Development of Next Generation Streptococcus pneumoniae Vaccines Conferring Broad Protection
Abstract
:1. Introduction
2. Current Pneumococcal Vaccines in the Market
3. Novel Strategies for the Development of New Vaccines against Streptococcus pneumoniae
3.1. Protein-Based Vaccines
3.2. Whole-Cell Vaccines
3.2.1. Killed Whole-Cell Vaccine
3.2.2. Live Attenuated Whole-Cell Vaccines
4. Promising Pneumococcal Vaccines in Clinical Trials
5. Development of Pneumococcal Nanovaccines
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Centers for Disease Control and Prevention. Pneumococcal disease. Available online: https://www.cdc.gov/pneumococcal/index.html (accessed on 15 June 2019).
- Musher, D.M.; Thorner, A.R. Community-acquired pneumonia. N. Engl. J. Med. 2014, 371, 1619–1628. [Google Scholar] [CrossRef]
- Bogaert, D.; De Groot, R.; Hermans, P.W. Streptococcus pneumoniae colonisation: The key to pneumococcal disease. Lancet Infect. Dis. 2004, 4, 144–154. [Google Scholar] [CrossRef]
- Tin Tin Htar, M.; Stuurman, A.L.; Ferreira, G.; Alicino, C.; Bollaerts, K.; Paganino, C.; Reinert, R.R.; Schmitt, H.J.; Trucchi, C.; Vestraeten, T.; et al. Effectiveness of pneumococcal vaccines in preventing pneumonia in adults, a systematic review and meta-analyses of observational studies. PLoS ONE 2017, 12, e0177985. [Google Scholar] [CrossRef] [PubMed]
- Chao, Y.; Marks, L.R.; Pettigrew, M.M.; Hakansson, A.P. Streptococcus pneumoniae biofilm formation and dispersion during colonization and disease. Front. Cell Infect. Microbiol. 2014, 4, 194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yother, J. Capsules of Streptococcus pneumoniae and other bacteria: Paradigms for polysaccharide biosynthesis and regulation. Annu. Rev. Microbiol. 2011, 65, 563–581. [Google Scholar] [CrossRef] [PubMed]
- Immunization Action Coalition. Pneumococcal vaccines (PCV13 and PPSV23). Available online: http://www.immunize.org/askexperts/experts_pneumococcal_vaccines.asp (accessed on 15 June 2019).
- Orange, J.S.; Ballow, M.; Stiehm, E.R.; Ballas, Z.K.; Chinen, J.; De La Morena, M.; Kumararatne, D.; Harville, T.O.; Hesterberg, P.; Koleilat, M.; et al. Use and interpretation of diagnostic vaccination in primary immunodeficiency: A working group report of the basic and clinical immunology interest section of the american academy of allergy, asthma & immunology. J. Allergy Clin. Immunol. 2012, 130, S1–S24. [Google Scholar] [PubMed]
- World Health Organization. Pneumococcal Disease. Available online: https://www.who.int/ith/diseases/pneumococcal/en/ (accessed on 15 June 2019).
- Kraicer-Melamed, H.; O’Donnell, S.; Quach, C. The effectiveness of pneumococcal polysaccharide vaccine 23 (PPV23) in the general population of 50 years of age and older: A systematic review and meta-analysis. Vaccine 2016, 34, 1540–1550. [Google Scholar] [CrossRef]
- Huss, A.; Scott, P.; Stuck, A.E.; Trotter, C.; Egger, M. Efficacy of pneumococcal vaccination in adults: A meta-analysis. C.M.A.J. 2009, 180, 48–58. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, K.L. Pneumococcal conjugate vaccine, polysaccharide vaccine, or both for adults? we’re not there yet. Clin. Infect. Dis. 2009, 49, 1326–1328. [Google Scholar] [CrossRef] [Green Version]
- Moberley, S.; Holden, J.; Tatham, D.P.; Andrews, R.M. Vaccines for preventing pneumococcal infection in adults. Cochrane Database Syst. Rev. 2013, Cd000422. [Google Scholar] [CrossRef]
- de Roux, A.; Schmole-Thoma, B.; Siber, G.R.; Hackell, J.G.; Kuhnke, A.; Ahlers, N.; Baker, S.A.; Razmpour, A.; Emini, E.A.; Fernsten, P.D.; et al. Comparison of pneumococcal conjugate polysaccharide and free polysaccharide vaccines in elderly adults: Conjugate vaccine elicits improved antibacterial immune responses and immunological memory. Clin. Infect. Dis. 2008, 46, 1015–1023. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.-H.; Choi, S.-Y.; Kwon, M.-K.; Tran, T.D.-H.; Park, S.-S.; Lee, K.-J.; Bae, S.-M.; Briles, D.E.; Rhee, D.-K. Streptococcus pneumoniae pep27 mutant as a live vaccine for serotype-independent protection in mice. Vaccine 2012, 30, 2008–2019. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Epidemiology and Prevention of Vaccine-Preventable Diseases, 13th ed.; Public Health Foundation: Washington, DC, USA, 2015.
- Dinleyici, E.C.; Yargic, Z.A. Pneumococcal conjugated vaccine: PHiD-CV. Expert Rev. Anti-Infect. Ther. 2009, 7, 1063–1074. [Google Scholar] [CrossRef] [PubMed]
- Goldblatt, D. Conjugate vaccines. Clin. Exp. Immunol. 2000, 119, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Prymula, R.; Schuerman, L. 10-valent pneumococcal nontypeable Haemophilus influenzae PD conjugate vaccine: Synflorix™. Expert Rev. Vaccines 2009, 8, 1479–1500. [Google Scholar] [CrossRef]
- Isturiz, R.; Sings, H.L.; Hilton, B.; Arguedas, A.; Reinert, R.R.; Jodar, L. Streptococcus pneumoniae serotype 19A: Worldwide epidemiology. Expert Rev. Vaccines 2017, 16, 1007–1027. [Google Scholar] [CrossRef]
- Balsells, E.; Guillot, L.; Nair, H.; Kyaw, M.H. Serotype distribution of Streptococcus pneumoniae causing invasive disease in children in the post-PCV era: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0177113. [Google Scholar] [CrossRef]
- Song, J.Y.; Moseley, M.A.; Burton, R.L.; Nahm, M.H. Pneumococcal vaccine and opsonic pneumococcal antibody. J. Infect. Chemother. 2013, 19, 412–425. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. SAGE working group on pneumococcal conjugate vaccines (established December 2016). Available online: https://www.who.int/immunization/policy/sage/sage_wg_pcv_dec2016/en/ (accessed on 18 December 2019).
- Olarte, L.; Barson, W.J.; Barson, R.M.; Romero, J.R.; Bradley, J.S.; Tan, T.Q.; Givner, L.B.; Hoffman, J.A.; Lin, P.L.; Hulten, K.G.; et al. Pneumococcal pneumonia requiring hospitalization in us children in the 13-valent pneumococcal conjugate vaccine era. Clin. Infect. Dis. 2017, 64, 1699–1704. [Google Scholar] [CrossRef]
- Duggan, S.T. Pneumococcal polysaccharide conjugate vaccine (13-valent, adsorbed) [Prevenar 13((R))]: Profile report. Paediatr. Drugs 2012, 14, 67–69. [Google Scholar] [CrossRef]
- Poolman, J.T.; Peeters, C.C.; van den Dobbelsteen, G.P. The history of pneumococcal conjugate vaccine development: Dose selection. Expert Rev. Vaccines 2013, 12, 1379–1394. [Google Scholar] [CrossRef] [PubMed]
- Grijalva, C.G.; Nuorti, J.P.; Arbogast, P.G.; Martin, S.W.; Edwards, K.M.; Griffin, M.R. Decline in pneumonia admissions after routine childhood immunisation with pneumococcal conjugate vaccine in the USA: A time-series analysis. Lancet 2007, 369, 1179–1186. [Google Scholar] [CrossRef]
- Principi, N.; Esposito, S. Prevention of community-acquired pneumonia with available pneumococcal vaccines. Int. J. Mol. Sci. 2016, 18, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prato, R.; Fortunato, F.; Cappelli, M.G.; Chironna, M.; Martinelli, D. Effectiveness of the 13-valent pneumococcal conjugate vaccine against adult pneumonia in Italy: A case-control study in a 2-year prospective cohort. BMJ Open 2018, 8, e019034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Josefsberg, J.O.; Buckland, B. Vaccine process technology. Biotechnol. Bioeng. 2012, 109, 1443–1460. [Google Scholar] [CrossRef]
- Wyres, K.L.; Lambertsen, L.M.; Croucher, N.J.; McGee, L.; von Gottberg, A.; Linares, J.; Jacobs, M.R.; Kristinsson, K.G.; Beall, B.W.; Klugman, K.P.; et al. Pneumococcal capsular switching: A historical perspective. J. Infect. Dis. 2013, 207, 439–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geno, K.A.; Saad, J.S.; Nahm, M.H. Discovery of novel pneumococcal serotype 35D, a natural WciG-deficient variant of serotype 35B. J. Clin. Microbiol. 2017, 55, 1416–1425. [Google Scholar] [CrossRef] [Green Version]
- Geno, K.A.; Gilbert, G.L.; Song, J.Y.; Skovsted, I.C.; Klugman, K.P.; Jones, C.; Konradsen, H.B.; Nahm, M.H. Pneumococcal capsules and their types: Past, present, and future. Clin. Microbiol. Rev. 2015, 28, 871–899. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, K.L.; Dagan, R. The potential indirect effect of conjugate pneumococcal vaccines. Vaccine 2003, 21, 1815–1825. [Google Scholar] [CrossRef]
- Singleton, R.J.; Hennessy, T.W.; Bulkow, L.R.; Hammitt, L.L.; Zulz, T.; Hurlburt, D.A.; Butler, J.C.; Rudolph, K.; Parkinson, A. Invasive pneumococcal disease caused by nonvaccine serotypes among alaska native children with high levels of 7-valent pneumococcal conjugate vaccine coverage. JAMA 2007, 297, 1784–1792. [Google Scholar] [CrossRef]
- Golden, A.R.; Adam, H.J.; Karlowsky, J.A.; Baxter, M.; Nichol, K.A.; Martin, I.; Demczuk, W.; Van Caeseele, P.; Gubbay, J.B.; Lefebvre, B.; et al. Molecular characterization of predominant Streptococcus pneumoniae serotypes causing invasive infections in Canada: The SAVE study, 2011-15. J. Antimicrob. Chemother. 2018, 73, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Chochua, S.; Metcalf, B.J.; Li, Z.; Walker, H.; Tran, T.; McGee, L.; Beall, B. Invasive serotype 35b pneumococci including an expanding serotype switch lineage, United States, 2015-2016. Emerg. Infect. Dis. 2017, 23, 922–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mrkvan, T.; Pelton, S.I.; Ruiz-Guinazu, J.; Palmu, A.A.; Borys, D. Effectiveness and impact of the 10-valent pneumococcal conjugate vaccine, PHiD-CV: Review of clinical trials and post-marketing experience. Expert Rev. Vaccines 2018, 17, 797–818. [Google Scholar] [CrossRef] [PubMed]
- Donati, C.; Hiller, N.L.; Tettelin, H.; Muzzi, A.; Croucher, N.J.; Angiuoli, S.V.; Oggioni, M.; Dunning Hotopp, J.C.; Hu, F.Z.; Riley, D.R.; et al. Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species. Genome Biol. 2010, 11, R107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mostowy, R.J.; Croucher, N.J.; De Maio, N.; Chewapreecha, C.; Salter, S.J.; Turner, P.; Aanensen, D.M.; Bentley, S.D.; Didelot, X.; Fraser, C. Pneumococcal capsule synthesis locus cps as evolutionary hotspot with potential to generate novel serotypes by recombination. Mol. Biol. Evol. 2017, 34, 2537–2554. [Google Scholar] [CrossRef] [PubMed]
- Vos, M.; Didelot, X. A comparison of homologous recombination rates in bacteria and archaea. ISME J. 2009, 3, 199–208. [Google Scholar] [CrossRef] [Green Version]
- Chang, B.; Nariai, A.; Sekizuka, T.; Akeda, Y.; Kuroda, M.; Oishi, K.; Ohnishi, M. Capsule switching and antimicrobial resistance acquired during repeated Streptococcus pneumoniae pneumonia episodes. J. Clin. Microbiol. 2015, 53, 3318–3324. [Google Scholar] [CrossRef] [Green Version]
- Park, I.H.; Kim, K.H.; Andrade, A.L.; Briles, D.E.; McDaniel, L.S.; Nahm, M.H. Nontypeable pneumococci can be divided into multiple cps types, including one type expressing the novel gene pspK. mBio 2012, 3. [Google Scholar] [CrossRef] [Green Version]
- Keller, L.E.; Jones, C.V.; Thornton, J.A.; Sanders, M.E.; Swiatlo, E.; Nahm, M.H.; Park, I.H.; McDaniel, L.S. PspK of Streptococcus pneumoniae increases adherence to epithelial cells and enhances nasopharyngeal colonization. Infect. Immun. 2013, 81, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Monasta, L.; Ronfani, L.; Marchetti, F.; Montico, M.; Vecchi Brumatti, L.; Bavcar, A.; Grasso, D.; Barbiero, C.; Tamburlini, G. Burden of disease caused by otitis media: Systematic review and global estimates. PLoS ONE 2012, 7, e36226. [Google Scholar] [CrossRef]
- Mills, N.; Best, E.J.; Murdoch, D.; Souter, M.; Neeff, M.; Anderson, T.; Salkeld, L.; Ahmad, Z.; Mahadevan, M.; Barber, C.; et al. What is behind the ear drum? The microbiology of otitis media and the nasopharyngeal flora in children in the era of pneumococcal vaccination. J. Paediatr. Child Health 2015, 51, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Fireman, B.; Black, S.B.; Shinefield, H.R.; Lee, J.; Lewis, E.; Ray, P. Impact of the pneumococcal conjugate vaccine on otitis media. Pediatr. Infect. Dis. J. 2003, 22, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Kilpi, T.; Ahman, H.; Jokinen, J.; Lankinen, K.S.; Palmu, A.; Savolainen, H.; Gronholm, M.; Leinonen, M.; Hovi, T.; Eskola, J.; et al. Protective efficacy of a second pneumococcal conjugate vaccine against pneumococcal acute otitis media in infants and children: Randomized, controlled trial of a 7-valent pneumococcal polysaccharide-meningococcal outer membrane protein complex conjugate vaccine in 1666 children. Clin. Infect. Dis. 2003, 37, 1155–1164. [Google Scholar] [PubMed]
- Eythorsson, E.; Sigurdsson, S.; Hrafnkelsson, B.; Erlendsdottir, H.; Haraldsson, A.; Kristinsson, K.G. Impact of the 10-valent pneumococcal conjugate vaccine on antimicrobial prescriptions in young children: A whole population study. BMC Infect. Dis. 2018, 18, 505. [Google Scholar] [CrossRef]
- Gladstone, R.A.; Jefferies, J.M.; Faust, S.N.; Clarke, S.C. Continued control of pneumococcal disease in the UK – the impact of vaccination. J. Med. Microbiol. 2011, 60, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Casey, J.R.; Pichichero, M.E. Higher levels of mucosal antibody to pneumococcal vaccine candidate proteins are associated with reduced acute otitis media caused by Streptococcus pneumoniae in young children. Mucosal Immunol. 2015, 8, 1110–1117. [Google Scholar] [CrossRef]
- Hsu, H.E.; Shutt, K.A.; Moore, M.R.; Beall, B.W.; Bennett, N.M.; Craig, A.S.; Farley, M.M.; Jorgensen, J.H.; Lexau, C.A.; Petit, S.; et al. Effect of pneumococcal conjugate vaccine on pneumococcal meningitis. N. Engl. J. Med. 2009, 360, 244–256. [Google Scholar] [CrossRef] [Green Version]
- Croucher, N.J.; Harris, S.R.; Fraser, C.; Quail, M.A.; Burton, J.; van der Linden, M.; McGee, L.; von Gottberg, A.; Song, J.H.; Ko, K.S.; et al. Rapid pneumococcal evolution in response to clinical interventions. Science 2011, 331, 430. [Google Scholar] [CrossRef] [Green Version]
- Briles, D.E.; Paton, J.C.; Mukerji, R.; Swiatlo, E.; Crain, M.J. Pneumococcal vaccines. Microbiol. Spectr. 2019, 7. [Google Scholar]
- Lagousi, T.; Basdeki, P.; Routsias, J.; Spoulou, V. Novel protein-based pneumococcal vaccines: Assessing the use of distinct protein fragments instead of full-length proteins as vaccine antigens. Vaccines 2019, 7, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Principi, N.; Esposito, S. Development of pneumococcal vaccines over the last 10 years. Expert. Opin. Biol. Ther. 2018, 18, 7–17. [Google Scholar] [CrossRef]
- Pichichero, M.E. Pneumococcal whole-cell and protein-based vaccines: Changing the paradigm. Expert Rev. Vaccines 2017, 16, 1181–1190. [Google Scholar] [CrossRef]
- Argondizzo, A.P.; da Mota, F.F.; Pestana, C.P.; Reis, J.N.; de Miranda, A.B.; Galler, R.; Medeiros, M.A. Identification of proteins in Streptococcus pneumoniae by reverse vaccinology and genetic diversity of these proteins in clinical isolates. Appl. Biochem. Biotechnol. 2015, 175, 2124–2165. [Google Scholar] [CrossRef]
- Meinke, A.; Henics, T.; Hanner, M.; Minh, D.B.; Nagy, E. Antigenome technology: A novel approach for the selection of bacterial vaccine candidate antigens. Vaccine 2005, 23, 2035–2041. [Google Scholar] [CrossRef]
- Hollingshead, S.K.; Becker, R.; Briles, D.E. Diversity of PspA: Mosaic genes and evidence for past recombination in Streptococcus pneumoniae. Infect. Immun. 2000, 68, 5889–5900. [Google Scholar] [CrossRef] [Green Version]
- Briles, D.E.; Hollingshead, S.K.; Nabors, G.S.; Paton, J.C.; Brooks-Walter, A. The potential for using protein vaccines to protect against otitis media caused by Streptococcus pneumoniae. Vaccine 2000, 19 (Suppl. 1), S87–S95. [Google Scholar] [CrossRef]
- Nagano, H.; Kawabata, M.; Sugita, G.; Tsuruhara, A.; Ohori, J.; Jimura, T.; Miyashita, K.; Kurono, Y.; Tomonaga, K.; Briles, D.E.; et al. Transcutaneous immunization with pneumococcal surface protein A in mice. Laryngoscope 2018, 128, E91–E96. [Google Scholar] [CrossRef]
- Dave, S.; Brooks-Walter, A.; Pangburn, M.K.; McDaniel, L.S. PspC, a pneumococcal surface protein, binds human factor H. Infect. Immun. 2001, 69, 3435. [Google Scholar] [CrossRef] [Green Version]
- Dieudonné-Vatran, A.; Krentz, S.; Blom, A.M.; Meri, S.; Henriques-Normark, B.; Riesbeck, K.; Albiger, B. Clinical isolates of Streptococcus pneumoniae bind the complement inhibitor C4b-binding protein in a PspC allele-dependent fashion. J. Immunol. 2009, 182, 7865–7877. [Google Scholar] [CrossRef] [Green Version]
- Miyaji, E.N.; Oliveira, M.L.; Carvalho, E.; Ho, P.L. Serotype-independent pneumococcal vaccines. Cell. Mol. Life Sci. 2013, 70, 3303–3326. [Google Scholar] [CrossRef]
- Price, K.E.; Camilli, A. Pneumolysin localizes to the cell wall of Streptococcus pneumoniae. J. Bacteriol. 2009, 191, 2163–2168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loisel, E.; Chimalapati, S.; Bougault, C.; Imberty, A.; Gallet, B.; Di Guilmi, A.M.; Brown, J.; Vernet, T.; Durmort, C. Biochemical characterization of the histidine triad protein PhtD as a cell surface zinc-binding protein of pneumococcus. Biochemistry 2011, 50, 3551–3558. [Google Scholar] [CrossRef] [PubMed]
- Nagai, K.; Domon, H.; Maekawa, T.; Oda, M.; Hiyoshi, T.; Tamura, H.; Yonezawa, D.; Arai, Y.; Yokoji, M.; Tabeta, K.; et al. Pneumococcal DNA-binding proteins released through autolysis induce the production of proinflammatory cytokines via toll-like receptor 4. Cell. Immunol. 2018, 325, 14–22. [Google Scholar] [CrossRef]
- Kong, I.G.; Sato, A.; Yuki, Y.; Nochi, T.; Takahashi, H.; Sawada, S.; Mejima, M.; Kurokawa, S.; Okada, K.; Sato, S.; et al. Nanogel-based PspA intranasal vaccine prevents invasive disease and nasal colonization by Streptococcus pneumoniae. Infect. Immun. 2013, 81, 1625. [Google Scholar] [CrossRef] [Green Version]
- Briles, D.E.; Hollingshead, S.K.; King, J.; Swift, A.; Braun, P.A.; Park, M.K.; Ferguson, L.M.; Nahm, M.H.; Nabors, G.S. Immunization of humans with recombinant pneumococcal surface protein A (rPspA) elicits antibodies that passively protect mice from fatal infection with Streptococcus pneumoniae bearing heterologous PspA. J. Infect. Dis. 2000, 182, 1694–1701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ginsburg, A.S.; Nahm, M.H.; Khambaty, F.M.; Alderson, M.R. Issues and challenges in the development of pneumococcal protein vaccines. Expert Rev. Vaccines 2012, 11, 279–285. [Google Scholar] [CrossRef] [Green Version]
- Goulart, C.; Darrieux, M.; Rodriguez, D.; Pimenta, F.C.; Brandileone, M.C.C.; de Andrade, A.L.S.S.; Leite, L.C.C. Selection of family 1 PspA molecules capable of inducing broad-ranging cross-reactivity by complement deposition and opsonophagocytosis by murine peritoneal cells. Vaccine 2011, 29, 1634–1642. [Google Scholar] [CrossRef] [Green Version]
- Akbari, E.; Negahdari, B.; Faraji, F.; Behdani, M.; Kazemi-Lomedasht, F.; Habibi-Anbouhi, M. Protective responses of an engineered PspA recombinant antigen against Streptococcus pneumoniae. Biotechnology Reports 2019, 24, e00385. [Google Scholar] [CrossRef]
- Daniels, C.C.; Coan, P.; King, J.; Hale, J.; Benton, K.A.; Briles, D.E.; Hollingshead, S.K. The proline-rich region of pneumococcal surface proteins A and C contains surface-accessible epitopes common to all pneumococci and elicits antibody-mediated protection against sepsis. Infect. Immun. 2010, 78, 2163–2172. [Google Scholar] [CrossRef] [Green Version]
- Mukerji, R.; Hendrickson, C.; Genschmer, K.R.; Park, S.S.; Bouchet, V.; Goldstein, R.; Lefkowitz, E.J.; Briles, D.E. The diversity of the proline-rich domain of pneumococcal surface protein A (PspA): Potential relevance to a broad-spectrum vaccine. Vaccine 2018, 36, 6834–6843. [Google Scholar] [CrossRef]
- Brooks-Walter, A.; Briles, D.E.; Hollingshead, S.K. The pspC gene of Streptococcus pneumoniae encodes a polymorphic protein, PspC, which elicits cross-reactive antibodies to PspA and provides immunity to pneumococcal bacteremia. Infect. Immun. 1999, 67, 6533–6542. [Google Scholar] [PubMed]
- Kerr, A.R.; Paterson, G.K.; McCluskey, J.; Iannelli, F.; Oggioni, M.R.; Pozzi, G.; Mitchell, T.J. The contribution of PspC to pneumococcal virulence varies between strains and is accomplished by both complement evasion and complement-independent mechanisms. Infect. Immun. 2006, 74, 5319–5324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, A.M.; Mitchell, T.J. Streptococcus pneumoniae: Virulence factors and variation. Clin. Microbiol. Infect. 2010, 16, 411–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Georgieva, M.; Kagedan, L.; Lu, Y.J.; Thompson, C.M.; Lipsitch, M. Antigenic variation in Streptococcus pneumoniae PspC promotes immune escape in the presence of variant-specific immunity. mBio 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Morais, V.; Texeira, E.; Suarez, N. Next-generation whole-cell pneumococcal vaccine. Vaccines (Basel) 2019, 7, 151. [Google Scholar] [CrossRef] [Green Version]
- Malley, R.; Henneke, P.; Morse, S.C.; Cieslewicz, M.J.; Lipsitch, M.; Thompson, C.M.; Kurt-Jones, E.; Paton, J.C.; Wessels, M.R.; Golenbock, D.T. Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc. Natl. Acad. Sci. USA 2003, 100, 1966–1971. [Google Scholar] [CrossRef] [Green Version]
- McNeela, E.A.; Burke, A.; Neill, D.R.; Baxter, C.; Fernandes, V.E.; Ferreira, D.; Smeaton, S.; El-Rachkidy, R.; McLoughlin, R.M.; Mori, A. Pneumolysin activates the NLRP3 inflammasome and promotes proinflammatory cytokines independently of TLR4. PLoS Pathog. 2010, 6. [Google Scholar] [CrossRef] [Green Version]
- Yuste, J.; Sen, A.; Truedsson, L.; Jönsson, G.; Tay, L.-S.; Hyams, C.; Baxendale, H.E.; Goldblatt, F.; Botto, M.; Brown, J.S. Impaired opsonization with C3b and phagocytosis of Streptococcus pneumoniae in sera from subjects with defects in the classical complement pathway. Infect. Immun. 2008, 76, 3761–3770. [Google Scholar] [CrossRef] [Green Version]
- Kadioglu, A.; Gingles, N.A.; Grattan, K.; Kerr, A.; Mitchell, T.J.; Andrew, P.W. Host cellular immune response to pneumococcal lung infection in mice. Infect. Immun. 2000, 68, 492–501. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.N.; Pichichero, M.E. CD4 T cell memory and antibody responses directed against the pneumococcal histidine triad proteins PhtD and PhtE following nasopharyngeal colonization and immunization and their role in protection against pneumococcal colonization in mice. Infect. Immun. 2013, 81, 3781. [Google Scholar] [CrossRef] [Green Version]
- Godfroid, F.; Hermand, P.; Verlant, V.; Denoël, P.; Poolman, J.T. Preclinical evaluation of the Pht proteins as potential cross-protective pneumococcal vaccine antigens. Infect. Immun. 2011, 79, 238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verhoeven, D.; Perry, S.; Pichichero, M.E. Contributions to protection from Streptococcus pneumoniae infection using the monovalent recombinant protein vaccine candidates PcpA, PhtD, and PlyD1 in an infant murine model during challenge. Clin. Vaccine Immunol. 2014, 21, 1037–1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denoel, P.; Philipp, M.T.; Doyle, L.; Martin, D.; Carletti, G.; Poolman, J.T. A protein-based pneumococcal vaccine protects rhesus macaques from pneumonia after experimental infection with Streptococcus pneumoniae. Vaccine 2011, 29, 5495–5501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seiberling, M.; Bologa, M.; Brookes, R.; Ochs, M.; Go, K.; Neveu, D.; Kamtchoua, T.; Lashley, P.; Yuan, T.; Gurunathan, S. Safety and immunogenicity of a pneumococcal histidine triad protein D vaccine candidate in adults. Vaccine 2012, 30, 7455–7460. [Google Scholar] [CrossRef] [PubMed]
- Brookes, R.H.; Ming, M.; Williams, K.; Hopfer, R.; Gurunathan, S.; Gallichan, S.; Tang, M.; Ochs, M.M. Passive protection of mice against Streptococcus pneumoniae challenge by naturally occurring and vaccine-induced human anti-PhtD antibodies. Hum. Vaccin. Immunother. 2015, 11, 1836–1839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregersen, N.; Bross, P. Protein misfolding and cellular stress: An overview. Methods Mol. Biol. 2010, 648, 3–23. [Google Scholar]
- Nagai, K.; Domon, H.; Maekawa, T.; Hiyoshi, T.; Tamura, H.; Yonezawa, D.; Habuka, R.; Saitoh, A.; Terao, Y. Immunization with pneumococcal elongation factor Tu enhances serotype-independent protection against Streptococcus pneumoniae infection. Vaccine 2019, 37, 160–168. [Google Scholar] [CrossRef]
- Liberman, C.; Takagi, M.; Cabrera-Crespo, J.; Sbrogio-Almeida, M.E.; Dias, W.O.; Leite, L.C.; Goncalves, V.M. Pneumococcal whole-cell vaccine: Optimization of cell growth of unencapsulated Streptococcus pneumoniae in bioreactor using animal-free medium. J. Ind. Microbiol. Biotechnol. 2008, 35, 1441–1445. [Google Scholar] [CrossRef]
- Lu, Y.J.; Leite, L.; Goncalves, V.M.; Dias Wde, O.; Liberman, C.; Fratelli, F.; Alderson, M.; Tate, A.; Maisonneuve, J.F.; Robertson, G.; et al. GMP-grade pneumococcal whole-cell vaccine injected subcutaneously protects mice from nasopharyngeal colonization and fatal aspiration-sepsis. Vaccine 2010, 28, 7468–7475. [Google Scholar] [CrossRef] [Green Version]
- Goncalves, V.M.; Dias, W.O.; Campos, I.B.; Liberman, C.; Sbrogio-Almeida, M.E.; Silva, E.P.; Cardoso, C.P., Jr.; Alderson, M.; Robertson, G.; Maisonneuve, J.F.; et al. Development of a whole cell pneumococcal vaccine: BPL inactivation, cGMP production, and stability. Vaccine 2014, 32, 1113–1120. [Google Scholar] [CrossRef]
- Kim, S.-J.; Seon, S.H.; Luong, T.T.; Ghosh, P.; Pyo, S.; Rhee, D.-K. Immunization with attenuated non-transformable pneumococcal pep27 and comD mutant provides serotype-independent protection against pneumococcal infection. Vaccine 2019, 37, 90–98. [Google Scholar] [CrossRef]
- Malley, R.; Lipsitch, M.; Stack, A.; Saladino, R.; Fleisher, G.; Pelton, S.; Thompson, C.; Briles, D.; Anderson, P. Intranasal immunization with killed unencapsulated whole cells prevents colonization and invasive disease by capsulated pneumococci. Infect. Immun. 2001, 69, 4870–4873. [Google Scholar] [CrossRef] [Green Version]
- van der Poll, T.; Opal, S.M. Pathogenesis, treatment, and prevention of pneumococcal pneumonia. Lancet 2009, 374, 1543–1556. [Google Scholar] [CrossRef]
- Mellroth, P.; Daniels, R.; Eberhardt, A.; Rönnlund, D.; Blom, H.; Widengren, J.; Normark, S.; Henriques-Normark, B. LytA, major autolysin of Streptococcus pneumoniae, requires access to nascent peptidoglycan. J. Biol. Chem. 2012, 287, 11018–11029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malley, R.; Morse, S.C.; Leite, L.C.C.; Areas, A.P.M.; Ho, P.L.; Kubrusly, F.S.; Almeida, I.C.; Anderson, P. Multiserotype protection of mice against pneumococcal colonization of the nasopharynx and middle ear by killed nonencapsulated cells given intranasally with a nontoxic adjuvant. Infect. Immun. 2004, 72, 4290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.J.; Yadav, P.; Clements, J.D.; Forte, S.; Srivastava, A.; Thompson, C.M.; Seid, R.; Look, J.; Alderson, M.; Tate, A.; et al. Options for inactivation, adjuvant, and route of topical administration of a killed, unencapsulated pneumococcal whole-cell vaccine. Clin. Vaccine Immunol. 2010, 17, 1005–1012. [Google Scholar] [CrossRef] [Green Version]
- Hogenesch, H.; Dunham, A.; Hansen, B.; Anderson, K.; Maisonneuve, J.-F.; Hem, S.L. Formulation of a killed whole cell pneumococcus vaccine-effect of aluminum adjuvants on the antibody and IL-17 response. J. Immune. Based Ther. Vaccines 2011, 9, 5. [Google Scholar] [CrossRef] [Green Version]
- Alderson, M. Future Streptococcus pneumoniae vaccines. Int. J. Infect. Dis. 2014, 21, 25. [Google Scholar] [CrossRef] [Green Version]
- Seon, S.H.; Choi, J.A.; Yang, E.; Pyo, S.; Song, M.K.; Rhee, D.-K. Intranasal immunization with an attenuated pep27 mutant provides protection from influenza virus and secondary pneumococcal infections. J. Infect. Dis. 2017, 217, 637–640. [Google Scholar] [CrossRef]
- Jang, A.-Y.; Ahn, K.B.; Zhi, Y.; Ji, H.-J.; Zhang, J.; Han, S.H.; Guo, H.-C.; Lim, S.; Song, J.Y.; Lim, J.H.; et al. Serotype-independent protection against invasive pneumococcal infections conferred by live vaccine with lgt deletion. Front. Immunol. 2019. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, N.D.; Mitchell, T.J.; Evans, T.J. What is different about serotype 1 pneumococci? Future Microbiol. 2012, 7, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Terra, V.S.; Plumptre, C.D.; Wall, E.C.; Brown, J.S.; Wren, B.W. Construction of a pneumolysin deficient mutant in Streptococcus pneumoniae serotype 1 strain 519/43 and phenotypic characterisation. Microb. Pathog. 2020, 141, 103999. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.L.; Seon, S.H.; Rhee, D.K. Pneumonia and Streptococcus pneumoniae vaccine. Arch. Pharm. Res. 2017, 40, 885–893. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, D.; Hoover, P.A.; Vesikari, T.; Peltier, C.; Hurley, D.C.; McFetridge, R.D.; Dallas, M.; Hartzel, J.; Marchese, R.D.; Coller, B.G.; et al. Safety and immunogenicity of 15-valent pneumococcal conjugate vaccine (PCV15) in healthy infants. Vaccine 2018, 36, 6883–6891. [Google Scholar] [CrossRef]
- McFetridge, R.; Meulen, A.S.; Folkerth, S.D.; Hoekstra, J.A.; Dallas, M.; Hoover, P.A.; Marchese, R.D.; Zacholski, D.M.; Watson, W.J.; Stek, J.E.; et al. Safety, tolerability, and immunogenicity of 15-valent pneumococcal conjugate vaccine in healthy adults. Vaccine 2015, 33, 2793–2799. [Google Scholar] [CrossRef]
- Hausdorff, W.P.; Hanage, W.P. Interim results of an ecological experiment - Conjugate vaccination against the pneumococcus and serotype replacement. Hum. Vaccin. Immunother. 2016, 12, 358–374. [Google Scholar] [CrossRef] [Green Version]
- Cohen, R.; Cohen, J.F.; Chalumeau, M.; Levy, C. Impact of pneumococcal conjugate vaccines for children in high- and non-high-income countries. Expert Rev. Vaccines 2017, 16, 625–640. [Google Scholar] [CrossRef]
- Moore, M.R.; Link-Gelles, R.; Schaffner, W.; Lynfield, R.; Lexau, C.; Bennett, N.M.; Petit, S.; Zansky, S.M.; Harrison, L.H.; Reingold, A.; et al. Effect of use of 13-valent pneumococcal conjugate vaccine in children on invasive pneumococcal disease in children and adults in the USA: Analysis of multisite, population-based surveillance. Lancet Infect. Dis. 2015, 15, 301–309. [Google Scholar] [CrossRef] [Green Version]
- Metcalf, B.J.; Gertz, R.E., Jr.; Gladstone, R.A.; Walker, H.; Sherwood, L.K.; Jackson, D.; Li, Z.; Law, C.; Hawkins, P.A.; Chochua, S.; et al. Strain features and distributions in pneumococci from children with invasive disease before and after 13-valent conjugate vaccine implementation in the USA. Clin. Microbiol. Infect. 2016, 22, 60.e9–60.e29. [Google Scholar] [CrossRef] [Green Version]
- Olarte, L.; Barson, W.J.; Barson, R.M.; Lin, P.L.; Romero, J.R.; Tan, T.Q.; Givner, L.B.; Bradley, J.S.; Hoffman, J.A.; Hulten, K.G.; et al. Impact of the 13-valent pneumococcal conjugate vaccine on pneumococcal meningitis in US children. Clin. Infect. Dis. 2015, 61, 767–775. [Google Scholar] [CrossRef] [Green Version]
- Thigpen, M.C.; Whitney, C.G.; Messonnier, N.E.; Zell, E.R.; Lynfield, R.; Hadler, J.L.; Harrison, L.H.; Farley, M.M.; Reingold, A.; Bennett, N.M.; et al. Bacterial meningitis in the United States, 1998-2007. N. Engl. J. Med. 2011, 364, 2016–2025. [Google Scholar] [CrossRef]
- Tomczyk, S.; Lynfield, R.; Schaffner, W.; Reingold, A.; Miller, L.; Petit, S.; Holtzman, C.; Zansky, S.M.; Thomas, A.; Baumbach, J.; et al. Prevention of antibiotic-nonsusceptible invasive pneumococcal disease with the 13-valent pneumococcal conjugate vaccine. Clin. Infect. Dis. 2016, 62, 1119–1125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendes, R.E.; Hollingsworth, R.C.; Costello, A.; Jones, R.N.; Isturiz, R.E.; Hewlett, D., Jr.; Farrell, D.J. Noninvasive Streptococcus pneumoniae serotypes recovered from hospitalized adult patients in the United States in 2009 to 2012. Antimicrob. Agents Chemother. 2015, 59, 5595–5601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oligbu, G.; Collins, S.; Sheppard, C.L.; Fry, N.K.; Slack, M.; Borrow, R.; Ladhani, S.N. Childhood deaths attributable to invasive pneumococcal disease in England and Wales, 2006-2014. Clin. Infect. Dis. 2017, 65, 308–314. [Google Scholar] [CrossRef] [PubMed]
- van Hoek, A.J.; Andrews, N.; Waight, P.A.; George, R.; Miller, E. Effect of serotype on focus and mortality of invasive pneumococcal disease: Coverage of different vaccines and insight into non-vaccine serotypes. PLoS ONE 2012, 7, e39150. [Google Scholar] [CrossRef] [PubMed]
- Stanek, R.J.; Norton, N.B.; Mufson, M.A. A 32-year study of the effect of pneumococcal vaccines on invasive Streptococcus pneumoniae disease. Am. J. Med. Sci. 2016, 352, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Harboe, Z.B.; Thomsen, R.W.; Riis, A.; Valentiner-Branth, P.; Christensen, J.J.; Lambertsen, L.; Krogfelt, K.A.; Konradsen, H.B.; Benfield, T.L. Pneumococcal serotypes and mortality following invasive pneumococcal disease: A population-based cohort study. PLoS Med. 2009, 6, e1000081. [Google Scholar] [CrossRef] [Green Version]
- Thompson, A.; Lamberth, E.; Severs, J.; Scully, I.; Tarabar, S.; Ginis, J.; Jansen, K.U.; Gruber, W.C.; Scott, D.A.; Watson, W. Phase 1 trial of a 20-valent pneumococcal conjugate vaccine in healthy adults. Vaccine 2019, 37, 6201–6207. [Google Scholar] [CrossRef]
- Pfizer. Pfizer announces presentation of data from a Phase 2 study of its 20-valent pneumococcal conjugate vaccine candidate being investigated for the prevention of invasive disease and pneumonia in adults aged 18 years and older. Available online: https://www.pfizer.com/news/press-release/press-release-detail/pfizer_announces_presentation_of_data_from_a_phase_2_study_of_its_20_valent_pneumococcal_conjugate_vaccine_candidate_being_investigated_for_the_prevention_of_invasive_disease_and_pneumonia_in_adults_aged_18_years (accessed on 4 February 2020).
- Paton, J.C.; Rowan-Kelly, B.; Ferrante, A. Activation of human complement by the pneumococcal toxin pneumolysin. Infect. Immun. 1984, 43, 1085–1087. [Google Scholar] [CrossRef] [Green Version]
- Kadioglu, A.; Coward, W.; Colston, M.J.; Hewitt, C.R.; Andrew, P.W. CD4-T-lymphocyte interactions with pneumolysin and pneumococci suggest a crucial protective role in the host response to pneumococcal infection. Infect. Immun. 2004, 72, 2689–2697. [Google Scholar] [CrossRef] [Green Version]
- Hill, S.; Entwisle, C.; Pang, Y.; Joachim, M.; McIlgorm, A.; Dalton, K.; Burbidge, P.; Colaco, C.; Brown, J.; Goldblatt, D.; et al. Immunogenicity and mechanisms of action of PnuBioVax, a multi-antigen serotype-independent prophylactic vaccine against infection with Streptococcus pneumoniae. Vaccine 2018, 36, 4255–4264. [Google Scholar] [CrossRef] [PubMed]
- Entwisle, C.; Hill, S.; Pang, Y.; Joachim, M.; McIlgorm, A.; Colaco, C.; Goldblatt, D.; De Gorguette D’Argoeuves, P.; Bailey, C. Safety and immunogenicity of a novel multiple antigen pneumococcal vaccine in adults: A Phase 1 randomised clinical trial. Vaccine 2017, 35, 7181–7186. [Google Scholar] [CrossRef] [PubMed]
- Verhoeven, D.; Xu, Q.; Pichichero, M.E. Vaccination with a Streptococcus pneumoniae trivalent recombinant PcpA, PhtD and PlyD1 protein vaccine candidate protects against lethal pneumonia in an infant murine model. Vaccine 2014, 32, 3205–3210. [Google Scholar] [CrossRef] [PubMed]
- Brooks, W.A.; Chang, L.J.; Sheng, X.; Hopfer, R. Safety and immunogenicity of a trivalent recombinant PcpA, PhtD, and PlyD1 pneumococcal protein vaccine in adults, toddlers, and infants: A phase I randomized controlled study. Vaccine 2015, 33, 4610–4617. [Google Scholar] [CrossRef]
- Rodgers, G.L.; Klugman, K.P. The future of pneumococcal disease prevention. Vaccine 2011, 29 (Suppl. 3), C43–C48. [Google Scholar] [CrossRef]
- Odutola, A.; Ota, M.O.; Ogundare, E.O.; Antonio, M.; Owiafe, P.; Worwui, A.; Greenwood, B.; Alderson, M.; Traskine, M.; Verlant, V.; et al. Reactogenicity, safety and immunogenicity of a protein-based pneumococcal vaccine in Gambian children aged 2-4 years: A phase II randomized study. Hum. Vaccin. Immunother. 2016, 12, 393–402. [Google Scholar] [CrossRef]
- Kaur, R.; Surendran, N.; Ochs, M.; Pichichero, M.E. Human antibodies to PhtD, PcpA, and Ply reduce adherence to human lung epithelial cells and murine nasopharyngeal colonization by Streptococcus pneumoniae. Infect. Immun. 2014, 82, 5069–5075. [Google Scholar] [CrossRef] [Green Version]
- Visan, L.; Rouleau, N.; Proust, E.; Peyrot, L.; Donadieu, A.; Ochs, M. Antibodies to PcpA and PhtD protect mice against Streptococcus pneumoniae by a macrophage- and complement-dependent mechanism. Hum. Vaccin. Immunother. 2018, 14, 489–494. [Google Scholar] [CrossRef] [Green Version]
- Crain, M.J.; Waltman, W.D., 2nd; Turner, J.S.; Yother, J.; Talkington, D.F.; McDaniel, L.S.; Gray, B.M.; Briles, D.E. Pneumococcal surface protein A (PspA) is serologically highly variable and is expressed by all clinically important capsular serotypes of Streptococcus pneumoniae. Infect. Immun. 1990, 58, 3293–3299. [Google Scholar] [CrossRef] [Green Version]
- Moreno, A.T.; Oliveira, M.L.S.; Ferreira, D.M.; Ho, P.L.; Darrieux, M.; Leite, L.C.C.; Ferreira, J.M.C., Jr.; Pimenta, F.C.; Andrade, A.L.S.S.; Miyaji, E.N. Immunization of mice with single PspA fragments induces antibodies capable of mediating complement deposition on different pneumococcal strains and cross-protection. Clin. Vaccine Immunol. 2010, 17, 439–446. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, M.L.S.; Miyaji, E.N.; Ferreira, D.M.; Moreno, A.T.; Ferreira, P.C.D.; Lima, F.A.; Santos, F.L.; Sakauchi, M.A.; Takata, C.S.; Higashi, H.G.; et al. Combination of pneumococcal surface protein A (PspA) with whole cell pertussis vaccine increases protection against pneumococcal challenge in mice. PLoS ONE 2010, 5, e10863. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.U.; Kim, J.J.; Yang, H.; Kwon, H.J.; Yang, J.Y.; Curtiss Iii, R.; Kweon, M.N. Effective protection against secondary pneumococcal pneumonia by oral vaccination with attenuated Salmonella delivering PspA antigen in mice. Vaccine 2012, 30, 6816–6823. [Google Scholar] [CrossRef] [PubMed]
- Kuipers, K.; Jong, W.S.P.; van der Gaast-de Jongh, C.E.; Houben, D.; van Opzeeland, F.; Simonetti, E.; van Selm, S.; de Groot, R.; Koenders, M.I.; Azarian, T.; et al. Th17-mediated cross protection against pneumococcal carriage by vaccination with a variable antigen. Infect. Immun. 2017, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermand, P.; Vandercammen, A.; Mertens, E.; Di Paolo, E.; Verlant, V.; Denoël, P.; Godfroid, F. Preclinical evaluation of a chemically detoxified pneumolysin as pneumococcal vaccine antigen. Hum. Vaccin. Immunother. 2017, 13, 220–228. [Google Scholar] [CrossRef]
- Leroux-Roels, G.; Maes, C.; De Boever, F.; Traskine, M.; Rüggeberg, J.U.; Borys, D. Safety, reactogenicity and immunogenicity of a novel pneumococcal protein-based vaccine in adults: A phase I/II randomized clinical study. Vaccine 2014, 32, 6838–6846. [Google Scholar] [CrossRef] [Green Version]
- Prymula, R.; Pazdiora, P.; Traskine, M.; Rüggeberg, J.U.; Borys, D. Safety and immunogenicity of an investigational vaccine containing two common pneumococcal proteins in toddlers: A phase II randomized clinical trial. Vaccine 2014, 32, 3025–3034. [Google Scholar] [CrossRef] [Green Version]
- Odutola, A.; Ota, M.O.C.; Antonio, M.; Ogundare, E.O.; Saidu, Y.; Foster-Nyarko, E.; Owiafe, P.K.; Ceesay, F.; Worwui, A.; Idoko, O.T.; et al. Efficacy of a novel, protein-based pneumococcal vaccine against nasopharyngeal carriage of Streptococcus pneumoniae in infants: A phase 2, randomized, controlled, observer-blind study. Vaccine 2017, 35, 2531–2542. [Google Scholar] [CrossRef]
- Anish, C.; Upadhyay, A.K.; Sehgal, D.; Panda, A.K. Influences of process and formulation parameters on powder flow properties and immunogenicity of spray dried polymer particles entrapping recombinant pneumococcal surface protein A. Int. J. Pharm. 2014, 466, 198–210. [Google Scholar] [CrossRef]
- Kunda, N.K.; Alfagih, I.M.; Miyaji, E.N.; Figueiredo, D.B.; Gonçalves, V.M.; Ferreira, D.M.; Dennison, S.R.; Somavarapu, S.; Hutcheon, G.A.; Saleem, I.Y. Pulmonary dry powder vaccine of pneumococcal antigen loaded nanoparticles. Int. J. Pharm. 2015, 495, 903–912. [Google Scholar] [CrossRef]
- Rodrigues, T.C.; Oliveira, M.L.S.; Soares-Schanoski, A.; Chavez-Rico, S.L.; Figueiredo, D.B.; Gonçalves, V.M.; Ferreira, D.M.; Kunda, N.K.; Saleem, I.Y.; Miyaji, E.N. Mucosal immunization with PspA (Pneumococcal surface protein A)-adsorbed nanoparticles targeting the lungs for protection against pneumococcal infection. PLoS ONE 2018, 13, e0191692. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Lu, J.; Yu, J.; Hou, H.; Leenhouts, K.; Van Roosmalen, M.L.; Gu, T.; Jiang, C.; Kong, W.; Wu, Y. A novel PspA protein vaccine intranasal delivered by bacterium-like particles provides broad protection against pneumococcal pneumonia in mice. Immunol. Invest. 2018, 47, 403–415. [Google Scholar] [CrossRef] [PubMed]
- van Roosmalen, M.L.; Kanninga, R.; El Khattabi, M.; Neef, J.; Audouy, S.; Bosma, T.; Kuipers, A.; Post, E.; Steen, A.; Kok, J. Mucosal vaccine delivery of antigens tightly bound to an adjuvant particle made from food-grade bacteria. Methods 2006, 38, 144–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, J.; Guo, J.; Wang, D.; Yu, J.; Gu, T.; Jiang, C.; Kong, W.; Wu, Y. Broad protective immune responses elicited by bacterium-like particle-based intranasal pneumococcal particle vaccine displaying PspA2 and PspA4 fragments. Hum. Vaccin. Immunother. 2019, 15, 371–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.R. Chitin, chitosan, and glycated chitosan regulate immune responses: The novel adjuvants for cancer vaccine. Clin. Dev. Immunol. 2013, 2013. [Google Scholar]
- El Temsahy, M.M.; El Kerdany, E.D.; Eissa, M.M.; Shalaby, T.I.; Talaat, I.M.; Mogahed, N.M. The effect of chitosan nanospheres on the immunogenicity of Toxoplasma lysate vaccine in mice. J. Parasit. Dis. 2016, 40, 611–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sáenz, L.; Neira-Carrillo, A.; Paredes, R.; Cortés, M.; Bucarey, S.; Arias, J.L. Chitosan formulations improve the immunogenicity of a GnRH-I peptide-based vaccine. Int. J. Pharm. 2009, 369, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Dai, W.; Wang, Z.; Chen, B.; Li, Z.; Fan, X. Intranasal vaccination with chitosan-DNA nanoparticles expressing pneumococcal surface antigen a protects mice against nasopharyngeal colonization by Streptococcus pneumoniae. Clin. Vaccine Immunol. 2011, 18, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.H.; Dai, W.J.; Chen, B.; Fan, X.Y. Mucosal immunization with PsaA protein, using chitosan as a delivery system, increases protection against acute otitis media and invasive infection by Streptococcus pneumoniae. Scand. J. Immunol. 2015, 81, 177–185. [Google Scholar] [CrossRef]
- Haryono, A.; Salsabila, K.; Restu, W.K.; Harmami, S.B.; Safari, D. Effect of chitosan and liposome nanoparticles as adjuvant codelivery on the immunoglobulin G subclass distribution in a mouse model. J. Immunol. Res. 2017, 2017, 9125048. [Google Scholar] [CrossRef] [Green Version]
- Tada, R.; Suzuki, H.; Takahashi, S.; Negishi, Y.; Kiyono, H.; Kunisawa, J.; Aramaki, Y. Nasal vaccination with pneumococcal surface protein A in combination with cationic liposomes consisting of DOTAP and DC-chol confers antigen-mediated protective immunity against Streptococcus pneumoniae infections in mice. Int. Immunopharmacol. 2018, 61, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Safari, D.; Marradi, M.; Chiodo, F.; Th Dekker, H.A.; Shan, Y.; Adamo, R.; Oscarson, S.; Rijkers, G.T.; Lahmann, M.; Kamerling, J.P. Gold nanoparticles as carriers for a synthetic Streptococcus pneumoniae type 14 conjugate vaccine. Nanomedicine 2012, 7, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Vetro, M.; Safari, D.; Fallarini, S.; Salsabila, K.; Lahmann, M.; Penadés, S.; Lay, L.; Marradi, M.; Compostella, F. Preparation and immunogenicity of gold glyco-nanoparticles as antipneumococcal vaccine model. Nanomedicine 2017, 12, 13–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haughney, S.L.; Petersen, L.K.; Schoofs, A.D.; Ramer-Tait, A.E.; King, J.D.; Briles, D.E.; Wannemuehler, M.J.; Narasimhan, B. Retention of structure, antigenicity, and biological function of pneumococcal surface protein A (PspA) released from polyanhydride nanoparticles. Acta Biomater. 2013, 9, 8262–8271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vela Ramirez, J.E.; Tygrett, L.T.; Hao, J.; Habte, H.H.; Cho, M.W.; Greenspan, N.S.; Waldschmidt, T.J.; Narasimhan, B. Polyanhydride nanovaccines induce germinal center B cell formation and sustained serum antibody responses. J. Biomed. Nanotechnol. 2016, 12, 1303–1311. [Google Scholar] [CrossRef] [Green Version]
- Wagner-Muniz, D.A.; Haughney, S.L.; Kelly, S.M.; Wannemuehler, M.J.; Narasimhan, B. Room temperature stable PspA-based nanovaccine induces protective immunity. Front. Immunol. 2018, 9, 325. [Google Scholar] [CrossRef] [Green Version]
- Voß, F.; Kohler, T.P.; Meyer, T.; Abdullah, M.R.; van Opzeeland, F.J.; Saleh, M.; Michalik, S.; van Selm, S.; Schmidt, F.; De Jonge, M.I. Intranasal vaccination with lipoproteins confers protection against pneumococcal colonisation. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Fukuyama, Y.; Yuki, Y.; Katakai, Y.; Harada, N.; Takahashi, H.; Takeda, S.; Mejima, M.; Joo, S.; Kurokawa, S.; Sawada, S. Nanogel-based pneumococcal surface protein A nasal vaccine induces microRNA-associated Th17 cell responses with neutralizing antibodies against Streptococcus pneumoniae in macaques. Mucosal Immunol. 2015, 8, 1144. [Google Scholar] [CrossRef] [Green Version]
Protein | Localization | Function | References |
---|---|---|---|
Pneumococcal surface protein A (PspA) | Surface protein | Inhibits complement-mediated clearance of pneumococci | [60,61,62] |
Pneumococcal surface protein C (PspC) | Surface protein | Adhesin, interacts with human secretory immunoglobulin A (IgA) and immunoglobulin receptor (pIgR), inhibits complement activation by interacting components C3 and factor H (FH) to inhibit pneumococcus binding | [63,64] |
Pneumolysin (Ply) | Cytoplasm/Cell wall | Able to insert into eukaryotic cell membranes and oligomerize to form large transmembrane pores which lead to cell lysis | [65,66] |
Pneumococcal histidine triad protein D (PhtD) | Surface protein | Adhesin, high affinity to bind to Zinc ion | [67] |
Elongation factor Tu (EF-Tu) | Surface protein | Catalyzes the binding of an aminoacyl-tRNA (aa-tRNA) to the ribosome. Inhibit protein synthesis | [68] |
Pneumococcal peptide 27 (Pep27) | Cell membrane | Enable the bacteria to attach or colonize in the lungs, blood, and brain | [15] |
Nanoparticles | Characteristics of Nanoparticles | Pneumococcal Strains Used in Challenge Studies | Antigen (s) | Results | References |
---|---|---|---|---|---|
Polylactide (PLA) | 45 kDa, 2–8 μm | n/a | PspA | The entrapment of PspA in PLA particles was observed to be stable. Polymer particles entrapping PspA elicited robust IgG responses in both mice and in rats. Protein integrity of antigen load in microparticles was maintained. | [144] |
Poly(glycerol adipate-co-ωpentadecalactone) (PGA-co-PDL) | 322.83 ± 4.25 nm (with the adsorption of PspA4Pro) | n/a | PspA4Pro (PspA clade 4) | Antigen PspA4Pro release from PGA-co-PDL nanoparticle was confirmed. PspA4Pro antigenicity was retained and the functional epitopes of the antigen were active in the formulation. | [145] |
Nanocomposite microparticles (NP/NCMP) | ~2 μm | EF3030 (serotype 19F, PspA1) ATCC6303 (serotype 3, PspA5) | PspA4Pro (PspA clade 4, encompassing mature N-terminal region till proline-rich region) | Anti-PspA4Pro IgG antibodies in serum and lungs were induced. Binding analysis of serum IgG to intact bacteria revealed efficient binding to bacteria expressing PspA from clades 3, 4, and 5 (family 2). However, no binding to bacteria expressing PspA from clades 1 and 2 (family 1) was observed. Immunization with NP/NCMP PspA4Pro was unable to decrease the bacterial load in the lungs following challenge with a serotype 19F strain expressing PspA from clade 1 (PspA1). Local and systemic antibodies were induced and offered protection against only one strain expressing PspA in homologous family 2. | [146] |
Bacterium-like particles (BLP) | Similar to the size of the bacterium—0.5 to 5μm | ATCC6303 (PspA family 2 clade 5, serotype 3) ATCC101813 (PspA family 1 clade 2, serotype 3) | PspA, family2 clade-4 (derived from N-terminal α-helical region and the proline-rich region of pneumococcal strain EF5668 | Safe and affordable. Both PspA-specific IgG and PspA-specific IgA were induced. Complete protection in a mouse challenge model (immunized with BLPs/PspA-PA) with pneumococci from two different clades of both homologous and heterologous PspA families that led to high protection against challenges with heterologous pneumococci and showed broader specificity. | [147] |
ATCC6304 (PspA family 1, clade 1) ATCC10813 (PspA family 1, clade 2) ATCC6319 (PspA family 2, clade 3) ATCC6314 (PspA family 2, clade 4) ATCC6303 (PspA family 2, clade 5) | PspA2 and PspA4 | High levels of serum IgG and mucosal SIgA were induced. Binding to pneumococcal strains expressing PspA from clades 1 to 5 was observed. Immunization with the PspA-BLP vaccine conferred protection against fatal intranasal challenge with both PspA family 1 and family 2 pneumococcal strains. | [149] | ||
Chitosan-DNA Nanoparticles | The average size of particle was 392 nm; zeta potential was +12.5 mV | S. pneumoniae ATCC 6303 (serotype 3) | pVAX1-PsaA (867-bp PsaA gene was amplified from S. pneumoniae genomic DNA ATCC 6303; serotype 3) | Anti-PsaA IgG antibody in serum and anti-IgA antibody in mucosal lavages were increased. Cellular immune responses were induced. Fewer pneumococci were recovered from the nasopharynx of mice immunized with chitosan-PsaA. Mucosal and systemic immune responses were generated and ultimately prevented pneumococcal nasopharyngeal colonization. | [153] |
Chitosan-PsaA protein | The average size of particle was 691 nm; zeta potential was +21.1 mV | S. pneumoniae ATCC 6303 (serotype 3) | PsaA | The systemic (IgG in serum) and mucosal (IgA in mucosal lavage) specific antibodies were enhanced. Protection against acute otitis media following middle ear challenge with pneumococcus serotype 14 was increased The survival rate of mice immunized with chitosan–PsaA nanoparticles in an intraperitoneal challenge with pneumococcus serotype 3 or serotype 14 was improved. | [154] |
Chitosan-PCV13 | The particle size of 46.1nm | PCV13; Prevnar®; Pfizer Inc | No difference was observed in the level of total antibodies against Pn14PS antigen in the mouse groups with or without adjuvant codelivery. Both chitosan-PCV codelivery and Quil-A adjuvant (control) elicited IgG1, IgG2a, IgG2b, and IgG3 antibodies. | [155] | |
Cationic liposomes (DOTAP and DC-chol) | The particle size of 137.9 ± 11.6 nm; Zeta potential of 4.0 ± 2.1 mV | n/a | PspA, family 1 clade-2 | Liposomes composed of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and cholesteryl 3β-N- (dimethylaminoethyl)carbamate (DC-chol) (DOTAP/DC-chol liposome). Provideed protective immunity against lethal inhalation of S. pneumoniae, and improved the survival rate of infected mice. Intranasal immunization with DOTAP/DC-chol liposomes carrying PspA induced both mucosal and systemic response. PspA-specific Th17 response was elicited. It plays a pivotal role in controlling S. pneumoniae infection by host innate immune response. | [156] |
Gold nanoparticles (GNPs) | Mean gold core of 1.8 ± 0.5 nm; Average molecular weight of 84 to 97 kDa. | n/a | S. pneumoniae type 14, polysaccharide (Pn14PS) conjugated to CRM197 (Pn14PSCRM197), and T-helper ovalbumin 323–339 peptide (OVA323–339) | Specific anti-Pn14PS IgG antibodies were triggered. T-helper cell activation was promoted by glyconanoparticles The functionality of the antibodies was maintained as the antisaccharide antibodies promoted the phagocytosis of type 14 bacteria by human leukocytes. | [157] |
Gold-glyco- nanoparticles | Mean gold core of 1.2 ± 0.3 nm; Average molecular weight of 45 to 55 kDa. | n/a | Serotype 14 (Tetra-14) and serotype 19F (Tri-19F), and a T-helper ovalbumin 323–339 peptide (OVAp) | A synthetic carbohydrate vaccine. GNPs functionalized with Pn19F and/or Pn14 saccharide ligands. The titers of specific IgG antibodies towards type 14 polysaccharide were enhanced. | [158] |
PspA-based polyanhydride | The particle size of 50:50 CPTEG: CPH 455 ± 175; Zeta potential of −33.1 ± 5.1 mV | S. pneumoniae strain A66.1(PspA family 1, clade 2) | Pneumococcal surface protein A (PspA) | A room temperature stable PspA-based polyanhydride nanovaccine reduced the cost of vaccine care and transportation. Single immunization of the mice with nanovaccine and upon challenge presented significantly higher survival rates compared to mice immunized with soluble protein alone. A 25-fold reduction in protein dose of nanovaccine presented higher survival rates in immunized mice compared to the PspA soluble protein. A single dose of PspA-based nanovaccine against S. pneumoniae induced protective immunity. | [161] |
Lipoprotein | n/a | S. pneumoniae D39 | MetQ, PnrA, PspA and DacB proteins | High antibody titers were present in sera from mice immunized with the lipoproteins MetQ, PnrA, PsaA, and DacB.Mice were immunized intranasally with PnrA, DacB, and MetQ using cholera toxin subunit B (CTB) as an adjuvant, followed by an intranasal challenge with S. pneumoniae D39. No pneumococcal colonization was observed in vaccination using PnrA while DacB and MetQ led to reduction of the bacterial load. The increased production of antigen-specific IL-17A in the nasal cavity reduced bacteria colonization. High systemic IgG levels were induced with a predominance for the IgG1 isotype, except for DacB. | [162] |
~ 40 nm | S. pneumoniae Rx1 | PspA, family 1, clades 2 | cCHP nanogel contained 20 amino groups per 100 glucose units. Longer retention of PspA (in nanogel) was observed in the nasal cavity when compared with the administration of PspA alone. No deposition of [18F]-PspA was seen in the olfactory bulbs or brain. PspA-specific serum IgG with protective activity and mucosal secretory IgA (SIgA) Ab responses in cynomolgus macaques (Macaca fascicularis) were induced. | [163] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masomian, M.; Ahmad, Z.; Ti Gew, L.; Poh, C.L. Development of Next Generation Streptococcus pneumoniae Vaccines Conferring Broad Protection. Vaccines 2020, 8, 132. https://doi.org/10.3390/vaccines8010132
Masomian M, Ahmad Z, Ti Gew L, Poh CL. Development of Next Generation Streptococcus pneumoniae Vaccines Conferring Broad Protection. Vaccines. 2020; 8(1):132. https://doi.org/10.3390/vaccines8010132
Chicago/Turabian StyleMasomian, Malihe, Zuleeza Ahmad, Lai Ti Gew, and Chit Laa Poh. 2020. "Development of Next Generation Streptococcus pneumoniae Vaccines Conferring Broad Protection" Vaccines 8, no. 1: 132. https://doi.org/10.3390/vaccines8010132
APA StyleMasomian, M., Ahmad, Z., Ti Gew, L., & Poh, C. L. (2020). Development of Next Generation Streptococcus pneumoniae Vaccines Conferring Broad Protection. Vaccines, 8(1), 132. https://doi.org/10.3390/vaccines8010132