A Convenient Synthetic Method to Improve Immunogenicity of Mycobacterium tuberculosis Related T-Cell Epitope Peptides
Abstract
:1. Introduction
- Ag85B (325 aa, encoded by the Rv1886c gene) is an early secreted antigen that is associated with active bacterial replication [9,10]. In the C-terminal region, CD8+ T-cell epitope peptide 239-KLVANNTRL-247 (A) was reported to lyse BCG-infected human macrophages and Ag85B-pulsed CD8 + T-cells [11,12,13].
- Isoniazid-inducible protein, IniB (479 aa, encoded by the Rv0341 gene), is strongly upregulated in response to a broad range of inhibitors of cell wall biosynthesis, including isoniazid, a first-line antitubercular drug [14,15]. In the 33–45 region, an MHC I-associated 33-GLIDIAPHQISSV-45 peptide (I) was identified that can induce the generation of peptide-specific cytotoxic T-cells and lysis of Mtb-infected dendritic cells [16].
- PPE68 protein (368 aa, encoded by the Rv3873 gene) is one of the major antigenic protein associated with dormancy and assists the pathogen in surviving within the host phagocytes [17,18]. Highly sensitive PPE68-specific T-cell epitope peptides within the 124–156 region were described recently [17,19,20], of which the 127-FFGINTIPIA-136 peptide (P) was identified as an HLA-DR promiscuous core sequence [21].
2. Materials and Methods
2.1. Materials
2.2. Synthetic Procedures
2.3. Electronic Circular Dichroism (ECD) Spectroscopy
2.4. In Vitro Evaluation (Cellular Uptake, Cytotoxicity, and Hemolytic Activity Assays)
2.5. Ethical Statement
2.6. Mice and Immunization
2.7. T-Cell Proliferation and Cytokine Assays
2.8. Vaccine Efficacy
3. Results
3.1. Chemistry
3.2. Conformation Studies
3.3. Immunological Evaluation
3.4. Vaccine Efficacy
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sette, A.; Fikes, J. Epitope-based vaccines: An update on epitope identification, vaccine design and delivery. Curr. Opin. Immunol. 2003, 15, 461–470. [Google Scholar] [CrossRef]
- Craik, D.J.; Fairlie, D.P.; Liras, S.; Price, D. The future of peptide-based drugs. Chem. Biol. Drug Des. 2013, 81, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Fosgerau, K.; Hoffmann, T. Peptide therapeutics: Current status and future directions. Drug Discov. Today 2015, 20, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Skwarczynski, M.; Toth, I. Peptide-based synthetic vaccines. Chem. Sci. 2016, 7, 842–854. [Google Scholar] [CrossRef] [PubMed]
- Voskens, C.J.; Strome, S.E.; Sewell, D.A. Synthetic peptide-based cancer vaccines: Lessons learned and hurdles to overcome. Curr. Mol. Med. 2009, 9, 683–693. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Joshi, M.D.; Singhania, S.; Ramsey, K.H.; Murthy, A.K. Peptide vaccine: Progress and challenges. Vaccines 2014, 2, 515–536. [Google Scholar] [CrossRef]
- Gengenbacher, M.; Kaufmann, S.H.E. Mycobacterium tuberculosis: Success through dormancy. FEMS Microbiol. Rev. 2012, 36, 514–532. [Google Scholar] [CrossRef]
- van Pinxteren, L.A.H.; Cassidy, J.P.; Smedegaard, B.H.C.; Agger, E.M.; Andersen, P. Control of latent Mycobacterium tuberculosis infection is dependent on CD8 T cells. Eur. J. Immunol. 2000, 30, 3689–3698. [Google Scholar] [CrossRef]
- Voss, G.; Casimiro, D.; Neyrolles, O.; Williams, A.; Kaufmann, S.H.E.; McShane, H.; Hatherill, M.; Fletcher, H.A. Progress and challenges in TB vaccine development. F1000Research 2018, 7, 199. [Google Scholar] [CrossRef] [Green Version]
- Launois, P.; DeLeys, R.; Niang, M.N.; Drowart, A.; Andrien, M.; Dierckx, P.; Cartel, J.L.; Sarthou, J.L.; Van Vooren, J.P.; Huygen, K. T-cell-epitope mapping of the major secreted mycobacterial antigen Ag85A in tuberculosis and leprosy. Infect. Immun. 1994, 62, 3679–3687. [Google Scholar]
- Geluk, A.; Taneja, V.; van Meijgaarden, K.E.; Zanelli, E.; Abou-Zeid, C.; Thole, J.E.; de Vries, R.R.; David, C.S.; Ottenhoff, T.H. Identification of HLA class II-restricted determinants of Mycobacterium tuberculosis-derived proteins by using HLA-transgenic, class II-deficient mice. Proc. Natl. Acad. Sci. USA 1998, 95, 10797–10802. [Google Scholar] [CrossRef] [PubMed]
- Geluk, A.; van Meijgaarden, K.E.; Franken, K.L.M.C.; Drijfhout, J.W.; D’Souza, S.; Necker, A.; Huygen, K.; Ottenhoff, T.H.M. Identification of major epitopes of Mycobacterium tuberculosis AG85B that are recognized by HLA-A*0201-restricted CD8 + T cells in HLA-transgenic mice and humans. J. Immunol. 2000, 165, 6463–6471. [Google Scholar] [CrossRef] [PubMed]
- Weichold, F.F.; Mueller, S.; Kortsik, C.; Hitzler, W.; Wulf, M.J.; Hone, D.M.; Sadoff, J.C.; Maeurer, M.J. Impact of MHC class I alleles on the M. tuberculosis antigen-specific CD8 + T-cell response in patients with pulmonary tuberculosis. Genes Immun. 2007, 8, 334–343. [Google Scholar] [CrossRef]
- Alland, D.; Steyn, A.J.; Weisbrod, T.; Aldrich, K.; Jacobs, W.R. Characterization of the Mycobacterium tuberculosis iniBAC promoter, a promoter that responds to cell wall biosynthesis inhibition. J. Bacteriol. 2000, 182, 1802–1811. [Google Scholar] [CrossRef] [PubMed]
- Fenhalls, G.; Stevens, L.; Moses, L.; Bezuidenhout, J.; Betts, J.C.; van Helden, P.; Lukey, P.T.; Duncan, K. In situ detection of Mycobacterium tuberculosis transcripts in human lung granulomas reveals differential gene expression in necrotic lesions. Infect. Immun. 2002, 70, 6330–6338. [Google Scholar] [CrossRef] [PubMed]
- Flyer, D.C.; Ramakrishna, V.; Miller, C.; Myers, H.; McDaniel, M.; Root, K.; Flournoy, C.; Engelhard, V.H.; Canaday, D.H.; Marto, J.A.; et al. Identification by mass spectrometry of CD8 +-T-cell Mycobacterium tuberculosis epitopes within the Rv0341 gene product. Infect. Immun. 2002, 70, 2926–2932. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, S.; Pourakbari, B.; Mamishi, S. Interferon Gamma Release Assay in response to PE35/PPE68 proteins: A promising diagnostic method for diagnosis of latent tuberculosis. Eur. Cytokine Netw. 2017, 28, 36–40. [Google Scholar] [CrossRef]
- Tiwari, B.; Soory, A.; Raghunand, T.R. An immunomodulatory role for the Mycobacterium tuberculosis region of difference 1 locus proteins PE35 (Rv3872) and PPE68 (Rv3873). FEBS J. 2014, 281, 1556–1570. [Google Scholar] [CrossRef]
- Duan, Z.L.; Li, Q.; Wang, S.N.; Chen, X.Y.; Liu, H.F.; Chen, B.K.; Li, D.Z.; Huang, X.; Wen, J.S. Identification of Mycobacterium tuberculosis PPE68-Specific HLA-A*0201-Restricted Epitopes for Tuberculosis Diagnosis. Curr. Microbiol. 2015, 70, 769–778. [Google Scholar] [CrossRef]
- Mustafa, A.S.; Al-Attiyah, R.; Hanif, S.N.M.; Shaban, F.A. Efficient testing of large pools of Mycobacterium tuberculosis RD1 peptides and identification of major antigens and immunodominant peptides recognized by human Th1 cells. Clin. Vaccine Immunol. 2008, 15, 916–924. [Google Scholar] [CrossRef]
- Mustafa, A.S. Characterization of a Cross-Reactive, Immunodominant and HLA-promiscuous epitope of Mycobacterium tuberculosis-specific major antigenic protein PPE68. PLoS ONE 2014, 9, e103679. [Google Scholar] [CrossRef] [PubMed]
- Melief, C.J.M.; van der Burg, S.H. Immunotherapy of established (pre) malignant disease by synthetic long peptide vaccines. Nat. Rev. Cancer 2008, 8, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Gokhale, A.S.; Satyanarayanajois, S. Peptides and peptidomimetics as immunomodulators. Immunother. UK 2014, 6, 755–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coppola, M.; van den Eeden, S.J.F.; Wilson, L.; Franken, K.L.M.C.; Ottenhoff, T.H.M.; Geluk, A. Synthetic long peptide derived from Mycobacterium tuberculosis latency antigen rv1733c protects against tuberculosis. Clin. Vaccine Immunol. 2015, 22, 1060–1069. [Google Scholar] [CrossRef] [PubMed]
- Genito, C.J.; Beck, Z.; Phares, T.W.; Kalle, F.; Limbach, K.J.; Stefaniak, M.E.; Patterson, N.B.; Bergmann-Leitner, E.S.; Waters, N.C.; Matyas, G.R.; et al. Liposomes containing monophosphoryl lipid A and QS-21 serve as an effective adjuvant for soluble circumsporozoite protein malaria vaccine FMP013. Vaccine 2017, 35, 3865–3874. [Google Scholar] [CrossRef] [PubMed]
- Pizzuto, M.; Bigey, P.; Lachages, A.M.; Hoffmann, C.; Ruysschaert, J.M.; Escriou, V.; Lonez, C. Cationic lipids as one-component vaccine adjuvants: A promising alternative to alum. J. Control Release 2018, 287, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Siemion, I.Z.; Kluczyk, A. Tuftsin: On the 30-year anniversary of Victor Najjar’s discovery. Peptides 1999, 20, 645–674. [Google Scholar] [CrossRef]
- Dutta, T.; Garg, M.; Jain, N.K. Targeting of efavirenz loaded tuftsin conjugated poly(propyleneimine) dendrimers to HIV infected macrophages in vitro. Eur. J. Pharm. Sci. 2008, 34, 181–189. [Google Scholar] [CrossRef]
- Thompson, K.K.; Nissen, J.C.; Pretory, A.; Tsirka, S.E. Tuftsin combines with remyelinating therapy and improves outcomes in models of CNS demyelinating disease. Front. Immunol. 2018, 9, 2784. [Google Scholar] [CrossRef]
- Mező, G.; Kalászi, A.; Reményi, J.; Majer, Z.; Hilbert, A.; Láng, O.; Kőhidai, L.; Barna, K.; Gaal, D.; Hudecz, F. Synthesis, conformation, and immunoreactivity of new carrier molecules based on repeated tuftsin-like sequence. Biopolymers 2004, 73, 645–656. [Google Scholar] [CrossRef]
- Zieglerheitbrock, H.W.L.; Thiel, E.; Futterer, A.; Herzog, V.; Wirtz, A.; Riethmuller, G. Establishment of a Human Cell-Line (Mono Mac-6) with Characteristics of Mature Monocytes. Int. J. Cancer 1988, 41, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Quah, B.J.; Warren, H.S.; Parish, C.R. Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl ester. Nat. Protoc. 2007, 2, 2049–2056. [Google Scholar] [CrossRef] [PubMed]
- Illien, F.; Rodriguez, N.; Amoura, M.; Joliot, A.; Pallerla, M.; Cribier, S.; Burlina, F.; Sagan, S. Quantitative fluorescence spectroscopy and flow cytometry analyses of cell-penetrating peptides internalization pathways: Optimization, pitfalls, comparison with mass spectrometry quantification. Sci. Rep. 2016, 6, 36938. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, T.; Phyu, S.; Nilsen, R.; Jonsson, R.; Bjune, G. A mouse model for slowly progressive primary tuberculosis. Scand J Immunol. 1999, 50, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Mező, G.; Manea, M.; Jakab, A.; Kapuvari, B.; Bosze, S.; Schlosser, G.; Przybylski, M.; Hudecz, F. Synthesis and structural characterization of bioactive peptide conjugates using thioether linkage approaches. J. Pept. Sci. 2004, 10, 701–713. [Google Scholar] [CrossRef]
- Bonam, S.R.; Partidos, C.D.; Halmuthur, S.K.M.; Muller, S. An overview of novel adjuvants designed for improving vaccine efficacy. Trends Pharm. Sci. 2017, 38, 771–793. [Google Scholar] [CrossRef] [PubMed]
Compound | Sequence | Mmo Calc. | Mmo Meas.1 | Rt (min) 2 | Peptide Content (%) 3 |
---|---|---|---|---|---|
P/A/I mix | KLVANNTRL | 1026.6298 | 1026.6295 | 8.4 | 53.6 |
GLIDIAPHQISSV | 1347.7510 | 1347.7508 | 10.7 | 58.2 | |
FFGINTIPIA | 1090.6175 | 1090.6174 | 12.7 | 65.1 | |
AI | KLVANNTRL-TKPKG-GLIDIAPHQISSV | 2868.6661 | 2868.6679 | 10.2 | 58.5 |
A(P)I | KLVANNTRL-TKmal(FFGINTIPIAC)PKG-GLIDIAPHQISSV | 4297.3535 | 4297.3649 | 13.0 | 64.5 |
pal-A(P)I | palmitoyl-KLVANNTRL-TKmal(FFGINTIPIAC)PKG-GLIDIAPHQISSV | 4493.5726 | 4493.5757 | 24.1* | 78.2 |
Cf-P/A/I mix | Cf-KLVANNTRL | 1384.6775 | 1384.6778 | 11.3 | nd |
Cf-GLIDIAPHQISSV | 1705.7988 | 1705.7986 | 13.3 | nd | |
Cf-FFGINTIPIA | 1448.6653 | 1448.6654 | 14.8 | nd | |
A(Cf-P)I | KLVANNTRL-TKmal(Cf-FFGINTIPIAC)PKG-GLIDIAPHQISSV | 4655.4012 | 4655.4147 | 15.5 | 65.2 |
pal-A(Cf-P)I | palmitoyl-KLVANNTRL-TKmal(Cf-FFGINTIPIAC)PKG-GLIDIAPHQISSV | 4851.6203 | 4851.6357 | 25.9 * | 81.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horváti, K.; Pályi, B.; Henczkó, J.; Balka, G.; Szabó, E.; Farkas, V.; Biri-Kovács, B.; Szeder, B.; Fodor, K. A Convenient Synthetic Method to Improve Immunogenicity of Mycobacterium tuberculosis Related T-Cell Epitope Peptides. Vaccines 2019, 7, 101. https://doi.org/10.3390/vaccines7030101
Horváti K, Pályi B, Henczkó J, Balka G, Szabó E, Farkas V, Biri-Kovács B, Szeder B, Fodor K. A Convenient Synthetic Method to Improve Immunogenicity of Mycobacterium tuberculosis Related T-Cell Epitope Peptides. Vaccines. 2019; 7(3):101. https://doi.org/10.3390/vaccines7030101
Chicago/Turabian StyleHorváti, Kata, Bernadett Pályi, Judit Henczkó, Gyula Balka, Eleonóra Szabó, Viktor Farkas, Beáta Biri-Kovács, Bálint Szeder, and Kinga Fodor. 2019. "A Convenient Synthetic Method to Improve Immunogenicity of Mycobacterium tuberculosis Related T-Cell Epitope Peptides" Vaccines 7, no. 3: 101. https://doi.org/10.3390/vaccines7030101
APA StyleHorváti, K., Pályi, B., Henczkó, J., Balka, G., Szabó, E., Farkas, V., Biri-Kovács, B., Szeder, B., & Fodor, K. (2019). A Convenient Synthetic Method to Improve Immunogenicity of Mycobacterium tuberculosis Related T-Cell Epitope Peptides. Vaccines, 7(3), 101. https://doi.org/10.3390/vaccines7030101