In-Vitro Inactivation of Sabin-Polioviruses for Development of Safe and Effective Polio Vaccine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Virus Strains
2.2. Antibodies
2.3. Animals and Cell-Line
2.4. Determination of the Infectivity Titers of Polioviruses
2.5. Viruses’ Inactivation Studies
2.5.1. Inactivation Kinetics of Polioviruses Type 1, 2 and 3 Using Different Inactivating Agents
2.5.2. Effectiveness of Inactivation
2.6. Retention of Antigenicity after Inactivation
2.7. Trivalent Vaccine Preparation
2.8. Abnormal Toxicity Test
2.9. Induction of Antibodies in Wistar Rats
2.10. Evaluation of Immune Response by ELISA
2.11. Polioviruses-Neutralizing Antibodies Test
2.12. Statistical Analysis
3. Results
3.1. Infectivity Titers of Polioviruses
3.2. Kinetics of Inactivation
3.3. Effectiveness of Inactivation
3.4. Retention of Antigenicity after Inactivation
3.5. Abnormal Toxicity
3.6. Evaluation of Immune Response by ELISA
3.7. Polioviruses-Neutralizing Antibodies
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- WHO|Oral Polio Vaccine (OPV). Available online: https://www.who.int/biologicals/areas/vaccines/polio/opv/en/ (accessed on 3 July 2020).
- GPEI-Polio Endgame Strategy. Available online: http://polioeradication.org/who-we-are/polio-endgame-strategy-2019-2023/ (accessed on 3 July 2020).
- WHO. WHO|SAGE Meeting of April 2020. Available online: http://www.who.int/immunization/sage/meetings/2020/april/en/ (accessed on 3 August 2020).
- Thompson, K.M.; Kalkowska, D.A. Potential Future Use, Costs, and Value of Poliovirus Vaccines. Risk Anal. 2020. [Google Scholar] [CrossRef] [PubMed]
- Tobin, G.J.; Tobin, J.K.; Gaidamakova, E.K.; Wiggins, T.J.; Bushnell, R.V.; Lee, W.-M.; Matrosova, V.Y.; Dollery, S.J.; Meeks, H.N.; Kouiavskaia, D.; et al. A novel gamma radiation-inactivated sabin-based polio vaccine. PLoS ONE 2020, 15, e0228006. [Google Scholar] [CrossRef] [Green Version]
- Anand, A.; Molodecky, N.A.; Pallansch, M.A.; Sutter, R.W. Immunogenicity to poliovirus type 2 following two doses of fractional intradermal inactivated poliovirus vaccine: A novel dose sparing immunization schedule. Vaccine 2017, 35, 2993–2998. [Google Scholar] [CrossRef] [PubMed]
- WHO|Fractional Dose IPV. Available online: http://www.who.int/immunization/diseases/poliomyelitis/endgame_objective2/inactivated_polio_vaccine/fractional_dose/en/ (accessed on 3 August 2020).
- 1,25-Dihydroxyvitamin D3 Enhances Systemic and Mucosal Immune Responses to Inactivated Poliovirus Vaccine in Mice|The Journal of Infectious Diseases|Oxford Academic. Available online: https://academic.oup.com/jid/article/193/4/598/827482 (accessed on 3 August 2020).
- Westdijk, J.; Koedam, P.; Barro, M.; Steil, B.P.; Collin, N.; Vedvick, T.S.; Bakker, W.A.M.; van der Ley, P.; Kersten, G. Antigen sparing with adjuvanted inactivated polio vaccine based on Sabin strains. Vaccine 2013, 31, 1298–1304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindgren, L.M.; Tingskov, P.N.; Justesen, A.H.; Nedergaard, B.S.; Olsen, K.J.; Andreasen, L.V.; Kromann, I.; Sørensen, C.; Dietrich, J.; Thierry-Carstensen, B. First-in-human safety and immunogenicity investigations of three adjuvanted reduced dose inactivated poliovirus vaccines (IPV-Al SSI) compared to full dose IPV Vaccine SSI when given as a booster vaccination to adolescents with a history of IPV vaccination at 3, 5, 12months and 5years of age. Vaccine 2017, 35, 596–604. [Google Scholar] [CrossRef] [PubMed]
- Bockstal, V.; Tiemessen, M.M.; Achterberg, R.; Van Wordragen, C.; Knaapen, A.M.; Serroyen, J.; Marissen, W.E.; Schuitemaker, H.; Zahn, R. An inactivated poliovirus vaccine using Sabin strains produced on the serum-free PER.C6® cell culture platform is immunogenic and safe in a non-human primate model. Vaccine 2018, 36, 6979–6987. [Google Scholar] [CrossRef] [PubMed]
- Okayasu, H.; Sein, C.; Hamidi, A.; Bakker, W.A.M.; Sutter, R.W. Development of inactivated poliovirus vaccine from Sabin strains: A progress report. Biologicals 2016, 44, 581–587. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, J.; Zeng, G.; Chu, K.; Jiang, D.; Zhu, F.; Ying, Z.; Chen, L.; Li, C.; Zhu, F.; et al. Immunogenicity and Safety of a Sabin Strain–Based Inactivated Polio Vaccine: A Phase 3 Clinical Trial. J. Infect. Dis. 2019, 220, 1551–1557. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Li, C.; Xu, W.; Liao, G.; Li, R.; Zhou, J.; Li, Y.; Cai, W.; Yan, D.; Che, Y.; et al. Immune Serum from Sabin Inactivated Poliovirus Vaccine Immunization Neutralizes Multiple Individual Wild and Vaccine-Derived Polioviruses. Clin. Infect. Dis. 2017, 64, 1317–1325. [Google Scholar] [CrossRef]
- Wilton, T.; Dunn, G.; Eastwood, D.; Minor, P.D.; Martin, J. Effect of Formaldehyde Inactivation on Poliovirus. J. Virol. 2014, 88, 11955. [Google Scholar] [CrossRef] [Green Version]
- Rutala, W.A. Guideline for Disinfection and Sterilization in Healthcare Facilities; DCD: Atlanta, GA, USA, 2008. [Google Scholar]
- Abd-Elghaffar, A.A.; Ali, A.E.; Boseila, A.A.; Amin, M.A. Inactivation of rabies virus by hydrogen peroxide. Vaccine 2016, 34, 798–802. [Google Scholar] [CrossRef] [PubMed]
- Amanna, I.J.; Raué, H.-P.; Slifka, M.K. Development of a new hydrogen peroxide–based vaccine platform. Nat. Med. 2012, 18, 974–979. [Google Scholar] [CrossRef] [Green Version]
- Siber, G.R.; Thakrar, N.; Yancey, B.A.; Herzog, L.; Todd, C.; Cohen, N.; Sekura, R.D.; Lowe, C.U. Safety and immunogenicity of hydrogen peroxide-inactivated pertussis toxoid in 18-month-old children. Vaccine 1991, 9, 735–740. [Google Scholar] [CrossRef]
- Madhusudana, S.N.; Shamsundar, R.; Seetharaman, S. In vitro inactivation of the rabies virus by ascorbic acid. Int. J. Infect. Dis. 2004, 8, 21–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olayan, E.; El-Khadragy, M.; Mohamed, A.F.; Mohamed, A.K.; Shebl, R.I.; Yehia, H.M. Evaluation of Different Stabilizers and Inactivating Compounds for the Enhancement of Vero Cell Rabies Vaccine Stability and Immunogenicity: In Vitro Study. Available online: https://www.hindawi.com/journals/bmri/2019/4518163/ (accessed on 16 June 2020).
- Lee, Y.H.; Jang, Y.H.; Byun, Y.H.; Cheong, Y.; Kim, P.; Lee, Y.J.; Lee, Y.J.; Sung, J.M.; Son, A.; Lee, H.M.; et al. Green Tea Catechin-Inactivated Viral Vaccine Platform. Front. Microbiol. 2017, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. WHO Expert Committee on Biological Standardization—WHO Technical Report Series, No. 980—Sixty-Third Report_Annex 2_Recommendations to Assure the Quality, Safety and Efficacy of Poliomyelitis Vaccines (Oral, Live, Attenuated). Available online: https://apps.who.int/medicinedocs/en/m/abstract/Js21348en/ (accessed on 22 March 2020).
- American Veterinary Medical Association. AVMA Guidelines on Euthanasia 2007; AVMA: Schaumburg/Chicago, IL, USA, 2007. [Google Scholar]
- Wilson, D.E.; Chosewood, L.C. Biosafety in Microbiological and Biomedical Laboratories, 5th ed.; CDC: Atlanta, GA, USA, 2009. [Google Scholar]
- WHO. Manual of Laboratory Methods for Testing of Vaccines Used in the WHO Expanded Programme on Immunization; WHO: Geneva, Switzerland, 1997.
- Pinto, A.K.; Richner, J.M.; Poore, E.A.; Patil, P.P.; Amanna, I.J.; Slifka, M.K.; Diamond, M.S. A Hydrogen Peroxide-Inactivated Virus Vaccine Elicits Humoral and Cellular Immunity and Protects against Lethal West Nile Virus Infection in Aged Mice. J. Virol. 2013, 87, 1926–1936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, S.D.; Pye, D.; Cox, J.C. Inactivation of poliovirus with beta-propiolactone. J. Biol. Stand. 1986, 14, 103–109. [Google Scholar] [CrossRef]
- WHO. WHO_TRS_910_Annex2. Recommendations for the Production and Control of Poliomyelitis Vaccine (inactivated). In WHO Expert Committee on Biological Standardization: Fifty-First Report; World Health Organization: Geneva, Switzerland, 2002; ISBN 978-92-4-120910-6. [Google Scholar]
- Crowther, J.R. The ELISA Guidebook: Second Edition. In Methods in Molecular Biology, 2nd ed.; Humana Press: Totowa, NJ, USA, 2009; ISBN 978-1-60327-253-7. [Google Scholar]
- Ali, H.; Hashem, A.G.; El Tayeb, O.; Mohamed, A.F. Evaluation of inactivation efficacy of Sabin Polio virus using different inactivating agents and its immunogenicity post nano and micro incapsulation. Int. J. Microbiol. Res. 2010, 1, 114–122. [Google Scholar]
- Wilton, T. Methods for the Quality Control of Inactivated Poliovirus Vaccines. In Poliovirus; Martín, J., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2016; Volume 1387, pp. 279–297. ISBN 978-1-4939-3291-7. [Google Scholar]
- Lardeux, F.; Torrico, G.; Aliaga, C. Calculation of the ELISA’s cut-off based on the change-point analysis method for detection of Trypanosoma cruzi infection in Bolivian dogs in the absence of controls. Mem. Inst. Oswaldo Cruz 2016, 111, 501–504. [Google Scholar] [CrossRef] [Green Version]
- WHO. Guidelines for WHO/EPI Collaborative Studies on Poliomyelitis: Standard Procedure for Determining Immunity to Poliovirus Using the Microneutralization Test. Available online: https://apps.who.int/iris/handle/10665/70486 (accessed on 29 April 2020).
- Gard, S. Inactivation of poliovirus by formaldehyde. Bull. World Health Organ. 1957, 17, 979–989. [Google Scholar]
- Tano, Y.; Shimizu, H.; Martin, J.; Nishimura, Y.; Simizu, B.; Miyamura, T. Antigenic characterization of a formalin-inactivated poliovirus vaccine derived from live-attenuated Sabin strains. Vaccine 2007, 25, 7041–7046. [Google Scholar] [CrossRef] [PubMed]
- Westdijk, J.; Brugmans, D.; Martin, J.; Oever, A.; van’t Bakker, W.A.M.; Levels, L.; Kersten, G. Characterization and standardization of Sabin based inactivated polio vaccine: Proposal for a new antigen unit for inactivated polio vaccines. Vaccine 2011, 29, 3390–3397. [Google Scholar] [CrossRef] [PubMed]
- Crawt, L.; Atkinson, E.; Tedcastle, A.; Pegg, E.; Dobly, A.; Wei, C.; Lei, S.; Ling, P.; Li, C.; Zheng, J.; et al. Differences in Antigenic Structure of Inactivated Polio Vaccines Made from Sabin Live-Attenuated and Wild-Type Poliovirus Strains: Impact on Vaccine Potency Assays. J. Infect. Dis. 2020, 221, 544–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McFarland, R.; Verthelyi, D.; Casey, W.; Arciniega, J.; Isbrucker, R.; Schmitt, M.; Finn, T.; Descamps, J.; Horiuchi, Y.; Sesardic, D.; et al. Non-animal replacement methods for human vaccine potency testing: State of the science and future directions. Procedia Vaccinol. 2011, 5, 16–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murakami, K.; Fujii, Y.; Someya, Y. Effects of the thermal denaturation of Sabin-derived inactivated polio vaccines on the D-antigenicity and the immunogenicity in rats. Vaccine 2020, 38, 3295–3299. [Google Scholar] [CrossRef] [PubMed]
- Herremans, M.M.; Reimerink, J.H.; Ras, A.; Van Der Avoort, H.G.; Kimman, T.G.; Van Loon, A.M.; Conyn-Van Spaendonck, M.A.; Koopmans, M.P. Evaluation of a poliovirus-binding inhibition assay as an alternative to the virus neutralization test. Clin. Diagn. Lab. Immunol. 1997, 4, 659–664. [Google Scholar] [CrossRef] [Green Version]
- Plotkin, S.A.; Orenstein, W.A.; Offit, P.A. Vaccines, 6th ed.; Elsevier/Saunders: Philadelphia, PA, USA, 2012; ISBN 978-1-4557-0090-5. [Google Scholar]
- Gao, J. P-values—A chronic conundrum. BMC Med. Res. Methodol. 2020, 20. [Google Scholar] [CrossRef]
- Amrhein, V.; Greenland, S.; McShane, B. Scientists rise up against statistical significance. Nature 2019, 567, 305–307. [Google Scholar] [CrossRef] [Green Version]
- P-Values and Statistical Significance|Simply Psychology. Available online: https://www.simplypsychology.org/p-value.html (accessed on 15 September 2020).
- Strategy for the Response to Type 2 Circulating Vaccine-Derived Poliovirus 2020–2021. Available online: http://polioeradication.org/wp-content/uploads/2020/04/Strategy-for-the-response-to-type-2-circulating-Vaccine-Derived-Poliovirus-20200406.pdf (accessed on 15 September 2020).
- Damme, P.V.; Coster, I.D.; Bandyopadhyay, A.S.; Revets, H.; Withanage, K.; Smedt, P.D.; Suykens, L.; Oberste, M.S.; Weldon, W.C.; Costa-Clemens, S.A.; et al. The safety and immunogenicity of two novel live attenuated monovalent (serotype 2) oral poliovirus vaccines in healthy adults: A double-blind, single-centre phase 1 study. Lancet 2019, 394, 148–158. [Google Scholar] [CrossRef] [Green Version]
- Advancing Novel Polio Vaccines. Available online: https://path.azureedge.net/media/documents/nOPV-Fact-Oct2020.pdf (accessed on 15 September 2020).
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd-Elghaffar, A.A.; Rashed, M.E.; Ali, A.E.; Amin, M.A. In-Vitro Inactivation of Sabin-Polioviruses for Development of Safe and Effective Polio Vaccine. Vaccines 2020, 8, 601. https://doi.org/10.3390/vaccines8040601
Abd-Elghaffar AA, Rashed ME, Ali AE, Amin MA. In-Vitro Inactivation of Sabin-Polioviruses for Development of Safe and Effective Polio Vaccine. Vaccines. 2020; 8(4):601. https://doi.org/10.3390/vaccines8040601
Chicago/Turabian StyleAbd-Elghaffar, Asmaa A., Mohamed E. Rashed, Amal E. Ali, and Magdy A. Amin. 2020. "In-Vitro Inactivation of Sabin-Polioviruses for Development of Safe and Effective Polio Vaccine" Vaccines 8, no. 4: 601. https://doi.org/10.3390/vaccines8040601
APA StyleAbd-Elghaffar, A. A., Rashed, M. E., Ali, A. E., & Amin, M. A. (2020). In-Vitro Inactivation of Sabin-Polioviruses for Development of Safe and Effective Polio Vaccine. Vaccines, 8(4), 601. https://doi.org/10.3390/vaccines8040601