Cost-Effectiveness Analysis of BCG Vaccination against Tuberculosis in Indonesia: A Model-Based Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Settings
2.2. Natural History of TB
2.3. Incidence of Tuberculosis Infection
2.4. Characteristics of the BCG Vaccine
2.5. Treatment Outcomes
2.6. Utilities
2.7. Costs
3. Results
3.1. Base-Case Analysis
3.2. Univariate Sensitivity Analysis
3.3. Probabilistic Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- WHO. Global Tuberculosis Report 2019; WHO: Geneve, Switzerland, 2019. [Google Scholar]
- WHO. Draft Global Strategy and Targets for Tuberculosis Prevention, Care and Control After 2015; WHO: Geneve, Swtizerland, 2014. [Google Scholar]
- WHO. Global Tuberculosis Report 2019; WHO: Geneve, Swtizerland, 2020. [Google Scholar]
- Ministry of Health Indonesia. Ministry of Health Regulation No. 67 About Tuberculosis Control—Peraturan Menteri Kesehatan No. 67 Tentang Penanggulangan Tuberkulosis 2016; KEMKES: Jakarta, Indonesia, 2016.
- Indonesian Health Research and Development- Badan Penelitian dan Pengembangan Kesehatan (BALITBANGKES). National Report of Indonesian Basic Health Research—Laporan Nasional Riset Kesehatan Dasar (RISKESDAS) 2018; KEMKES: Jakarta, Indonesia, 2019. [Google Scholar]
- Collins, D.; Hafidz, F.; Mustikawati, D. The economic burden of tuberculosis in Indonesia. Int. J. Tuberc. Lung Dis. 2017, 21, 1041–1048. [Google Scholar] [CrossRef]
- Trunz, B.B.; Fine, P.; Dye, C. Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: A meta-analysis and assessment of cost-effectiveness. Lancet 2006, 367, 1173–1180. [Google Scholar] [CrossRef]
- Mangtani, P.; Abubakar, I.; Ariti, C.; Beynon, R.; Pimpin, L.; Fine, P.E.M.; Rodrigues, L.C.; Smith, P.G.; Lipman, M.C.; Whiting, P.F.; et al. Protection by BCG Vaccine Against Tuberculosis: A Systematic Review of Randomized Controlled Trials. Clin. Infect. Dis. 2014, 58, 470–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, A.; Eisenhut, M.; Harris, R.J.; Rodrigues, L.C.; Sridhar, S.; Habermann, S.; Snell, L.; Mangtani, P.; Adetifa, I.; Lalvani, A.; et al. Effect of BCG vaccination against Mycobacterium tuberculosis infection in children: Systematic review and meta-analysis. BMJ 2014, 349, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abubakar, I.; Pimpin, L.; Ariti, C.; Beynon, R.; Mangtani, P.; Sterne, J.A.C.; Fine, P.E.M.; Smith, P.G.; Lipman, M.; Elliman, D.; et al. Systematic review and meta-analysis of the current evidence on the duration of protection by bacillus Calmette–Guérin vaccination against tuberculosis. Heal. Technol. Assess. 2013, 17, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, J.D.; Mody, R.M.; Olsen, C.H.; Harrison, L.H.; Santosham, M.; Aronson, N.E. The Long-term Effect of Bacille Calmette-Guérin Vaccination on Tuberculin Skin Testing. Chest 2017, 152, 282–294. [Google Scholar] [CrossRef] [PubMed]
- Mangtani, P.; Nguipdop-Djomo, P.; Keogh, R.H.; Sterne, J.A.C.; Abubakar, I.; Smith, P.G.; Fine, P.E.M.; Vynnycky, E.; Watson, J.M.; Elliman, D.; et al. The duration of protection of school-aged BCG vaccination in England: A population-based case–control study. Int. J. Epidemiol. 2017, 47, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Nguipdop-Djomo, P.; Heldal, E.; Rodrigues, L.C.; Abubakar, I.; Mangtani, P. Duration of BCG protection against tuberculosis and change in effectiveness with time since vaccination in Norway: A retrospective population-based cohort study. Lancet Infect. Dis. 2016, 16, 219–226. [Google Scholar] [CrossRef] [Green Version]
- Sable, S.B.; Posey, J.E.; Scriba, T.J. Tuberculosis Vaccine Development: Progress in Clinical Evaluation. Clin. Microbiol. Rev. 2020, 33. [Google Scholar] [CrossRef]
- Machlaurin, A.; van der Pol, S.; Setiawan, D.; van der Werf, T.S.; Postma, M.J. Health economic evaluation of current vaccination strategies and new vaccines against tuberculosis: A systematic review. Expert Rev. Vaccines 2019, 18. [Google Scholar] [CrossRef] [Green Version]
- Barnum, H.N.; Tarantola, D.; Setiady, I.F. Cost-effectiveness of an immunization programme in Indonesia. Bull. World Heal. Organ. 1980, 58, 499–503. [Google Scholar]
- Ministry of Health Indonesia. Ministry of Health Regulation No. 12 About Immunization Delivery—Peraturan Menteri Kesehatan No. 12 tentang Penyelenggaraan Imunisasi; KEMKES: Jakarta, Indonesia, 2017.
- Walker, D.; Beutels, P. WHO Guide for Standardization of Economic Evaluations of Immunization Programmes: Immunization, Vaccines and Biologicals; WHO: Geneve, Switzerland, 2008; Volume 28. [Google Scholar]
- Badan Pusat Statistik. Projection of Indonesian population, Proyeksi Penduduk Indonesia 2010–2035; BPS: Jakarta, Indonesia, 2017. [Google Scholar]
- WHO. WHO TB Incidence Estimates Disaggregated by Age, Sex and Risk Factor; World Health Organization: Geneve, Switzerland, 2019. [Google Scholar]
- Andrews, J.R.; Noubary, F.; Walensky, R.P.; Cerda, R.; Losina, E.; Horsburgh, C.R. Risk of Progression to Active Tuberculosis Following Reinfection With Mycobacterium tuberculosis. Clin. Infect. Dis. 2012, 54, 784–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. WHO TB Burden Estimates 2018; World Health Organization: Geneve, Switzerland, 2019. [Google Scholar]
- UN Inter-agency Group for Child Mortality Estimation. Mortality rate, Infant (per 1,000 live births)|Data. World Dev Indic 2017. Available online: https://data.worldbank.org/indicator/SP.DYN.IMRT.IN?locations=BD (accessed on 9 April 2019).
- Miller, T.L.; Wilson, F.A.; Pang, J.W.; Beavers, S.; Hoger, S.; Sharnprapai, S.; Pagaoa, M.; Katz, D.J.; Weis, S.E. Mortality Hazard and Survival After Tuberculosis Treatment. Am. J. Public Heal. 2015, 105, 930–937. [Google Scholar] [CrossRef] [PubMed]
- Tiemersma, E.; van der Werf, M.J.; Borgdorff, M.W.; Williams, B.G.; Nagelkerke, N.J.D. Natural History of Tuberculosis: Duration and Fatality of Untreated Pulmonary Tuberculosis in HIV Negative Patients: A Systematic Review. PLoS ONE 2011, 6. [Google Scholar] [CrossRef]
- Vaccination Pricelist for 0-2 Months Newborn in 2018 n.d. Available online: https://www.finansialku.com/jadwal-imunisasi-bayi/ (accessed on 2 January 2020).
- WHO. TB Expenditure and Utilization and Health Services in Fiscal Year 2017; World Health Organization: Geneve, Switzerland, 2019. [Google Scholar]
- Badan Pusat Statistik. Income Statistic—Statistik Pendapatan Februari 2018; BPS: Jakarta, Indonesia, 2018. [Google Scholar]
- Guo, N.; Marra, C.A.; Marra, F.; Moadebi, S.; Elwood, R.K.; Fitzgerald, J.M. Health State Utilities in Latent and Active Tuberculosis. Value Heal. 2008, 11, 1154–1161. [Google Scholar] [CrossRef] [Green Version]
- Fu, H.; Lin, H.-H.; Hallett, T.B.; Arinaminpathy, N. Modelling the effect of discontinuing universal Bacillus Calmette-Guérin vaccination in an intermediate tuberculosis burden setting. Vaccine 2018, 36, 5902–5909. [Google Scholar] [CrossRef]
- Teljeur, C.; Moran, P.S.; Harrington, P.; Butler, K.; Corcoran, B.; O’Donnell, J.; Usher, C.; O’Flanagan, D.; Connolly, K.; Ryan, M. Economic Evaluation of Selective Neonatal Bacillus Calmette-Guérin Vaccination of High-risk Infants in Ireland. Pediatr. Infect. Dis. J. 2018, 37, 759–767. [Google Scholar] [CrossRef]
- Gomez, G.B.; Dowdy, D.W.; Bastos, M.L.; Zwerling, A.; Sweeney, S.; Foster, N.; Trajman, A.; Islam, M.A.; Kapiga, S.; Sinanovic, E.; et al. Cost and cost-effectiveness of tuberculosis treatment shortening: A model-based analysis. BMC Infect. Dis. 2016, 16, 726. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. GHO|By category|Life Tables by Country—Indonesia. Who 2018. Available online: https://apps.who.int/gho/data/view.main.60750?lang=en (accessed on 24 June 2020).
- Aballéa, S.; Chancellor, J.; Martin, M.; Wutzler, P.; Carrat, F.; Gasparini, R.; Toniolo-Neto, J.; Drummond, M.; Weinstein, M. The Cost-Effectiveness of Influenza Vaccination for People Aged 50 to 64 Years: An International Model. Value Heal. 2007, 10, 98–116. [Google Scholar] [CrossRef] [Green Version]
- Badan Pusat Statistik. Income Statistics; February 2019; BPS: Jakarta, Indonesia, 2019. [Google Scholar]
- Tiemersma, E.W.; Hafidz, F. Costs Faced by (Multidrug Resistant) Tuberculosis Patients During Diagnosis and Treatment: Report From a Pilot Study in Indonesia; TBCARE I: Hague, The Netherlands, 2014. [Google Scholar]
- Clemens, J.D.; Chuong, J.J.H.; Feinstein, A.R. The BCG Controversy. JAMA 1983, 249, 2362. [Google Scholar] [CrossRef]
- Rahman, M.; Sekimoto, M.; Takamatsu, I.; Hira, K.; Shimbo, T.; Toyoshima, K.; Fukui, T. Economic evaluation of universal BCG vaccination of Japanese infants. Int. J. Epidemiol. 2001, 30, 380–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colditz, G.A.; Brewer, T.F.; Berkey, C.S.; Wilson, M.E.; Burdick, E.; Fineberg, H.V.; Mosteller, F. Efficacy of BCG Vaccine in the Prevention of Tuberculosis. JAMA 1994, 271, 698–702. [Google Scholar] [CrossRef] [PubMed]
- Richardus, R.; Alam, K.; Kundu, K.; Roy, J.C.; Zafar, T.; Chowdhury, A.S.; Nieboer, D.; Faber, R.; Butlin, C.R.; Geluk, A.; et al. Effectiveness of single-dose rifampicin after BCG vaccination to prevent leprosy in close contacts of patients with newly diagnosed leprosy: A cluster randomized controlled trial. Int. J. Infect. Dis. 2019, 88, 65–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes, R.R.; Antunes, D.E.; dos Santos, D.F.; Sabino, E.F.P.; Oliveira, D.B.; Goulart, I.M.B. BCG vaccine and leprosy household contacts: Protective effect and probability to becoming sick during follow-up. Vaccine 2019, 37, 6510–6517. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Leprosy Update, 2018: Moving Towards a Leprosy- Free World; WHO: Geneve, Switzerland, 2019; Volume 94. [Google Scholar]
- Roth, A.; Garly, M.L.; Jensen, H.; Nielsen, J.; Aaby, P. Bacillus Calmette-Guérin vaccination and infant mortality. Expert Rev. Vaccines 2006, 5, 277–293. [Google Scholar] [CrossRef]
- WHO. Global Tuberculosis Report 2017; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Knight, G.M.; Gomez, G.B.; Dodd, P.J.; Dowdy, D.; Zwerling, A.; Wells, W.A.; Cobelens, F.; Vassall, A.; White, R.G. The Impact and Cost-Effectiveness of a Four-Month Regimen for First-Line Treatment of Active Tuberculosis in South Africa. PLoS ONE 2015, 10, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Guo, N.; Marra, F.; Marra, C.A. Measuring health-related quality of life in tuberculosis: A systematic review. Heal. Qual. Life Outcomes 2009, 7, 14. [Google Scholar] [CrossRef] [Green Version]
- Hendrik, D.A.; Mulyani, U.A.; Thobari, J.A.T. The predicted Quality Adjusted Life Years (QALYS) using St. George Respiratory Questionnaire (SGRQ) in Indonesian Tuberculosis patients. J. Glob. Pharma. Technol. 2016, 8, 10–14. [Google Scholar]
Parameter | Base Case | Distribution (Interval) a | References |
---|---|---|---|
Incidence (per 100,000 inhabitants) | Fixed | [19,20] calculated | |
Latent TB (pA) | 27.27 | ||
All forms of TB disease by age (pB) | |||
0–4 | 92.36 | ||
5–14 | 65.66 | ||
15–24 | 144.67 | ||
25–34 | 176.95 | ||
35–44 | 180.25 | ||
45–54 | 230.03 | ||
55–64 | 296.83 | ||
>65 | 276.96 | ||
RR disease in the latent TB population | 21% | Log normal (14–30%) | [21] |
Case Detection Rate | 53% | Beta (48–58%) | [22] |
Percentage of MDRTB (%) | 2.74% | Beta (1.90–3.69%) | [22] |
Mortality Rate (Annually) | |||
Healthy population | Age-stratified mortality rate | [23] | |
Case fatality rate | 0.14 | Beta (0.12–0.15) | [22] |
Latent TB | 0.03 | [24] | |
Untreated Patient Outcomes | [25] calculated | ||
Dead | 0.11 | Dirichlet | |
Self-cured (pF) | 0.03 | Dirichlet | |
Treatment Outcomes (%) | [22] calculated | ||
DSTB treatment | |||
Successful (pE) | 85.77% | Dirichlet (85–91%) | [22] |
Failed (pD) | 0.38% | Dirichlet | [22] |
Dead | 2.46% | Dirichlet | [22] |
Lost to follow-up | 5.38% | Dirichlet | [22] |
MDRTB treatment | |||
Successful (pE) | 47.28% | Dirichlet (47–69%) | [22] |
Failed (pD) | 3.71% | Dirichlet | [22] |
Dead | 16.17% | Dirichlet | [22] |
Lost to follow-up | 31.12% | Dirichlet | [22] |
Vaccine Efficacy | |||
TB infection | 27% | Beta (13–39%) | [9] |
TB disease | 71% | Beta (42–85%) | [9] |
Progression from TB infection to disease | 58% | Beta (23–77%) | [9] |
Costs (US$) in 2018 | |||
Vaccination cost | 14 | Gamma (±25%) | [26] |
DSTB treatment | 35 | Gamma (±25%) | [27] |
MDRTB treatment | 1296 | Gamma (±25%) | [27] |
Productivity Losses | |||
DSTB (days) | 25 | Normal (±25%) | [6] |
MDRTB (days) | 102 | Normal (±25%) | [6] |
Average Net Income per Day by Age (US$) in 2018 | [28] | ||
15–24 | 3.94 | Gamma (3.72–4.15) | |
25–55 | 4.82 | Gamma (4.70–4.95) | |
55+ | 3.92 | Gamma (3.72–4.12) | |
Utility | |||
Healthy | 1.00 | assumed | |
Latent TB | 0.82 | Beta (0.80–0.85) | [29] |
Active TB | 0.68 | Beta (0.65–0.72) | [29] |
Treatment | 0.68 | Beta (0.65–0.72) | assumed |
Discount Rate (Costs and Utility) | 3% | [18] |
Variables | Healthcare Perspective | Societal Perspective | ||||
---|---|---|---|---|---|---|
Vaccination | No Vaccination | Incremental | Vaccination | No Vaccination | Incremental | |
Total cost (US$ 2018) | 65,876,510 | 11,167,980 | 54,708,530 | 79,232,212 | 28,203,661 | 51,028,551 |
Total QALY | 140,558,261 | 140,069,668 | 488,592 | 140,558,261 | 140,069,668 | 488,592 |
ICER (US$ per QALY) | 112 | 104 | ||||
Total LYGs | 306,314,453 | 305,235,474 | 1,078,979 | 306,314,453 | 305,235,474 | 1,078,979 |
Total new cases | 529,358 | 579,071 | 49,713 | 529,358 | 579,071 | 49,713 |
Total deaths | 2,509,157 | 2,516,755 | 7598 | 2,509,157 | 2,516,755 | 7598 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machlaurin, A.; Dolk, F.C.K.; Setiawan, D.; van der Werf, T.S.; Postma, M.J. Cost-Effectiveness Analysis of BCG Vaccination against Tuberculosis in Indonesia: A Model-Based Study. Vaccines 2020, 8, 707. https://doi.org/10.3390/vaccines8040707
Machlaurin A, Dolk FCK, Setiawan D, van der Werf TS, Postma MJ. Cost-Effectiveness Analysis of BCG Vaccination against Tuberculosis in Indonesia: A Model-Based Study. Vaccines. 2020; 8(4):707. https://doi.org/10.3390/vaccines8040707
Chicago/Turabian StyleMachlaurin, Afifah, Franklin Christiaan Karel Dolk, Didik Setiawan, Tjipke Sytse van der Werf, and Maarten J. Postma. 2020. "Cost-Effectiveness Analysis of BCG Vaccination against Tuberculosis in Indonesia: A Model-Based Study" Vaccines 8, no. 4: 707. https://doi.org/10.3390/vaccines8040707
APA StyleMachlaurin, A., Dolk, F. C. K., Setiawan, D., van der Werf, T. S., & Postma, M. J. (2020). Cost-Effectiveness Analysis of BCG Vaccination against Tuberculosis in Indonesia: A Model-Based Study. Vaccines, 8(4), 707. https://doi.org/10.3390/vaccines8040707