Navigating the Quagmire: Comparison and Interpretation of COVID-19 Vaccine Phase 1/2 Clinical Trials
Abstract
:1. Introduction
2. COVID-19 Vaccine Candidates
3. COVID-19 Vaccine Phase 1/2 Safety Data
4. COVID-19 Vaccine Phase 1/2 Immunogenicity Data
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. COVID-19 Weekly Epidemiological Update. Available online: https://www.who.int/publications/m/item/weekly-epidemiological-update---24-november-2020 (accessed on 28 November 2020).
- Armocida, B.; Formenti, B.; Ussai, S.; Palestra, F.; Missoni, E. The Italian health system and the COVID-19 challenge. Lancet Public Health 2020, 5, e253. [Google Scholar] [CrossRef]
- Emanuel, E.J.; Persad, G.; Upshur, R.; Thome, B.; Parker, M.; Glickman, A.; Zhang, C.; Boyle, C.; Smith, M.; Phillips, J.P. Fair Allocation of Scarce Medical Resources in the Time of Covid-19. N. Engl. J. Med. 2020, 382, 2049–2055. [Google Scholar] [CrossRef] [PubMed]
- Slaoui, M.; Hepburn, M. Developing Safe and Effective Covid Vaccines-Operation Warp Speed’s Strategy and Approach. N. Engl. J. Med. 2020, 383, 1701–1703. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.C.; Li, Y.H.; Guan, X.H.; Hou, L.H.; Wang, W.J.; Li, J.X.; Wu, S.P.; Wang, B.S.; Wang, Z.; Wang, L.; et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: A dose-escalation, open-label, non-randomised, first-in-human trial. Lancet 2020, 395, 1845–1854. [Google Scholar] [CrossRef]
- Jackson, L.A.; Anderson, E.J.; Rouphael, N.G.; Roberts, P.C.; Makhene, M.; Coler, R.N.; McCullough, M.P.; Chappell, J.D.; Denison, M.R.; Stevens, L.J.; et al. An mRNA Vaccine against SARS-CoV-2-Preliminary Report. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef]
- Zhu, F.C.; Guan, X.H.; Li, Y.H.; Huang, J.Y.; Jiang, T.; Hou, L.H.; Li, J.X.; Yang, B.F.; Wang, L.; Wang, W.J.; et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 2020, 396, 479–488. [Google Scholar] [CrossRef]
- Folegatti, P.M.; Ewer, K.J.; Aley, P.K.; Angus, B.; Becker, S.; Belij-Rammerstorfer, S.; Bellamy, D.; Bibi, S.; Bittaye, M.; Clutterbuck, E.A.; et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: A preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 2020, 396, 467–478. [Google Scholar] [CrossRef]
- Xia, S.; Duan, K.; Zhang, Y.; Zhao, D.; Zhang, H.; Xie, Z.; Li, X.; Peng, C.; Zhang, Y.; Zhang, W.; et al. Effect of an Inactivated Vaccine Against SARS-CoV-2 on Safety and Immunogenicity Outcomes: Interim Analysis of 2 Randomized Clinical Trials. JAMA 2020, 324, 951–960. [Google Scholar] [CrossRef]
- Keech, C.; Albert, G.; Cho, I.; Robertson, A.; Reed, P.; Neal, S.; Plested, J.S.; Zhu, M.; Cloney-Clark, S.; Zhou, H.; et al. Phase 1-2 Trial of a SARS-CoV-2 Recombinant Spike Protein Nanoparticle Vaccine. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef]
- Logunov, D.Y.; Dolzhikova, I.V.; Zubkova, O.V.; Tukhvatullin, A.I.; Shcheblyakov, D.V.; Dzharullaeva, A.S.; Grousova, D.M.; Erokhova, A.S.; Kovyrshina, A.V.; Botikov, A.G.; et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: Two open, non-randomised phase 1/2 studies from Russia. Lancet 2020, 396, 887–897. [Google Scholar] [CrossRef]
- Walsh, E.E.; Frenck, R.W., Jr.; Falsey, A.R.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Neuzil, K.; Mulligan, M.J.; Bailey, R.; et al. Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Zhang, Y.; Wang, Y.; Wang, H.; Yang, Y.; Gao, G.F.; Tan, W.; Wu, G.; Xu, M.; Lou, Z.; et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: A randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Zhang, Y.; Zeng, G.; Pan, H.; Li, C.; Hu, Y.; Chu, K.; Han, W.; Chen, Z.; Tang, R.; Yin, W.; et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18-59 years: A randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Mulligan, M.J.; Lyke, K.E.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Neuzil, K.; Raabe, V.; Bailey, R.; Swanson, K.A.; et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature 2020, 586, 589–593. [Google Scholar] [CrossRef] [PubMed]
- Sahin, U.; Muik, A.; Derhovanessian, E.; Vogler, I.; Kranz, L.M.; Vormehr, M.; Baum, A.; Pascal, K.; Quandt, J.; Maurus, D.; et al. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature 2020, 586, 594–599. [Google Scholar] [CrossRef]
- Sadoff, J.; Le Gars, M.; Shukarev, G.; Heerwegh, D.; Truyers, C.; de Groot, A.M.; Stoop, J.; Tete, S.; Van Damme, W.; Leroux-Roels, I.; et al. Safety and immunogenicity of the Ad26.COV2.S COVID-19 vaccine candidate: Interim results of a phase 1/2a, double-blind, randomized, placebo-controlled trial. medRxiv 2020. [Google Scholar]
- Kremsner, P.; Mann, P.; Bosch, J.; Fendel, R.; Gabor, J.J.; Kreidenweiss, A.; Kroidl, A.; Leroux-Roels, I.; Leroux-Roels, G.; Schindler, C.; et al. Phase 1 Assessment of the Safety and Immunogenicity of an mRNA- Lipid Nanoparticle Vaccine Candidate Against SARS-CoV-2 in Human Volunteers. medRxiv 2020. [Google Scholar]
- Ward, B.J.; Gobeil, P.; Séguin, A.; Atkins, J.; Boulay, I.; Charbonneau, P.-Y.; Couture, M.; D’Aoust, M.-A.; Dhaliwall, J.; Finkle, C.; et al. Phase 1 trial of a Candidate Recombinant Virus-Like Particle Vaccine for Covid-19 Disease Produced in Plants. medRxiv 2020. [Google Scholar]
- World Health Organization. DRAFT Landscape of COVID-19 Candidate Vaccines. Available online: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines (accessed on 28 November 2020).
- Krammer, F. SARS-CoV-2 vaccines in development. Nature 2020, 586, 516–527. [Google Scholar] [CrossRef]
- Zhang, N.N.; Li, X.F.; Deng, Y.Q.; Zhao, H.; Huang, Y.J.; Yang, G.; Huang, W.J.; Gao, P.; Zhou, C.; Zhang, R.R.; et al. A Thermostable mRNA Vaccine against COVID-19. Cell 2020, 182, 1271–1283 e1216. [Google Scholar] [CrossRef]
- Rele, S. COVID-19 vaccine development during pandemic: Gap analysis, opportunities, and impact on future emerging infectious disease development strategies. Hum. Vaccines Immunother. 2020, 1–6. [Google Scholar] [CrossRef] [PubMed]
- van Doremalen, N.; Lambe, T.; Spencer, A.; Belij-Rammerstorfer, S.; Purushotham, J.N.; Port, J.R.; Avanzato, V.A.; Bushmaker, T.; Flaxman, A.; Ulaszewska, M.; et al. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature 2020, 586, 578–582. [Google Scholar] [CrossRef] [PubMed]
- Dicks, M.D.; Spencer, A.J.; Edwards, N.J.; Wadell, G.; Bojang, K.; Gilbert, S.C.; Hill, A.V.; Cottingham, M.G. A novel chimpanzee adenovirus vector with low human seroprevalence: Improved systems for vector derivation and comparative immunogenicity. PLoS ONE 2012, 7, e40385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, S. Heterologous prime-boost vaccination. Curr. Opin. Immunol. 2009, 21, 346–351. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhang, Y.; Huang, B.; Deng, W.; Quan, Y.; Wang, W.; Xu, W.; Zhao, Y.; Li, N.; Zhang, J.; et al. Development of an Inactivated Vaccine Candidate, BBIBP-CorV, with Potent Protection against SARS-CoV-2. Cell 2020, 182, 713–721 e719. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.L.; Goldsmith, J.A.; Schaub, J.M.; DiVenere, A.M.; Kuo, H.C.; Javanmardi, K.; Le, K.C.; Wrapp, D.; Lee, A.G.; Liu, Y.; et al. Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science 2020, 369, 1501–1505. [Google Scholar] [CrossRef] [PubMed]
- US Food and Drug Administration. Guidance for Industry: Toxicity Grading Scale for Healthy Adult and Adolescent Volunteers Enrolled in Preventive Vaccine Clinical Trials; US Food and Drug Administration: Silver Spring, MD, USA, 2007.
- Gudbjartsson, D.F.; Norddahl, G.L.; Melsted, P.; Gunnarsdottir, K.; Holm, H.; Eythorsson, E.; Arnthorsson, A.O.; Helgason, D.; Bjarnadottir, K.; Ingvarsson, R.F.; et al. Humoral Immune Response to SARS-CoV-2 in Iceland. N. Engl. J. Med. 2020, 383, 1724–1734. [Google Scholar] [CrossRef]
- Braun, J.; Loyal, L.; Frentsch, M.; Wendisch, D.; Georg, P.; Kurth, F.; Hippenstiel, S.; Dingeldey, M.; Kruse, B.; Fauchere, F.; et al. SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature 2020, 587, 270–274. [Google Scholar] [CrossRef]
- Le Bert, N.; Tan, A.T.; Kunasegaran, K.; Tham, C.Y.L.; Hafezi, M.; Chia, A.; Chng, M.H.Y.; Lin, M.; Tan, N.; Linster, M.; et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature 2020, 584, 457–462. [Google Scholar] [CrossRef]
- Grifoni, A.; Weiskopf, D.; Ramirez, S.I.; Mateus, J.; Dan, J.M.; Moderbacher, C.R.; Rawlings, S.A.; Sutherland, A.; Premkumar, L.; Jadi, R.S.; et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell 2020, 181, 1489–1501 e1415. [Google Scholar] [CrossRef]
- Amanat, F.; Stadlbauer, D.; Strohmeier, S.; Nguyen, T.H.O.; Chromikova, V.; McMahon, M.; Jiang, K.; Arunkumar, G.A.; Jurczyszak, D.; Polanco, J.; et al. A serological assay to detect SARS-CoV-2 seroconversion in humans. Nat. Med. 2020, 26, 1033–1036. [Google Scholar] [CrossRef] [PubMed]
- Ng, K.W.; Faulkner, N.; Cornish, G.H.; Rosa, A.; Harvey, R.; Hussain, S.; Ulferts, R.; Earl, C.; Wrobel, A.G.; Benton, D.J.; et al. Preexisting and de novo humoral immunity to SARS-CoV-2 in humans. Science 2020. [Google Scholar] [CrossRef]
- Hobson, D.; Curry, R.L.; Beare, A.S.; Ward-Gardner, A. The role of serum haemagglutination-inhibiting antibody in protection against challenge infection with influenza A2 and B viruses. Epidemiol. Infect. 1972, 70, 767–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, B.J.; Pillet, S.; Charland, N.; Trepanier, S.; Couillard, J.; Landry, N. The establishment of surrogates and correlates of protection: Useful tools for the licensure of effective influenza vaccines? Hum. Vaccines Immunother. 2018, 14, 647–656. [Google Scholar] [CrossRef] [Green Version]
- Memoli, M.J.; Shaw, P.A.; Han, A.; Czajkowski, L.; Reed, S.; Athota, R.; Bristol, T.; Fargis, S.; Risos, K.; Powers, J.H.; et al. Evaluation of Antihemagglutinin and Antineuraminidase Antibodies as Correlates of Protection in an Influenza A/H1N1 Virus Healthy Human Challenge Model. mBio 2016, 7, e00417-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, C.D.; Wang, W.; Lu, Y.; Billings, M.; Eick-Cost, A.; Couzens, L.; Sanchez, J.L.; Hawksworth, A.W.; Seguin, P.; Myers, C.A.; et al. Neutralizing and neuraminidase antibodies correlate with protection against influenza during a late season A/H3N2 outbreak among unvaccinated military recruits. Clin. Infect. Dis. 2019. [Google Scholar] [CrossRef] [Green Version]
- Maier, H.E.; Nachbagauer, R.; Kuan, G.; Ng, S.; Lopez, R.; Sanchez, N.; Stadlbauer, D.; Gresh, L.; Schiller, A.; Rajabhathor, A.; et al. Pre-existing Antineuraminidase Antibodies Are Associated With Shortened Duration of Influenza A(H1N1)pdm Virus Shedding and Illness in Naturally Infected Adults. Clin. Infect. Dis. 2020, 70, 2290–2297. [Google Scholar] [CrossRef]
- National Institutes of Health. SARS-CoV-2 Vaccine Clinical Trials Using ACTIV-Informed Harmonized Protocols. Available online: https://www.nih.gov/research-training/medical-research-initiatives/activ/sars-cov-2-vaccine-clinical-trials-using-activ-informed-harmonized-protocols (accessed on 30 October 2020).
- Lazarus, J.V.; Ratzan, S.C.; Palayew, A.; Gostin, L.O.; Larson, H.J.; Rabin, K.; Kimball, S.; El-Mohandes, A. A global survey of potential acceptance of a COVID-19 vaccine. Nat. Med. 2020. [Google Scholar] [CrossRef]
- Hurst, J.H.; Heston, S.M.; Chambers, H.N.; Cunningham, H.M.; Price, M.J.; Suarez, L.; Crew, C.G.; Bose, S.; Aquino, J.N.; Carr, S.T.; et al. SARS-CoV-2 Infections among Children in the Biospecimens from Respiratory Virus-Exposed Kids (BRAVE Kids) Study. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Lee, S.; Kim, T.; Lee, E.; Lee, C.; Kim, H.; Rhee, H.; Park, S.Y.; Son, H.J.; Yu, S.; Park, J.W.; et al. Clinical Course and Molecular Viral Shedding Among Asymptomatic and Symptomatic Patients With SARS-CoV-2 Infection in a Community Treatment Center in the Republic of Korea. JAMA Intern. Med. 2020. [Google Scholar] [CrossRef]
- Bai, Y.; Yao, L.; Wei, T.; Tian, F.; Jin, D.Y.; Chen, L.; Wang, M. Presumed Asymptomatic Carrier Transmission of COVID-19. JAMA 2020, 323, 1406–1407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, K.; Magri, G.; Grasset, E.K.; Cerutti, A. Rethinking mucosal antibody responses: IgM, IgG and IgD join IgA. Nat. Rev. Immunol. 2020, 20, 427–441. [Google Scholar] [CrossRef]
- McMahon, M.; Kirkpatrick, E.; Stadlbauer, D.; Strohmeier, S.; Bouvier, N.M.; Krammer, F. Mucosal Immunity against Neuraminidase Prevents Influenza B Virus Transmission in Guinea Pigs. MBio 2019, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isho, B.; Abe, K.T.; Zuo, M.; Jamal, A.J.; Rathod, B.; Wang, J.H.; Li, Z.; Chao, G.; Rojas, O.L.; Bang, Y.M.; et al. Persistence of serum and saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19 patients. Sci. Immunol. 2020, 5. [Google Scholar] [CrossRef]
- Iyer, A.S.; Jones, F.K.; Nodoushani, A.; Kelly, M.; Becker, M.; Slater, D.; Mills, R.; Teng, E.; Kamruzzaman, M.; Garcia-Beltran, W.F.; et al. Persistence and decay of human antibody responses to the receptor binding domain of SARS-CoV-2 spike protein in COVID-19 patients. Sci. Immunol. 2020, 5. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo-Campos, P.; Blankenhaus, B.; Mota, C.; Gomes, A.; Serrano, M.; Ariotti, S.; Costa, C.; Nunes-Cabaco, H.; Mendes, A.M.; Gaspar, P.; et al. Seroprevalence of anti-SARS-CoV-2 antibodies in COVID-19 patients and healthy volunteers up to 6 months post disease onset. Eur. J. Immunol. 2020. [Google Scholar] [CrossRef]
- Widge, A.T.; Rouphael, N.G.; Jackson, L.A.; Anderson, E.J.; Roberts, P.C.; Makhene, M.; Chappell, J.D.; Denison, M.R.; Stevens, L.J.; Pruijssers, A.J.; et al. Durability of Responses after SARS-CoV-2 mRNA-1273 Vaccination. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef]
- Stefan, K.L.; Kim, M.V.; Iwasaki, A.; Kasper, D.L. Commensal Microbiota Modulation of Natural Resistance to Virus Infection. Cell 2020, 183, 1312–1324 e1310. [Google Scholar] [CrossRef]
- Zuo, T.; Zhang, F.; Lui, G.C.Y.; Yeoh, Y.K.; Li, A.Y.L.; Zhan, H.; Wan, Y.; Chung, A.C.K.; Cheung, C.P.; Chen, N.; et al. Alterations in Gut Microbiota of Patients with COVID-19 During Time of Hospitalization. Gastroenterology 2020, 159, 944–955 e948. [Google Scholar] [CrossRef]
Ad5-Vectored COVID-19 Vaccine (Phase 1) | Ad5-Vectored COVID-19 Vaccine (Phase 2) | mRNA-1273 | ChAdOx1 nCoV-19 | Inactivated COVID-19 Vaccine (Phase 1) | Inactivated COVID-19 Vaccine (Phase 2) | NVX-CoV2373 | Gam-COVID-Vac | BNT162b2 | BBIBP-CorV (Phase 1) | BBIBP-CorV (Phase 2) | CoronaVac (Phase 1) | CoronaVac (Phase 2) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Vaccine Type | Non-replicating Ad5 | Non-replicating Ad5 | mRNA | Non-replicating Chimpanzee Ad | Inactivated virus | SARS-CoV-2 nanoparticle trimeric S protein | Frozen rAd26 and rAd5 | Lyo rAd26 and rAd5 | mRNA | Inactivated virus | Inactivated virus | |||||
Adjuvant | None | None | None | None | Alum | Matrix-M1 | None | None | Alum | Alum | ||||||
Preferred Dose Regimen | One-dose (1.5 × 1011 VP) | One-dose (5 × 1010 VP) | Two-dose (100 µg) | One-dose (5 × 1010 VP) | Three-dose (5 µg) | Two-dose (5 µg) | Two-dose (5 µg) | Two-dose (1011 VP) | Two-dose (30 µg) | Two-dose (4 µg) | Two-dose (3 µg) | |||||
Dose interval | 28 days | 28 days | 14/21 days | 21 days | 21 days | 21 days | 28 days | 21 days | 14 days | |||||||
Trial Type | Phase 1 | Phase 2 | Phase 1 | Phase 1/2 | Phase 1 | Phase 2 | Phase 1/2 | Phase 1/2 | Phase 1 | Phase 1 | Phase 2 | Phase 1 | Phase 2 | |||
Participants (Total) | 108 | 508 | 45 | 1067 | 96 | 224 | 131 | 76 | 195 | 192 | 448 | 300 | 300 | |||
Participants (Preferred Dose) | 36 | 129 | 15 | 543 | 24 | 84/84 | 29 | 20 | 20 | 12 (ages 18–55) | 12 (ages 65–85) | 24 (ages 18–59) | 24 (ages 60+) | 84 | 120 | 120 |
Publication Date | 5/22/2020 | 7/20/2020 | 7/14/2020 | 7/20/2020 | 8/13/20 | 9/2/2020 | 9/4/2020 | 10/14/2020 | 10/15/2020 | 11/17/2020 | ||||||
Affiliation | CanSino Biologics [5] | CanSino Biologics [7] | NIAID and Moderna [6] | University of Oxford and AstraZeneca [8] | WIBP and Sinopharm [9] | Novavax [10] | Gamaleya [11] | BioNTech and Pfizer [12] | BIBP and Sinopharm [13] | Sinovac [14] |
Ad5-Vectored COVID-19 Vaccine (Phase 1) | Ad5-Vectored COVID-19 Vaccine (Phase 2) | mRNA-1273 | ChAdOx1 nCoV-19 | Inactivated COVID-19 Vaccine (Phase 1) | Inactivated COVID-19 Vaccine (Phase 2) | NVX-CoV2373 | Gam-COVID-Vac | BNT162b2 | BBIBP-CorV (Phase 1) | BBIBP-CorV (Phase 2) | CoronaVac (Phase 1) | CoronaVac (Phase 2) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
28-day FU | 56-day FU (28 after 2nd dose) | 28-day FU | 84-day FU (28 after 3rd dose) | 42–49-day FU (28 after 2nd dose) | 35-day FU (14 after 2nd dose) | 42-day FU (21 after 2nd dose) | 1-month FU after 2nd dose | 56-day FU (28 after 2nd dose) | 58-day FU (30 after 2nd dose) | 42-day FU (28 after 2nd dose) | ||
Systemic or local AE of any grade (75%). Systemic or local grade 3 AE (17%). | Systemic or local AE of any grade (76%). Systemic or local grade 3 AE (1%). | Systemic grade 1 AE (Dose 1: 53.3%, Dose 2: 20%). Systemic grade 2 AE (Dose 1: 13.3%, Dose 2: 80%). Systemic grade 3 AE (0%). Local grade 1 AE (Dose 1: 73.3%, Dose 2: 66.7%). Local grade2 AE (Dose 1: 13.3%, Dose 2: 26.7%). Local grade 3 AE (0%). | Fatigue (70%), headache (68%), muscle aches (60%), malaise (61%), chills (56%), feeling feverish (51%), documented fever (18%). A small proportion of AE of all types were severe, though AE profile was improved with paracetamol administration. | Systemic grade 1/2 AE (12.5%). Systemic grade 3 AE (0%). Local grade 1/2 AE (4.2%). Local grade 3 AE (0%). | 14-day interval: systemic grade 1/2 AE (4.8%). 21-day interval: systemic grade 1/2 AE (4.8%). Systemic grade 3 AE (0%). 14-day interval: local grade 1/2 AE (2.4%). 21-day interval: local grade 1/2 AE (15.5%). Local grade 3 AE (0%). | Systemic grade 1 AE (Dose 1: 40%, Dose 2: 40%). Systemic grade 2 AE (Dose 1: 5%, Dose 2: 20%). Systemic grade 3 AE (Dose 1: 0%, Dose 2: 10%). Local grade 1 AE (Dose 1: 60%, Dose 2: 55%). Local grade 2 AE (Dose 1: 10%, Dose 2: 35%). Local grade 3/4 AE (0%). (approx.) | Grade 1 hyperthermia (95%), headache (45%), asthenia (55%), myalgia/arthralgia (20%), diarrhea (15%), rhinorrhea (20%), loss of appetite (5%), pharyngalgia (5%), malaise (10%), sore throat (10%), nasal congestion (5%), cough (5%), sneezing (5%), pain (40%), hyperthermia (20%), swelling (5%). Grade 2 Hyperthermia (5%), headache (10%), myalgia/arthralgia (5%). Systemic grade 3 AE (0%). Local grade 2/3 AE (0%). | Ages 18–55: systemic or local AE of any grade (41.7%). Systemic or local grade 3 AE. (8.3%) Ages 65–85: systemic or local AE of any grade (25%). Systemic or local grade 3 AE (8.3%). | Ages 18–59: systemic or local grade 1 AE (33%). Systemic or local grade 2 AE (13%). Ages 60+: Systemic or local grade 1 AE (29%). | Systemic or local grade 1 AE (15%). Systemic or local grade 2 AE (2%) | Systemic grade 1 AE (12.5%). Systemic grade 2/3 AE (0%). Local grade 1 AE (16.7%). Local grade 2/3 AE (0%). | Systemic mostly grade 1 AE (15.8%) Local mostly grade 1 AE (23.3%) |
Ad5-Vectored COVID-19 Vaccine | mRNA-1273 | ChAdOx1 nCoV-19 | Inactivated COVID-19 Vaccine (Phase 1/2) | NVX-CoV2373 | Gam-COVID-Vac | BNT162b2 | BBIBP-CorV (Phase 1/2) | CoronaVac | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Subgroup | Phase 1 | Phase 2 | Frozen | Lyo | Phase 1 | Phase 2 | ||||||
Vaccine Schedule | Day 0 | Day 0 | Day 0/28 | Day 0 | Day 0/28/56, 0/14, 0/21 | Day 0/21 | Day 0/21 | Day 0/21 | Day 0/21 | Day 0/28,0/21 | Day 0/14 | Day 0/14 |
Anti-S Ab Assay | ELISA | NP | ELISA | ELISA | NP | ELISA | NP | NP | NP | NP | NP | NP |
Anti-S Ab Titer | 596.4 | 782,719 | 157.1 | 63,160.0 | ||||||||
Endpoint/Baseline Titer Ratio | * | 5975.0 | 157.1 | 556.0 | ||||||||
Endpoint/Convalescent Control Titer Ratio | NP | 5.5 | * | 7.6 | ||||||||
% Seroconverted | 83% | 100% | * | 100% | ||||||||
Timepoint | Day 28 | Day 57 | Day 28 | Day 35 | ||||||||
Anti-RBD Ab Assay | ELISA | ELISA | ELISA | MIA | NP | NP | ELISA | ELISA | MIA | NP | ELISA | ELISA |
Anti-RBD Ab Titer | 1445.8 | 571.0 | 371,271 | 3182.5 | 14,703.0 | 11,143.0 | * | 465.8 | 1053.7 | |||
Endpoint/Baseline Titer Ratio | * | 26.1 | 2236.6 | 172 | 14,703.0 | 11,143.0 | * | 5.8 | 12.9 | |||
Endpoint/Convalescent Control Titer Ratio | NP | * | 9.8 | * | 11.6 | 8.8 | * | NP | NP | |||
% Seroconverted | 100% | 97% | * | * | 100% | 100% | * | 87.5% | 97.4% | |||
Timepoint | Day 28 | Day 28 | Day 57 | Day 28 | Day 42 | Day 42 | Day 28 | Day 42 | Day 42 |
Ad5-Vectored COVID-19 Vaccine | mRNA-1273 | ChAdOx1 nCoV-19 | Inactivated COVID-19 Vaccine (Phase 1) | Inactivated COVID-19 Vaccine (Phase 2) | NVX-CoV2373 | Gam-COVID-Vac | BNT162b2 | BBIBP-CorV (Phase 1) | BBIBP-CorV (Phase 2) | CoronaVac | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Subgroup | Phase 1 | Phase 2 | Frozen | Lyo | Ages 18–55 | Ages 65–85 | Ages 18–59 | Ages 60+ | Phase 1 | Phase 2 | |||||||
Vaccine Schedule | Day 0 | Day 0 | Day 0/28 | Day 0 | Day 0/28/56 | Day 0/14 | Day 0/21 | Day 0/21 | Day 0/21 | Day 0/21 | Day 0/21 | Day 0/21 | Day 0/28 | Day 0/28 | Day 0/21 | Day 0/14 | Day 0/14 |
Pseudovirus Neutralization Titer | 45.6 | 55.3 | 231.8 | 87.9 | NP | NP | NP | NP | NP | NP | NP | NP | NP | NP | NP | 22.4 | 84.9 |
Endpoint/Baseline Titer Ratio | * | 10.1 | 23.2 | 2.2 | * | * | |||||||||||
Endpoint/Convalescent Control Titer Ratio | NP | * | 2.1 | NP | * | * | |||||||||||
% Seroconverted | 69% | 83% | 100% | * | 41.7% | 79.7% | |||||||||||
Timepoint | Day 28 | Day 28 | Day 57 | Day 28 | Day 28 | Day 28 | |||||||||||
SARS-CoV-2 Neutralization Assay Type | * | * | PRNT80 | PRNT50 | PRNT50 | PRNT50 | PRNT50 | NP | NP | NP | fPRNT50 | fPRNT50 | * | * | * | Micro CPE Assay | Micro CPE Assay |
Neutralization Titer | 34.0 | 18.3 | 654.3 | 218.0 | 206 | 121 | 247 | 361.0 | 149.0 | 29.3 | 18.9 | 282.7 | 5.4 | 23.8 | |||
Endpoint/Baseline Titer Ratio | * | 4.6 | 163.6 | 9.5 | 41.1 | 24.1 | 49.3 | 36.1 | 14.9 | 14.7 | 9.5 | 141.4 | 2.7 | 11.9 | |||
Endpoint/Convalescent Control Titer Ratio | NP | * | 4.1 | NP | NP | NP | NP | 3.8 | 1.6 | NP | NP | NP | NP | NP | |||
% Seroconverted | 75% | 47% | 100% | 100% | 95.8% | 97.6% | 97.6% | * | * | 100% | 92% | 100% | 25% | 94.1% | |||
Timepoint | Day 28 | Day 28 | Day 43 | Day 28 | Day 70 | Day 28 | Day 35 | Day 28 | Day 28 | Day 28 | Day 28 | Day 49 | Day 42 | Day 42 | |||
Microneutralization Titer | NP | NP | NP | NP | NP | NP | NP | 3906.3 | 49.3 | 46.0 | NP | NP | NP | NP | NP | NP | NP |
Endpoint/Baseline Titer Ratio | 195.3 | 39.4 | 36.8 | ||||||||||||||
Endpoint/Convalescent Control Titer Ratio | 4.0 | 1.5 | 1.4 | ||||||||||||||
% Seroconverted | 100% | 100% | 100% | ||||||||||||||
Timepoint | Day 35 | Day 42 | Day 42 |
Ad5-Vectored COVID-19 Vaccine (Phase 1) | Ad5-Vectored COVID-19 Vaccine (Phase 2) | mRNA-1273 | ChAdOx1 nCoV-19 | Inactivated COVID-19 Vaccine (Phase 1/2) | NVX-CoV2373 | Gam-COVID-Vac | BNT162b2 | BBIBP-CorV (Phase 1/2) | CoronaVac (Phase 1) | CoronaVac (Phase 2) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Subgroup | Frozen | Lyo | ||||||||||
T-Cell Response Assay | INF-gamma ELIspot | INF-gamma ELIspot | ICS | INF-gamma ELIspot | NP | ICS | INF-gamma ELISA | INF-gamma ELISA | NP | NP | INF-gamma ELIspot | NP |
Proportion with T-Cell Response | 83–97% | 88% | * | * | * | 90% | 85% | 45.8% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giurgea, L.T.; Memoli, M.J. Navigating the Quagmire: Comparison and Interpretation of COVID-19 Vaccine Phase 1/2 Clinical Trials. Vaccines 2020, 8, 746. https://doi.org/10.3390/vaccines8040746
Giurgea LT, Memoli MJ. Navigating the Quagmire: Comparison and Interpretation of COVID-19 Vaccine Phase 1/2 Clinical Trials. Vaccines. 2020; 8(4):746. https://doi.org/10.3390/vaccines8040746
Chicago/Turabian StyleGiurgea, Luca Tudor, and Matthew James Memoli. 2020. "Navigating the Quagmire: Comparison and Interpretation of COVID-19 Vaccine Phase 1/2 Clinical Trials" Vaccines 8, no. 4: 746. https://doi.org/10.3390/vaccines8040746
APA StyleGiurgea, L. T., & Memoli, M. J. (2020). Navigating the Quagmire: Comparison and Interpretation of COVID-19 Vaccine Phase 1/2 Clinical Trials. Vaccines, 8(4), 746. https://doi.org/10.3390/vaccines8040746