F.; Ropert, C.; de Oliveira, R.B.; Pereira, D.; Tada, M.S.; Nogueira, P.; da Silva, L.H.; et al. Malaria primes the innate immune response due to interferon-gamma induced enhancement of toll-like receptor expression and function. Proc. Natl. Acad. Sci. USA 2009, 106, 5789–5794. [Google Scholar] [CrossRef] [PubMed]
- Hisaeda, H.; Yasutomo, K.; Himeno, K. Malaria: Immune evasion by parasites. Int. J. Biochem. Cell Biol. 2005, 37, 700–706. [Google Scholar] [CrossRef] [PubMed]
- Gimenez, F.; Barraud de Lagerie, S.; Fernandez, C.; Pino, P.; Mazier, D. Tumor necrosis factor alpha in the pathogenesis of cerebral malaria. Cell. Mol. Life Sci. 2003, 60, 1623–1635. [Google Scholar] [CrossRef] [PubMed]
- Thawani, N.; Tam, M.; Stevenson, M.M. STAT6-mediated suppression of erythropoiesis in an experimental model of malarial anemia. Haematologica 2009, 94, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Lamikanra, A.A.; Theron, M.; Kooij, T.W.; Roberts, D.J. Hemozoin (malarial pigment) directly promotes apoptosis of erythroid precursors. PLoS ONE 2009, 4, e8446. [Google Scholar] [CrossRef] [PubMed]
- Opal, S.M.; Laterre, P.F.; Francois, B.; LaRosa, S.P.; Angus, D.C.; Mira, J.P.; Wittebole, X.; Dugernier, T.; Perrotin, D.; Tidswell, M.; et al. Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: The ACCESS randomized trial. JAMA 2013, 309, 1154–1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ropert, C.; Gazzinelli, R.T. Signaling of immune system cells by glycosylphosphatidylinositol (GPI) anchor and related structures derived from parasitic protozoa. Curr. Opin. Microbiol. 2000, 3, 395–403. [Google Scholar] [CrossRef]
- Nebl, T.; De Veer, M.J.; Schofield, L. Stimulation of innate immune responses by malarial glycosylphosphatidylinositol via pattern recognition receptors. Parasitology 2005, 130, S45–S62. [Google Scholar] [CrossRef] [PubMed]
- Durai, P.; Govindaraj, R.G.; Choi, S. Structure and dynamic behavior of Toll-like receptor 2 subfamily triggered by malarial glycosylphosphatidylinositols of Plasmodium falciparum. FEBS J. 2013, 280, 6196–6212. [Google Scholar] [CrossRef] [PubMed]
- Schofield, L.; Hackett, F. Signal transduction in host cells by a glycosylphosphatidylinositol toxin of malaria parasites. J. Exp. Med. 1993, 177, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Krishnegowda, G.; Gowda, D.C. Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: The requirement of extracellular signal-regulated kinase, p38, c-Jun N-terminal kinase and NF-kappaB pathways for the expression of proinflammatory cytokines and nitric oxide. J. Biol. Chem. 2005, 280, 8617–8627. [Google Scholar] [PubMed]
- Schofield, L.; Novakovic, S.; Gerold, P.; Schwarz, R.T.; McConville, M.J.; Tachado, S.D. Glycosylphosphatidylinositol toxin of Plasmodium up-regulates intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin expression in vascular endothelial cells and increases leukocyte and parasite cytoadherence via tyrosine kinase-dependent signal transduction. J. Immunol. 1996, 156, 1886–1896. [Google Scholar] [PubMed]
- Schofield, L.; Hewitt, M.C.; Evans, K.; Siomos, M.A.; Seeberger, P.H. Synthetic GPI as a candidate anti-toxic vaccine in a model of malaria. Nature 2002, 418, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Pisciotta, J.M.; Ponder, E.L.; Fried, B.; Sullivan, D. Hemozoin formation in Echinostoma trivolvis rediae. Int. J. Parasitol. 2005, 35, 1037–1042. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Karmarkar, M.G.; Sharma, Y.D. Antibodies detected against Plasmodium falciparum haemozoin with inhibitory properties to cytokine production. FEMS Microbiol. Lett. 2001, 194, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.F.; Silva, J.R.; Dansa-Petretski, M.; de Souza, W.; Lins, U.; Braga, C.M.; Masuda, H.; Oliveira, P.L. Haem detoxification by an insect. Nature 1999, 400, 517–518. [Google Scholar] [CrossRef] [PubMed]
- Jani, D.; Nagarkatti, R.; Beatty, W.; Angel, R.; Slebodnick, C.; Andersen, J.; Kumar, S.; Rathore, D. HDP-a novel heme detoxification protein from the malaria parasite. PLoS Pathog. 2008, 4, e1000053. [Google Scholar] [CrossRef] [PubMed]
- Virchow, R. Zur pathologischen des Bluts. In Archiv fur Pathologische Anatomie und Physiologie und Klinische Medicin; Springer: Berlin, Germany, 1849; Volume 2, pp. 587–598. [Google Scholar]
- Omodeo-Sale, F.; Motti, A.; Dondorp, A.; White, N.J.; Taramelli, D. Destabilisation and subsequent lysis of human erythrocytes induced by Plasmodium falciparum haem products. Eur. J. Haematol. 2005, 74, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Sherry, B.A.; Alava, G.; Tracey, K.J.; Martiney, J.; Cerami, A.; Slater, A.F. Malaria-specific metabolite hemozoin mediates the release of several potent endogenous pyrogens (TNF, MIP-1 alpha, and MIP-1 beta) in vitro, and altered thermoregulation in vivo. J. Inflamm. 1995, 45, 85–96. [Google Scholar] [PubMed]
- Kwiatkowski, D.; Nowak, M. Periodic and chaotic host-parasite interactions in human malaria. Proc. Natl. Acad. Sci. USA 1991, 88, 5111–5113. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.H.; Day, N.; Pram, T.D.; Ferguson, D.J.; White, N.J. Intraleucocytic malaria pigment and prognosis in severe malaria. Trans. R. Soc. Trop. Med. Hyg. 1995, 89, 200–204. [Google Scholar] [PubMed]
- Amodu, O.K.; Adeyemo, A.A.; Olumese, P.E.; Gbadegesin, R.A. Intraleucocytic malaria pigment and clinical severity of malaria in children. Trans. R. Soc. Trop. Med. Hyg. 1998, 92, 54–56. [Google Scholar] [CrossRef]
- Sullivan, D.J., Jr.; Gluzman, I.Y.; Russell, D.G.; Goldberg, D.E. On the molecular mechanism of chloroquine’s antimalarial action. Proc. Natl. Acad. Sci. USA 1996, 93, 11865–11870. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Gowda, N.M.; Kumar, S.; Gowda, D.C. Protein-DNA complex is the exclusive malaria parasite component that activates dendritic cells and triggers innate immune responses. J. Immunol. 2010, 184, 4338–4348. [Google Scholar] [CrossRef] [PubMed]
- Goldie, P.; Roth, E.F., Jr.; Oppenheim, J.; Vanderberg, J.P. Biochemical characterization of Plasmodium falciparum hemozoin. Am. J. Trop. Med. Hyg. 1990, 43, 584–596. [Google Scholar] [CrossRef] [PubMed]
- Shio, M.T.; Kassa, F.A.; Bellemare, M.J.; Olivier, M. Innate inflammatory response to the malarial pigment hemozoin. Microbes. Infect. 2010, 12, 889–899. [Google Scholar] [CrossRef] [PubMed]
- Ashong, J.O.; Blench, I.P.; Warhurst, D.C. The composition of haemozoin from Plasmodium falciparum. Trans. R. Soc. Trop. Med. Hyg. 1989, 83, 167–172. [Google Scholar] [CrossRef]
- Kassa, F.A.; Shio, M.T.; Bellemare, M.J.; Faye, B.; Ndao, M.; Olivier, M. New inflammation-related biomarkers during malaria infection. PLoS ONE 2011, 6, e26495. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo, M.; Bellemare, M.J.; Martel, C.; Shio, M.T.; Contreras, A.P.; Godbout, M.; Roger, M.; Gaudreault, E.; Gosselin, J.; Bohle, D.S.; et al. Synthetic Plasmodium-like hemozoin activates the immune response: A morphology-function study. PLoS ONE 2009, 4, e6957. [Google Scholar] [CrossRef]
- Goldberg, D.E.; Slater, A.F. The pathway of hemoglobin degradation in malaria parasites. Parasitol. Today 1992, 8, 280–283. [Google Scholar] [CrossRef]
- Barrera, V.; Skorokhod, O.A.; Baci, D.; Gremo, G.; Arese, P.; Schwarzer, E. Host fibrinogen stably bound to hemozoin rapidly activates monocytes via TLR-4 and CD11b/CD18-integrin: A new paradigm of hemozoin action. Blood 2011, 117, 5674–5682. [Google Scholar] [CrossRef] [PubMed]
- Coban, C.; Yagi, M.; Ohata, K.; Igari, Y.; Tsukui, T.; Horii, T.; Ishii, K.J.; Akira, S. The malarial metabolite hemozoin and its potential use as a vaccine adjuvant. Allergol. Int. 2010, 59, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Pichyangkul, S.; Yongvanitchit, K.; Kum-arb, U.; Hemmi, H.; Akira, S.; Krieg, A.M.; Heppner, D.G.; Stewart, V.A.; Hasegawa, H.; Looareesuwan, S.; et al. Malaria blood stage parasites activate human plasmacytoid dendritic cells and murine dendritic cells through a Toll-like receptor 9-dependent pathway. J. Immunol. 2004, 172, 4926–4933. [Google Scholar] [CrossRef] [PubMed]
- Coban, C.; Igari, Y.; Yagi, M.; Reimer, T.; Koyama, S.; Aoshi, T.; Ohata, K.; Tsukui, T.; Takeshita, F.; Sakurai, K.; et al. Immunogenicity of whole-parasite vaccines against Plasmodium falciparum involves malarial hemozoin and host TLR9. Cell Host Microbe. 2010, 7, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Kalantari, P.; DeOliveira, R.B.; Chan, J.; Corbett, Y.; Rathinam, V.; Stutz, A.; Latz, E.; Gazzinelli, R.T.; Golenbock, D.T.; Fitzgerald, K.A. Dual engagement of the NLRP3 and AIM2 inflammasomes by plasmodium-derived hemozoin and DNA during malaria. Cell Rep. 2014, 6, 196–210. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; DeOliveira, R.B.; Kalantari, P.; Parroche, P.; Goutagny, N.; Jiang, Z.; Chan, J.; Bartholomeu, D.C.; Lauw, F.; Hall, J.P.; et al. Innate immune recognition of an AT-rich stem-loop DNA motif in the Plasmodium falciparum genome. Immunity 2011, 35, 194–207. [Google Scholar] [CrossRef] [PubMed]
- Love, M.S.; Millholland, M.G.; Mishra, S.; Kulkarni, S.; Freeman, K.B.; Pan, W.; Kavash, R.W.; Costanzo, M.J.; Jo, H.; Daly, T.M.; et al. Platelet factor 4 activity against P. falciparum and its translation to nonpeptidic mimics as antimalarials. Cell Host Microbe 2012, 12, 815–823. [Google Scholar] [CrossRef] [PubMed]
- McMorran, B.J.; Burgio, G.; Foote, S.J. New insights into the protective power of platelets in malaria infection. Commun. Integr. Biol. 2013, 6, e23653. [Google Scholar] [CrossRef] [PubMed]
- Barrat, F.J.; Meeker, T.; Chan, J.H.; Guiducci, C.; Coffman, R.L. Treatment of lupus-prone mice with a dual inhibitor of TLR7 and TLR9 leads to reduction of autoantibody production and amelioration of disease symptoms. Eur. J. Immunol. 2007, 37, 3582–3586. [Google Scholar] [CrossRef] [PubMed]
- Stutz, A.; Golenbock, D.T.; Latz, E. Inflammasomes: Too big to miss. J. Clin. Investig. 2009, 119, 3502–3511. [Google Scholar] [CrossRef] [PubMed]
- Griffith, J.W.; Sun, T.; McIntosh, M.T.; Bucala, R. Pure Hemozoin is inflammatory in vivo and activates the NALP3 inflammasome via release of uric acid. J. Immunol. 2009, 183, 5208–5220. [Google Scholar] [CrossRef] [PubMed]
- Shio, M.T.; Eisenbarth, S.C.; Savaria, M.; Vinet, A.F.; Bellemare, M.J.; Harder, K.W.; Sutterwala, F.S.; Bohle, D.S.; Descoteaux, A.; Flavell, R.A.; et al. Malarial hemozoin activates the NLRP3 inflammasome through Lyn and Syk kinases. PLoS Pathog. 2009, 5, e1000559. [Google Scholar] [CrossRef]
- Dostert, C.; Guarda, G.; Romero, J.F.; Menu, P.; Gross, O.; Tardivel, A.; Suva, M.L.; Stehle, J.C.; Kopf, M.; Stamenkovic, I.; et al. Malarial hemozoin is a Nalp3 inflammasome activating danger signal. PLoS ONE 2009, 4, e6510. [Google Scholar] [CrossRef] [PubMed]
- Reimer, T.; Shaw, M.H.; Franchi, L.; Coban, C.; Ishii, K.J.; Akira, S.; Horii, T.; Rodriguez, A.; Nunez, G. Experimental cerebral malaria progresses independently of the Nlrp3 inflammasome. Eur. J. Immunol. 2010, 40, 764–769. [Google Scholar] [CrossRef] [PubMed]
- Hornung, V.; Bauernfeind, F.; Halle, A.; Samstad, E.O.; Kono, H.; Rock, K.L.; Fitzgerald, K.A.; Latz, E. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 2008, 9, 847–856. [Google Scholar] [CrossRef] [PubMed]
- Duewell, P.; Kono, H.; Rayner, K.J.; Sirois, C.M.; Vladimer, G.; Bauernfeind, F.G.; Abela, G.S.; Franchi, L.; Nunez, G.; Schnurr, M.; et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 2010, 464, 1357–1361. [Google Scholar] [CrossRef] [PubMed]
- Kordes, M.; Matuschewski, K.; Hafalla, J.C. Caspase-1 activation of interleukin-1beta (IL-1beta) and IL-18 is dispensable for induction of experimental cerebral malaria. Infect. Immun. 2011, 79, 3633–3641. [Google Scholar] [CrossRef] [PubMed]
- Gatton, M.L.; Cheng, Q. Evaluation of the pyrogenic threshold for Plasmodium falciparum malaria in naive individuals. Am. J. Trop. Med. Hyg. 2002, 66, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Nagamine, Y.; Hayano, M.; Kashiwamura, S.; Okamura, H.; Nakanishi, K.; Krudsod, S.; Wilairatana, P.; Looareesuwan, S.; Kojima, S. Involvement of interleukin-18 in severe Plasmodium falciparum malaria. Trans. R. Soc. Trop. Med. Hyg. 2003, 97, 236–241. [Google Scholar] [CrossRef]
- Ataide, M.A.; Andrade, W.A.; Zamboni, D.S.; Wang, D.; Souza Mdo, C.; Franklin, B.S.; Elian, S.; Martins, F.S.; Pereira, D.; Reed, G.; et al. Malaria-induced NLRP12/NLRP3-dependent caspase-1 activation mediates inflammation and hypersensitivity to bacterial superinfection. PLoS Pathog. 2014, 10, e1003885. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Fitzgerald, K.A. Innate immune sensing of DNA. PLoS Pathog. 2011, 7, e1001310. [Google Scholar] [CrossRef] [PubMed]
- Hornung, V.; Latz, E. Intracellular DNA recognition. Nat. Rev. Immunol. 2010, 10, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Gowda, N.M.; Wu, X.; Gowda, D.C. The Nucleosome (Histone-DNA Complex) Is the TLR9-Specific Immunostimulatory Component of Plasmodium falciparum That Activates DCs. PLoS ONE 2011, 6, e20398. [Google Scholar] [CrossRef] [PubMed]
- Hirako, I.C.; Gallego-Marin, C.; Ataide, M.A.; Andrade, W.A.; Gravina, H.; Rocha, B.C.; de Oliveira, R.B.; Pereira, D.B.; Vinetz, J.; Diamond, B.; et al. DNA-Containing Immunocomplexes Promote Inflammasome Assembly and Release of Pyrogenic Cytokines by CD14+ CD16+ CD64high CD32low Inflammatory Monocytes from Malaria Patients. MBio 2015, 6, e01605-15. [Google Scholar] [CrossRef] [PubMed]
- Sisquella, X.; Ofir-Birin, Y.; Pimentel, M.A.; Cheng, L.; Abou Karam, P.; Sampaio, N.G.; Penington, J.S.; Connolly, D.; Giladi, T.; Scicluna, B.J.; et al. Malaria parasite DNA-harbouring vesicles activate cytosolic immune sensors. Nat. Commun. 2017, 8, 1985. [Google Scholar] [CrossRef] [PubMed]
- Aucan, C.; Walley, A.J.; Hennig, B.J.; Fitness, J.; Frodsham, A.; Zhang, L.; Kwiatkowski, D.; Hill, A.V. Interferon-alpha receptor-1 (IFNAR1) variants are associated with protection against cerebral malaria in the Gambia. Genes Immun. 2003, 4, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Vigario, A.M.; Belnoue, E.; Gruner, A.C.; Mauduit, M.; Kayibanda, M.; Deschemin, J.C.; Marussig, M.; Snounou, G.; Mazier, D.; Gresser, I.; et al. Recombinant human IFN-alpha inhibits cerebral malaria and reduces parasite burden in mice. J. Immunol. 2007, 178, 6416–6425. [Google Scholar] [CrossRef] [PubMed]
- Voisine, C.; Mastelic, B.; Sponaas, A.M.; Langhorne, J. Classical CD11c+ dendritic cells, not plasmacytoid dendritic cells, induce T cell responses to Plasmodium chabaudi malaria. Int. J. Parasitol. 2010, 40, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Cai, B.; Wang, M.; Tan, P.; Ding, X.; Wu, J.; Li, J.; Li, Q.; Liu, P.; Xing, C.; et al. Cross-Regulation of Two Type I Interferon Signaling Pathways in Plasmacytoid Dendritic Cells Controls Anti-malaria Immunity and Host Mortality. Immunity 2016, 45, 1093–1107. [Google Scholar] [CrossRef] [PubMed]
- Koch, O.; Awomoyi, A.; Usen, S.; Jallow, M.; Richardson, A.; Hull, J.; Pinder, M.; Newport, M.; Kwiatkowski, D. IFNGR1 gene promoter polymorphisms and susceptibility to cerebral malaria. J. Infect. Dis. 2002, 185, 1684–1687. [Google Scholar] [CrossRef] [PubMed]
- Naka, I.; Patarapotikul, J.; Hananantachai, H.; Tokunaga, K.; Tsuchiya, N.; Ohashi, J. IFNGR1 polymorphisms in Thai malaria patients. Infect. Genet. Evol. 2009, 9, 1406–1409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallego-Marin, C.; Schrum, J.E.; Andrade, W.A.; Shaffer, S.A.; Giraldo, L.F.; Lasso, A.M.; Kurt-Jones, E.A.; Fitzgerald, K.A.; Golenbock, D.T. Cyclic GMP-AMP Synthase Is the Cytosolic Sensor of Plasmodium falciparum Genomic DNA and Activates Type I IFN in Malaria. J. Immunol. 2018, 200, 768–774. [Google Scholar] [CrossRef] [PubMed]
- Baccarella, A.; Fontana, M.F.; Chen, E.C.; Kim, C.C. Toll-like receptor 7 mediates early innate immune responses to malaria. Infect. Immun. 2013, 81, 4431–4442. [Google Scholar] [CrossRef] [PubMed]
- Rathinam, V.A.; Jiang, Z.; Waggoner, S.N.; Sharma, S.; Cole, L.E.; Waggoner, L.; Vanaja, S.K.; Monks, B.G.; Ganesan, S.; Latz, E.; et al. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat. Immunol. 2010, 11, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Fernandes-Alnemri, T.; Yu, J.W.; Juliana, C.; Solorzano, L.; Kang, S.; Wu, J.; Datta, P.; McCormick, M.; Huang, L.; McDermott, E.; et al. The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat. Immunol. 2010, 11, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Warren, S.E.; Armstrong, A.; Hamilton, M.K.; Mao, D.P.; Leaf, I.A.; Miao, E.A.; Aderem, A. Cutting edge: Cytosolic bacterial DNA activates the inflammasome via Aim2. J. Immunol. 2010, 185, 818–821. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Bauernfeind, F.; Ablasser, A.; Hartmann, G.; Fitzgerald, K.A.; Latz, E.; Hornung, V. Listeria monocytogenes is sensed by the NLRP3 and AIM2 inflammasome. Eur. J. Immunol. 2010, 40, 1545–1551. [Google Scholar] [CrossRef] [PubMed]
- Orengo, J.M.; Evans, J.E.; Bettiol, E.; Leliwa-Sytek, A.; Day, K.; Rodriguez, A. Plasmodium-induced inflammation by uric acid. PLoS Pathog. 2008, 4, e1000013. [Google Scholar] [CrossRef] [PubMed]
- Orengo, J.M.; Leliwa-Sytek, A.; Evans, J.E.; Evans, B.; van de Hoef, D.; Nyako, M.; Day, K.; Rodriguez, A. Uric acid is a mediator of the Plasmodium falciparum-induced inflammatory response. PLoS ONE 2009, 4, e5194. [Google Scholar] [CrossRef] [PubMed]
- Das, B.S.; Patnaik, J.K.; Mohanty, S.; Mishra, S.K.; Mohanty, D.; Satpathy, S.K.; Bose, T.K. Plasma antioxidants and lipid peroxidation products in falciparum malaria. Am. J. Trop. Med. Hyg. 1993, 49, 720–725. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, K.; Mita, T.; Jombart, T.; Eriksson, A.; Horibe, S.; Palacpac, N.; Ranford-Cartwright, L.; Sawai, H.; Sakihama, N.; Ohmae, H.; et al. Plasmodium falciparum accompanied the human expansion out of Africa. Curr. Biol. 2010, 20, 1283–1289. [Google Scholar] [CrossRef] [PubMed]
- Ringelhann, B.; Hathorn, M.K.; Jilly, P.; Grant, F.; Parniczky, G. A new look at the protection of hemoglobin AS and AC genotypes against plasmodium falciparum infection: A census tract approach. Am. J. Hum. Genet. 1976, 28, 270–279. [Google Scholar] [PubMed]
- Sabeti, P.; Usen, S.; Farhadian, S.; Jallow, M.; Doherty, T.; Newport, M.; Pinder, M.; Ward, R.; Kwiatkowski, D. CD40L association with protection from severe malaria. Genes Immun. 2002, 3, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Burgner, D.; Usen, S.; Rockett, K.; Jallow, M.; Ackerman, H.; Cervino, A.; Pinder, M.; Kwiatkowski, D.P. Nucleotide and haplotypic diversity of the NOS2A promoter region and its relationship to cerebral malaria. Hum. Genet. 2003, 112, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Burgner, D.; Xu, W.; Rockett, K.; Gravenor, M.; Charles, I.G.; Hill, A.V.; Kwiatkowski, D. Inducible nitric oxide synthase polymorphism and fatal cerebral malaria. Lancet 1998, 352, 1193–1194. [Google Scholar] [CrossRef]
- Schroder, N.W.; Schumann, R.R. Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious disease. Lancet Infect. Dis. 2005, 5, 156–164. [Google Scholar] [CrossRef]
- Mockenhaupt, F.P.; Cramer, J.P.; Hamann, L.; Stegemann, M.S.; Eckert, J.; Oh, N.R.; Otchwemah, R.N.; Dietz, E.; Ehrhardt, S.; Schroder, N.W.; et al. Toll-like receptor (TLR) polymorphisms in African children: Common TLR-4 variants predispose to severe malaria. J. Commun. Dis. 2006, 38, 230–245. [Google Scholar] [CrossRef] [PubMed]
- Mockenhaupt, F.P.; Hamann, L.; von Gaertner, C.; Bedu-Addo, G.; von Kleinsorgen, C.; Schumann, R.R.; Bienzle, U. Common polymorphisms of toll-like receptors 4 and 9 are associated with the clinical manifestation of malaria during pregnancy. J. Infect. Dis. 2006, 194, 184–188. [Google Scholar] [CrossRef] [PubMed]
- Sam-Agudu, N.A.; Greene, J.A.; Opoka, R.O.; Kazura, J.W.; Boivin, M.J.; Zimmerman, P.A.; Riedesel, M.A.; Bergemann, T.L.; Schimmenti, L.A.; John, C.C. TLR9 polymorphisms are associated with altered IFN-gamma levels in children with cerebral malaria. Am. J. Trop. Med. Hyg. 2010, 82, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Khor, C.C.; Chapman, S.J.; Vannberg, F.O.; Dunne, A.; Murphy, C.; Ling, E.Y.; Frodsham, A.J.; Walley, A.J.; Kyrieleis, O.; Khan, A.; et al. A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis. Nat. Genet. 2007, 39, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Hamann, L.; Kumpf, O.; Schuring, R.P.; Alpsoy, E.; Bedu-Addo, G.; Bienzle, U.; Oskam, L.; Mockenhaupt, F.P.; Schumann, R.R. Low frequency of the TIRAP S180L polymorphism in Africa, and its potential role in malaria, sepsis, and leprosy. BMC Med. Genet. 2009, 10, 65. [Google Scholar] [CrossRef] [PubMed]
- Zakeri, S.; Pirahmadi, S.; Mehrizi, A.A.; Djadid, N.D. Genetic variation of TLR-4, TLR-9 and TIRAP genes in Iranian malaria patients. Malar. J. 2011, 10, 77. [Google Scholar] [CrossRef] [PubMed]
- Castiblanco, J.; Varela, D.C.; Castano-Rodriguez, N.; Rojas-Villarraga, A.; Hincapie, M.E.; Anaya, J.M. TIRAP (MAL) S180L polymorphism is a common protective factor against developing tuberculosis and systemic lupus erythematosus. Infect. Genet. Evol. 2008, 8, 541–544. [Google Scholar] [CrossRef] [PubMed]
- Ramasawmy, R.; Cunha-Neto, E.; Fae, K.C.; Borba, S.C.; Teixeira, P.C.; Ferreira, S.C.; Goldberg, A.C.; Ianni, B.; Mady, C.; Kalil, J. Heterozygosity for the S180L variant of MAL/TIRAP, a gene expressing an adaptor protein in the Toll-like receptor pathway, is associated with lower risk of developing chronic Chagas cardiomyopathy. J. Infect. Dis. 2009, 199, 1838–1845. [Google Scholar] [CrossRef] [PubMed]
- Levitz, S.M.; Golenbock, D.T. Beyond empiricism: Informing vaccine development through innate immunity research. Cell 2012, 148, 1284–1292. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalantari, P. The Emerging Role of Pattern Recognition Receptors in the Pathogenesis of Malaria. Vaccines 2018, 6, 13. https://doi.org/10.3390/vaccines6010013
Kalantari P. The Emerging Role of Pattern Recognition Receptors in the Pathogenesis of Malaria. Vaccines. 2018; 6(1):13. https://doi.org/10.3390/vaccines6010013
Chicago/Turabian StyleKalantari, Parisa. 2018. "The Emerging Role of Pattern Recognition Receptors in the Pathogenesis of Malaria" Vaccines 6, no. 1: 13. https://doi.org/10.3390/vaccines6010013
APA StyleKalantari, P. (2018). The Emerging Role of Pattern Recognition Receptors in the Pathogenesis of Malaria. Vaccines, 6(1), 13. https://doi.org/10.3390/vaccines6010013