Attenuation of Zika Virus by Passage in Human HeLa Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Virus Passage
2.2. Evaluation of Viral Infection In Vitro
2.3. Mouse Experiments
2.4. Virus Sequencing
2.5. Structural and Schematic Renderings
2.6. Statistical Analysis
3. Results
3.1. Passaging of ZIKV PA259249 in HeLa Cells Led to In Vitro Attenuation
3.2. ZIKV Passaged in HeLa Cells Was Attenuated In Vivo and Generated an Immune Response
3.3. Infection with Attenuated ZIKV Led to an Elevated Immune Response
3.4. HeLa-Cell-Passaged ZIKV PA259249 Incurred Amino Acid Substitutions
4. Discussion
5. Conclusion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Garg, H.; Mehmetoglu-Gurbuz, T.; Joshi, A. Recent Advances in Zika Virus Vaccines. Viruses 2018, 10, 631. [Google Scholar] [CrossRef] [PubMed]
- Barrett, A.D.T. Current status of Zika vaccine development: Zika vaccines advance into clinical evaluation. npj Vaccines 2018, 3, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Hardy, F.M. The Growth of Asibi Strain Yellow Fever Virus in Tissue Cultures: II. Modification of Virus and Cells. J. Infect. Dis. 1963, 113, 9–14. [Google Scholar] [CrossRef]
- Barrett, A.D.T.; Monath, T.P.; Cropp, C.B.; Adkins, J.A.; Ledger, T.N.; Gould, E.A.; Schlesinger, J.J.; Kinney, R.M.; Trent, D.W. Attenuation of wild-type yellow fever virus by passage in HeLa cells. J. Gen. Virol. 1990, 71, 2301–2306. [Google Scholar] [CrossRef] [PubMed]
- Miller, B.R.; Adkins, D. Biological Characterization of Plaque-Size Variants of Yellow Fever Virus in Mosquitoes and Mice. Acta Virol. 1988, 32, 227–234. [Google Scholar] [PubMed]
- Dunster, L.M.; Gibson, C.A.; Stephenson, J.R.; Minor, P.D.; Barrett, A.D.T. Attenuation of virulence of flaviviruses following passage in HeLa cells. J. Gen. Virol. 1990, 71, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.X.; Ni, H.; Wills, M.R.; Campbell, G.A.; Sil, B.K.; Ryman, K.D.; Kitchen, I.; Barrett, A.D.T. Passage of Japanese encephalitis virus in HeLa cells results in attenuation of virulence in mice. J. Gen. Virol. 1995, 76, 2757–2764. [Google Scholar] [CrossRef] [PubMed]
- Collins, N.D.; Beck, A.S.; Widen, S.G.; Wood, T.G.; Higgs, S.; Barrett, A.D.T. Structural and Nonstructural Genes Contribute to the Genetic Diversity of RNA Viruses. MBio 2018, 9, 1–13. [Google Scholar] [CrossRef]
- Brown, W.C.; Akey, D.L.; Konwerski, J.R.; Tarrasch, J.T.; Skiniotis, G.; Kuhn, R.J.; Smith, J.L. Extended surface for membrane association in Zika virus NS1 structure. Nat. Struct. Mol. Biol. 2016, 23, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Sevvana, M.; Long, F.; Miller, A.S.; Klose, T.; Buda, G.; Sun, L.; Kuhn, R.J.; Rossmann, M.G. Refinement and Analysis of the Mature Zika Virus Cryo-EM Structure at 3.1 Angstrom Resolution. Structure 2018, 26, 1169–1177. [Google Scholar] [CrossRef] [PubMed]
- Dunster, L.M.; Wang, H.; Ryman, K.D.; Miller, B.R.; Watowich, S.J.; Minor, P.D.; Barrett, A.D.T. Molecular and biological changes associated with HeLa cell attenuation of wild-type yellow fever virus. Virology 1999, 261, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Bos, S.; Viranaicken, W.; Turpin, J.; El-Kalamouni, C.; Roche, M.; Krejbich-Trotot, P.; Desprès, P.; Gadea, G. The structural proteins of epidemic and historical strains of Zika virus differ in their ability to initiate viral infection in human host cells. Virology 2018, 516, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Frumence, E.; Roche, M.; Krejbich-Trotot, P.; El-Kalamouni, C.; Nativel, B.; Rondeau, P.; Missé, D.; Gadea, G.; Viranaicken, W.; Desprès, P. The South Pacific epidemic strain of Zika virus replicates efficiently in human epithelial A549 cells leading to IFN-β production and apoptosis induction. Virology 2016, 493, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Aliota, M.T.; Caine, E.A.; Walker, E.C.; Larkin, K.E.; Camacho, E.; Osorio, J.E. Characterization of Lethal Zika Virus Infection in AG129 Mice. PLoS Negl. Trop. Dis. 2016, 10, e0004682. [Google Scholar] [CrossRef] [PubMed]
- McDonald, E.M.; Duggal, N.K.; Brault, A.C. Pathogenesis and sexual transmission of Spondweni and Zika viruses. PLoS Negl. Trop. Dis. 2017, 11, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Dowd, K.A.; DeMaso, C.R.; Pelc, R.S.; Speer, S.D.; Smith, A.R.Y.; Goo, L.; Platt, D.J.; Mascola, J.R.; Graham, B.S.; Mulligan, M.J.; et al. Broadly Neutralizing Activity of Zika Virus-Immune Sera Identifies a Single Viral Serotype. Cell Rep. 2016, 16, 1485–1491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Lok, S.-M.; Yu, I.-M.; Zhang, Y.; Kuhn, R.J.; Chen, J.; Rossmann, M.G. The flavivirus precursor membrane-envelope protein complex: structure and maturation. Science 2008, 319, 1830–1834. [Google Scholar] [CrossRef]
- Akey, D.L.; Brown, W.C.; Dutta, S.; Konwerski, J.; Jose, J.; Jurkiw, T.J.; DelProposto, J.; Ogata, C.M.; Skiniotis, G.; Kuhn, R.J.; et al. Flavivirus NS1 structures reveal surfaces for associations with membranes and the immune system. Science 2014, 343, 881–885. [Google Scholar] [CrossRef]
- Hilgenfeld, R. Zika virus NS1, a pathogenicity factor with many faces. EMBO J. 2016, 35, 2631–2633. [Google Scholar] [CrossRef]
- Scaturro, P.; Cortese, M.; Chatel-Chaix, L.; Fischl, W.; Bartenschlager, R. Dengue Virus Non-structural Protein 1 Modulates Infectious Particle Production via Interaction with the Structural Proteins. PLoS Pathog. 2015, 11, 1–32. [Google Scholar] [CrossRef]
- Płaszczyca, A.; Scaturro, P.; Neufeldt, C.J.; Cortese, M.; Cerikan, B.; Ferla, S.; Brancale, A.; Pichlmair, A.; Bartenschlager, R. A novel interaction between dengue virus nonstructural protein 1 and the NS4A-2K-4B precursor is required for viral RNA replication but not for formation of the membranous replication organelle. PLoS Pathog. 2019, 15, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Nambala, P.; Su, W.C. Role of Zika virus prM protein in viral pathogenicity and use in vaccine development. Front. Microbiol. 2018, 9, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Collins, N.D.; Widen, S.G.; Li, L.; Swetnam, D.M.; Shi, P.-Y.; Tesh, R.B.; Sarathy, V.V. Inter- and intra-lineage genetic diversity of wild-type Zika viruses reveals both common and distinctive nucleotide variants and clusters of genomic diversity. Emerg. Microbes Infect. 2019, 8, 1126–1138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, L.; Huang, X.-Y.; Liu, Z.-Y.; Zhang, F.; Zhu, X.-L. Single mutation in the prM protein of Zika virus contributes to microcephaly. Science. 2017, 358, 933–936. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Chen, C.; Liu, S.; Zhou, H.; Yang, K.; Zhao, Q.; Ji, X.; Chen, C.; Xie, W.; Wang, Z.; et al. A Mutation Identified in Neonatal Microcephaly Destabilizes Zika Virus NS1 Assembly in Vitro. Sci. Rep. 2017, 7, 42580. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Du, S.; Shan, C.; Nie, K.; Zhang, R.; Li, X.-F.; Zhang, R.; Wang, T.; Qin, C.-F.; et al. Evolutionary enhancement of Zika virus infectivity in Aedes aegypti mosquitoes. Nature 2017, 545, 482–486. [Google Scholar] [CrossRef] [Green Version]
- Xia, H.; Luo, H.; Shan, C.; Muruato, A.E.; Nunes, B.T.D.; Medeiros, D.B.A.; Zou, J.; Xie, X.; Giraldo, M.I.; Vasconcelos, P.F.C.; et al. An evolutionary NS1 mutation enhances Zika virus evasion of host interferon induction. Nat. Commun. 2018, 9, 414. [Google Scholar] [CrossRef]
- Shrivastava, S.; Puri, V.; Dilley, K.A.; Ngouajio, E.; Shifflett, J.; Oldfield, L.M.; Fedorova, N.B.; Hu, L.; Williams, T.; Durbin, A.; et al. Whole genome sequencing, variant analysis, phylogenetics, and deep sequencing of Zika virus strains. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Gromowski, G.D.; Firestone, C.-Y.; Whitehead, S.S. Genetic Determinants of Japanese Encephalitis Virus Vaccine Strain SA14-14-2 That Govern Attenuation of Virulence in Mice. J. Virol. 2015, 89, 6328–6337. [Google Scholar] [CrossRef] [Green Version]
- De Wispelaere, M.; Khou, C.; Frenkiel, M.; Desprès, P.; Pardigon, N. A Single Amino Acid Substitution in the M Protein Attenuates Japanese Encephalitis Virus in mammalian hosts. J. Virol. 2016, 90, 2676–2689. [Google Scholar] [CrossRef]
- Shan, C.; Muruato, A.E.; Nunes, B.T.D.; Luo, H.; Xie, X.; Medeiros, D.B.A.; Wakamiya, M.; Tesh, R.B.; Barrett, A.D.; Wang, T.; et al. A live-attenuated Zika virus vaccine candidate induces sterilizing immunity in mouse models. Nat. Med. 2017, 23, 763–767. [Google Scholar] [CrossRef] [PubMed]
- Richner, J.M.; Jagger, B.W.; Shan, C.; Pierson, T.C.; Shi, P.; Diamond, M.S.; Richner, J.M.; Jagger, B.W.; Shan, C.; Fontes, C.R.; et al. Vaccine Mediated Protection Against Zika Virus- Vaccine Mediated Protection Against Zika Virus-Induced Congenital Disease. Cell 2017, 170, 273–283.e12. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, J.A.; Wang, T.; Barrett, A.D. Virulence determinants of West Nile virus: How can these be used for vaccine design? Future Virol. 2017, 12, 283–295. [Google Scholar] [CrossRef] [PubMed]
Position | Nucleotide Change | Codon Change | Amino Acid | Polyprotein Number | Protein Number | WT | P1 1 | P2 | P3 | P4 1,2 | P5 1 | P6 1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
732 | G -> A | GAA->AAA | E -> K | 209 | prM 87 | G | . | . | A | A | A | A |
2797 | G -> A | AGA->AAA | R -> K | 897 | NS1 103 | G | . | . | A | A | A | A/G 3 |
Brain | Testis | Brain | Testis | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Position | Substitution | Codon Change | Amino Acid | Polyprotein Number | Protein Number | WT | WTa | WTb | WTc | WTa | WTb | WTc | P6 | P6 | P6 | P6 | P6d | P6 | P6d |
732 | G->A | GAA -> AAA | E->K | 209 | prM 87 | G | . | . | . | . | . | . | A1 | A | A | A | A | . | A |
1181 | G->A | AUG -> AUA | M->I | 358 | E 68 | G | . | . | . | . | . | . | A | A | A | A | A | . | A |
1598 | U->A | AAU -> AAA | N->K | 498 | E 207 | U | . | . | . | . | . | . | . | . | . | . | . | A | . |
2242 | C->U | GCA -> GUA | A->V | 712 | E 422 | C | . | . | . | . | . | . | U | U | U | U | U | . | U |
2797 | G->A | AGA -> AAA | R->K | 897 | NS1 103 | G | . | . | . | . | . | . | A | A | A | A | A | . | A |
3535 | U->A | AUG -> AAG | M->K | 1143 | NS1 349 | U | . | . | . | . | . | . | . | . | . | . | . | A | . |
3767 | G->U | GUG -> GUU | V | 1220 | NS2A 74 | G | . | . | . | . | . | . | U | U | U | U | U | . | U |
3895 | C->U | GCG -> GUG | A->V | 1263 | NS2A 117 | C | U | U | U | U | U | U | . | . | . | . | . | . | . |
4875 | G->A | GCC -> ACC | A->T | 1590 | NS3 88 | G | . | . | . | . | . | . | . | . | . | . | . | A | . |
4913 | G->A | GUG -> GTA | V | 1602 | NS3 100 | G | . | . | . | . | . | . | . | . | . | A | . | . | . |
5537 | C->U | GGC -> GGU | G | 1810 | NS3 308 | C | . | . | . | . | . | . | U | . | . | . | . | . | . |
5564 | C->A | GGC -> GCA | A | 1819 | NS3 317 | C | . | . | . | . | . | . | A | A | A | A | A | . | A |
5789 | G->A | GAG -> GAA | E | 1894 | NS3 392 | G | . | . | . | . | . | . | A | A | A | A | A | . | A |
7592 | U->C | AUU -> AUC | I | 2495 | NS4B 226 | U | . | . | . | . | C | . | . | . | . | . | . | . | . |
8647 | G->A | AGG -> AAG | R->K | 2847 | NS5 327 | G | . | . | . | . | . | . | . | . | A | . | . | . | . |
10268 | C->U | AAC -> AAU | N | 3387 | NS5 867 | C | . | . | . | . | . | . | . | . | . | . | . | U | . |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Collins, N.D.; Widen, S.G.; Davis, E.H.; Kaiser, J.A.; White, M.M.; Greenberg, M.B.; Barrett, A.D.T.; Bourne, N.; Sarathy, V.V. Attenuation of Zika Virus by Passage in Human HeLa Cells. Vaccines 2019, 7, 93. https://doi.org/10.3390/vaccines7030093
Li L, Collins ND, Widen SG, Davis EH, Kaiser JA, White MM, Greenberg MB, Barrett ADT, Bourne N, Sarathy VV. Attenuation of Zika Virus by Passage in Human HeLa Cells. Vaccines. 2019; 7(3):93. https://doi.org/10.3390/vaccines7030093
Chicago/Turabian StyleLi, Li, Natalie D. Collins, Steven G. Widen, Emily H. Davis, Jaclyn A. Kaiser, Mellodee M. White, M. Banks Greenberg, Alan D. T. Barrett, Nigel Bourne, and Vanessa V. Sarathy. 2019. "Attenuation of Zika Virus by Passage in Human HeLa Cells" Vaccines 7, no. 3: 93. https://doi.org/10.3390/vaccines7030093
APA StyleLi, L., Collins, N. D., Widen, S. G., Davis, E. H., Kaiser, J. A., White, M. M., Greenberg, M. B., Barrett, A. D. T., Bourne, N., & Sarathy, V. V. (2019). Attenuation of Zika Virus by Passage in Human HeLa Cells. Vaccines, 7(3), 93. https://doi.org/10.3390/vaccines7030093