Comparable Long-Term Rabies Immunity in Foxes after IntraMuscular and Oral Application Using a Third-Generation Oral Rabies Virus Vaccine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sampling
2.2. Antigen Detection and Serological Assays
2.3. Serum Antibody Isotyping
2.4. Isolation of PBMCs
2.5. IFN-γ Enzyme-Linked ImmunoSpot (ELISpot) Detection Assay
2.6. Statistical Analysis
3. Results
3.1. Rabies-Specific Antibody Response to Rabies Vaccination
3.2. Survival after Challenge
3.3. Kinetics of RABV-Specific Antibody Classes and Subclasses
3.4. Rabies-Specific IFN-γ Release after Rabies Vaccination and Challenge Infection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, D.; Fooks, A.R.; Schweiger, M. Using intradermal rabies vaccine to boost immunity in people with low rabies antibody levels. Adv. Prev. Med. 2011, 2011, 601789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosatte, R.; Donovan, D.; Allan, M.; Bruce, L.; Buchanan, T.; Sobey, K.; Davies, C.; Wandeler, A.I.; Muldoon, F. Rabies in Vaccinated Raccoons from Ontario, Canada. J. Wildl. Dis. 2007, 43, 300–301. [Google Scholar] [CrossRef] [Green Version]
- Rosatte, R.; Donovan, D.; Allan, M.; Howes, L.A.; Silver, A.; Bennett, K.; MacInnes, C.; Davies, C.; Wandeler, A.; Radford, B. Emergency response to raccoon rabies introduction into Ontario. J. Wildl. Dis. 2001, 37, 265–279. [Google Scholar] [CrossRef] [Green Version]
- Sterner, R.T.; Meltzer, M.I.; Shwiff, S.A.; Slate, D. Tactics and economics of wildlife oral rabies vaccination, Canada and the United States. Emerg. Infect. Dis. 2009, 15, 1176–1184. [Google Scholar] [CrossRef] [PubMed]
- Müller, T.; Freuling, C.M. Rabies Vaccines for Wildlife. In Rabies and Rabies Vaccines; Ertl, H.C.J., Ed.; Springer: Cham, Switzerland, 2020; pp. 45–70. ISBN 3030210847. [Google Scholar]
- Schutsky, K.; Curtis, D.; Bongiorno, E.K.; Barkhouse, D.A.; Kean, R.B.; Dietzschold, B.; Hooper, D.C.; Faber, M. Intramuscular Inoculation of Mice with the Live-Attenuated Recombinant Rabies Virus TriGAS Results in a Transient Infection of the Draining Lymph Nodes and a Robust, Long-Lasting Protective Immune Response against Rabies. J. Virol. 2013, 87, 1834–1841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Zhang, G.; Wen, Y.; Yang, S.; Xia, X.; Fu, Z.F. Intracerebral administration of recombinant rabies virus expressing GM-CSF prevents the development of rabies after infection with street virus. PLoS ONE 2011, 6, e25414. [Google Scholar] [CrossRef] [PubMed]
- Faber, M.; Li, J.W.; Kean, R.B.; Hooper, D.C.; Alugupalli, K.R.; Dietzschold, B. Effective preexposure and postexposure prophylaxis of rabies with a highly attenuated recombinant rabies virus. Proc. Natl. Acad. Sci. USA 2009, 106, 11300–11305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Ertel, A.; Portocarrero, C.; Barkhouse, D.A.; Dietzschold, B.; Hooper, D.C.; Faber, M. Postexposure treatment with the live-attenuated rabies virus (RV) vaccine TriGAS triggers the clearance of wild-type RV from the Central Nervous System (CNS) through the rapid induction of genes relevant to adaptive immunity in CNS tissues. J. Virol. 2012, 86, 3200–3210. [Google Scholar] [CrossRef] [Green Version]
- Blancou, J.; Artois, M.; Brochier, B.; Thomas, I.; Pastoret, P.P.; Desmettre, P.; Languet, B.; Kieny, M.P. Innocuite et efficacite d’un vaccin antirabique recombinant des virus de la vaccine et de la rage administre par voie orale au renard, au chiery et au chat. Ann. Rech. Vet. 1989, 20, 195–204. [Google Scholar]
- Brochier, B.M.; Languet, B.; Artois, M.; Zanker, S.; Guittre, C.; Blancou, J.; Chappuis, G.; Desmettre, P.; Pastoret, P.P. Efficacy of a baiting system for vaccinating foxes against rabies with vaccinia-rabies recombinant virus. Vet. Rec. 1990, 127, 165–167. [Google Scholar]
- Black, J.G.; Lawson, K.F. The Safety and Efficacy of Immunizing Foxes (Vulpes vulpes) Using Bait Containing Attenuated Rabies Virus Vaccine. Can. J. Comp. Med. 1980, 44, 169–176. [Google Scholar] [PubMed]
- Neubert, A.; Schuster, P.; Müller, T.; Vos, A.; Pommerening, E. Immunogenicity and efficacy of the oral rabies vaccine SAD B19 in foxes. J. Vet. Med. B Infect. Dis. Vet. Public Health 2001, 48, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Schuster, P.; Müller, T.; Vos, A.; Selhorst, T.; Neubert, L.; Pommerening, E. Comparative immunogenicity and efficacy studies with oral rabies virus vaccine SAD P5/88 in raccoon dogs and red foxes. Acta Vet. Hung. 2001, 49, 285–290. [Google Scholar] [PubMed]
- Mahl, P.; Cliquet, F.; Guiot, A.L.; Niin, E.; Fournials, E.; Saint-Jean, N.; Aubert, M.; Rupprecht, C.E.; Gueguen, S. Twenty year experience of the oral rabies vaccine SAG2 in wildlife: A global review. Vet. Res. 2014, 45, 77. [Google Scholar] [CrossRef]
- Bankovskiy, D.; Safonov, G.; Kurilchuk, Y. Immunogenicity of the ERA G 333 rabies virus strain in foxes and raccoon dogs. Dt. TÄBl. 2008, 131, 461–466. [Google Scholar]
- Cliquet, F.; Guiot, A.L.; Schumacher, C.; Maki, J.; Cael, N.; Barrat, J. Efficacy of a square presentation of V-RG vaccine baits in red fox, domestic dog and raccoon dog. Dev. Biol. 2008, 131, 257–264. [Google Scholar]
- Cliquet, F.; Guiot, A.L.; Munier, M.; Bailly, J.; Rupprecht, C.E.; Barrat, J. Safety and efficacy of the oral rabies vaccine SAG2 in raccoon dogs. Vaccine 2006, 24, 4386–4392. [Google Scholar] [CrossRef]
- Freuling, C.M.; Eggerbauer, E.; Finke, S.; Kaiser, C.; Kaiser, C.; Kretzschmar, A.; Nolden, T.; Ortmann, S.; Schröder, C.; Teifke, J.P.; et al. Efficacy of the oral rabies virus vaccine strain SPBN GASGAS in foxes and raccoon dogs. Vaccine 2019, 37, 4750–4757. [Google Scholar] [CrossRef]
- Freuling, C.M.; Kamp, V.T.; Klein, A.; Günther, M.; Zaeck, L.; Potratz, M.; Eggerbauer, E.; Bobe, K.; Kaiser, C.; Kretzschmar, A.; et al. Long-Term Immunogenicity and Efficacy of the Oral Rabies Virus Vaccine Strain SPBN GASGAS in Foxes. Viruses 2019, 11, 790. [Google Scholar] [CrossRef] [Green Version]
- Brown, L.J.; Rosatte, R.C.; Fehlner-Gardiner, C.; Bachmann, P.; Ellison, J.A.; Jackson, F.R.; Taylor, J.S.; Davies, C.; Donovan, D. Oral vaccination and protection of red foxes (Vulpes vulpes) against rabies using ONRAB((R)), an adenovirus-rabies recombinant vaccine. Vaccine 2014, 32, 984–989. [Google Scholar] [CrossRef]
- Brown, L.J.; Rosatte, R.C.; Fehlner-Gardiner, C.; Ellison, J.A.; Jackson, F.R.; Bachmann, P.; Taylor, J.S.; Franka, R.; Donovan, D. Oral vaccination and protection of striped skunks (Mephitis mephitis) against rabies using ONRAB(R). Vaccine 2014, 32, 3675–3679. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.J.; Rosatte, R.C.; Fehlner-Gardiner, C.; Taylor, J.S.; Davies, J.C.; Donovan, D. Immune response and protection in raccoons (Procyon lotor) following consumption of baits containing ONRAB(R), a human adenovirus rabies glycoprotein recombinant vaccine. J. Wildl. Dis. 2012, 48, 1010–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Overduin, L.A.; Van Dongen, J.J.M.; Visser, L.G. The Cellular Immune Response to Rabies Vaccination: A Systematic Review. Vaccines 2019, 7, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, S.; Gilbert, A.; Vos, A.; Freuling, C.M.; Ellis, C.; Kliemt, J.; Müller, T. Rabies Virus Antibodies from Oral Vaccination as a Correlate of Protection against Lethal Infection in Wildlife. Trop. Med. Infect. Dis. 2017, 2, 31. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency (EMA). Rabies Vaccine (Live, Oral) for Foxes and Raccoon Dogs, Monograph 0746 01/2014, 9th ed.; Ph, E., Ed.; Council of Europe: Strasbourg, France, 2016.
- USDA. Rabies Vaccine, Live Virus, Code of Federal Regulations. Available online: https://www.govinfo.gov/content/pkg/CFR-2010-title9-vol1/pdf/CFR-2010-title9-vol1-sec113-312.pdf (accessed on 20 November 2020).
- Bommier, E.; Chapat, L.; Guiot, A.L.; Hilaire, F.; Cariou, C.; Poulet, H.; Pialot, D.; De Luca, K. Multivariate analysis of the immune response to different rabies vaccines. Vet. Immunol. Immunopathol. 2020, 220, 109986. [Google Scholar] [CrossRef]
- Chapat, L.; Hilaire, F.; Bouvet, J.; Pialot, D.; Philippe-Reversat, C.; Guiot, A.-L.; Remolue, L.; Lechenet, J.; Andreoni, C.; Poulet, H.; et al. Multivariate analysis of the immune response to a vaccine as an alternative to the repetition of animal challenge studies for vaccines with demonstrated efficacy. Vet. Immunol. Immunopathol. 2017, 189, 58–65. [Google Scholar] [CrossRef]
- Vogt, R.; Schulte, P.A. Evaluation of immune responses. IARC Sci. Publ. 2011, 163, 215–239. [Google Scholar]
- Wang, Z.W.; Sarmento, L.; Wang, Y.; Li, X.Q.; Dhingra, V.; Tseggai, T.; Jiang, B.; Fu, Z.F. Attenuated Rabies Virus Activates, while Pathogenic Rabies Virus Evades, the Host Innate Immune Responses in the Central Nervous System. J. Virol. 2005, 79, 12554–12565. [Google Scholar] [CrossRef] [Green Version]
- Te Kamp, V.; Freuling, C.M.; Vos, A.; Schuster, P.; Kaiser, C.; Ortmann, S.; Kretzschmar, A.; Nemitz, S.; Eggerbauer, E.; Ulrich, R.; et al. Responsiveness of various reservoir species to oral rabies vaccination correlates with differences in vaccine uptake of mucosa associated lymphoid tissues. Sci. Rep. 2020, 10, 2919. [Google Scholar] [CrossRef] [Green Version]
- Ghislat, G.; Lawrence, T. Autophagy in dendritic cells. Cell. Mol. Immunol. 2018, 15, 944–952. [Google Scholar] [CrossRef]
- Roy, A.; Hooper, D.C. Lethal silver-haired bat rabies virus infection can be prevented by opening the blood-brain barrier. J. Virol. 2007, 81, 7993–7998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Hao, M.; Feng, N.; Jin, H.; Yan, F.; Chi, H.; Wang, H.; Han, Q.; Wang, J.; Wong, G.; et al. Genetically Modified Rabies Virus Vector-Based Rift Valley Fever Virus Vaccine is Safe and Induces Efficacious Immune Responses in Mice. Viruses 2019, 11, 919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lebrun, A.; Garcia, S.; Li, J.; Kean, R.B.; Hooper, D.C. Protection Against CNS-Targeted Rabies Virus Infection is Dependent upon Type-1 Immune Mechanisms Induced by Live-Attenuated Rabies Vaccines. Trop. Med. Infect. Dis. 2017, 2, 22. [Google Scholar] [CrossRef] [PubMed]
- Gnanadurai, C.W.; Yang, Y.; Huang, Y.; Li, Z.; Leyson, C.M.; Cooper, T.L.; Platt, S.R.; Harvey, S.B.; Hooper, D.C.; Faber, M.; et al. Differential Host Immune Responses after Infection with Wild-Type or Lab-Attenuated Rabies Viruses in Dogs. PLoS Neglect. Trop. Dis. 2015, 9, e0004023. [Google Scholar] [CrossRef]
- Lawson, K.F.; Johnston, D.H.; Patterson, J.M. Immunization of foxes (vulpes vulpes) by the oral and intramuscular route with inactivated rabies vaccines. Can. J. Comp. Med. 1982, 46, 382–385. [Google Scholar]
- Lawson, K.F.; Johnston, D.H.; Patterson, J.M.; Hertler, R.; Campbell, J.B.; Rhodes, A.J. Immunization of Foxes by the Intestinal Route Using an Inactivated Rabies Vaccine. Can. J. Vet. Res. 1989, 53, 56–61. [Google Scholar]
- Campbell, J.B.; Maharaj, I.; Roith, J. Vaccine formulation for oral immunization of laboratory animals and wildlife against rabies. In Rabies in the Tropics; Kuwert, E., Merieux, C., Koprowski, H., Bögel, K., Eds.; Springer: Berlin/Heidelberg, Germany, 1985; pp. 285–293. ISBN 3-540-13826-9. [Google Scholar]
- Lambot, M.; Blasco, E.; Barrat, J.; Cliquet, F.; Brochier, B.; Renders, C.; Krafft, N.; Bailly, J.; Munier, M.; Aubert, M.F.; et al. Humoral and cell-mediated immune responses of foxes (Vulpes vulpes) after experimental primary and secondary oral vaccination using SAG2 and V-RG vaccines. Vaccine 2001, 19, 1827–1835. [Google Scholar] [CrossRef]
- Vidarsson, G.; Dekkers, G.; Rispens, T. IgG Subclasses and Allotypes: From Structure to Effector Functions. Front. Immunol. 2014, 5. [Google Scholar] [CrossRef] [Green Version]
- European Medicines Agency (EMA). Adopted Guideline form International Cooperation on Harmonisation of technical Requirements for Registration of Veterinary Medical Products. In Veterinary Guideline for Clinical Practise (VICH), Good Clinical Practices (GCP); CVMP/VICH/595/1998; 2000. Available online: https://www.ema.europa.eu/en/vich-gl9-good-clinical-practices (accessed on 20 November 2020).
- Hartinger, J.; Foltz, T.; Cussler, K. Clinical endpoints during rabies vaccine control tests. Altex 2000, 18, 37–40. [Google Scholar]
- WHO. The direct fluorescent antibody test. In Laboratory Techniques in Rabies, 5th ed.; Rupprecht, C.E., Fooks, A.R., Abela-Ridder, B., Eds.; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Hoffmann, B.; Freuling, C.M.; Wakeley, P.R.; Rasmussen, T.B.; Leech, S.; Fooks, A.R.; Beer, M.; Müller, T. Improved Safety for Molecular Diagnosis of Classical Rabies Viruses by Use of a TaqMan Real-Time Reverse Transcription-PCR “Double Check” Strategy. J. Clin. Microbiol. 2010, 48, 3970–3978. [Google Scholar] [CrossRef] [Green Version]
- Wasniewski, M.; Guiot, A.L.; Schereffer, J.L.; Tribout, L.; Mähar, K.; Cliquet, F. Evaluation of an ELISA to detect rabies antibodies in orally vaccinated foxes and raccoon dogs sampled in the field. J. Virol. Methods 2013, 187, 264–270. [Google Scholar] [CrossRef]
- Leelahapongsathon, K.; Kasemsuwan, S.; Pinyopummintr, T.; Boodde, O.; Phawaphutayanchai, P.; Aiyara, N.; Bobe, K.; Vos, A.; Friedrichs, V.; Müller, T.; et al. Humoral Immune Response of Thai Dogs after Oral Vaccination against Rabies with the SPBN GASGAS Vaccine Strain. Vaccines 2020, 8, 573. [Google Scholar] [CrossRef] [PubMed]
- Freuling, C.M.; Breithaupt, A.; Müller, T.; Sehl, J.; Balkema-Buschmann, A.; Rissmann, M.; Klein, A.; Wylezich, C.; Höper, D.; Wernike, K.; et al. Susceptibility of Raccoon Dogs for Experimental SARS-CoV-2 Infection. Emerg. Infect. Dis. 2020, 26. [Google Scholar] [CrossRef]
- Riedhammer, C.; Halbritter, D.; Weissert, R. Peripheral Blood Mononuclear Cells: Isolation, Freezing, Thawing, and Culture. Methods Mol. Biol. 2016, 1304, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Schnell, M.J.; Mebatsion, T.; Conzelmann, K.K. Infectious Rabies Viruses from Cloned Cdna. EMBO J. 1994, 13, 4195–4203. [Google Scholar] [CrossRef] [Green Version]
- Hanlon, C.A.; Niezgoda, M.; Morrill, P.; Rupprecht, C.E. Oral efficacy of an attenuated rabies virus vaccine in skunks and raccoons. J. Wildl. Dis. 2002, 38, 420–427. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, A.T.; Johnson, S.; Walker, N.; Wickham, C.; Beath, A.; Vercauteren, K. Efficacy of Ontario Rabies Vaccine Baits (ONRAB) against rabies infection in raccoons. Vaccine 2018, 36, 4919–4926. [Google Scholar] [CrossRef]
- Hsu, A.P.; Tseng, C.H.; Barrat, J.; Lee, S.H.; Shih, Y.H.; Wasniewski, M.; Mahl, P.; Chang, C.C.; Lin, C.T.; Chen, R.S.; et al. Safety, efficacy and immunogenicity evaluation of the SAG2 oral rabies vaccine in Formosan ferret badgers. PLoS ONE 2017, 12, e0184831. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Liu, Y.; Fooks, A.R.; Zhang, F.; Hu, R. Oral vaccination of dogs (Canis familiaris) with baits containing the recombinant rabies-canine adenovirus type-2 vaccine confers long-lasting immunity against rabies. Vaccine 2008, 26, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Knowlton, F.F.; Roetto, M.; Briggs, D. Serological responses of coyotes to two commercial rabies vaccines. J. Wildl. Dis. 2001, 37, 798–802. [Google Scholar] [CrossRef] [Green Version]
- Rolland-Turner, M.; Farre, G.; Muller, D.; Rouet, N.; Boue, F. Immunological tools for the assessment of both humoral and cellular immune responses in Foxes (Vulpes vulpes) using ovalbumin and cholera toxin B as an antigenic model. Vaccine 2004, 22, 4163–4172. [Google Scholar] [CrossRef] [PubMed]
- Waner, T.; Mazar, S.; Nachmias, E.; Keren-Kornblatt, E.; Harrus, S. Evaluation of a dot ELISA kit for measuring immunoglobulin M antibodies to canine parvovirus and distemper virus. Vet. Rec. 2003, 152, 588–591. [Google Scholar] [CrossRef] [PubMed]
- Rota, A.; Dogliero, A.; Muratore, E.; Pregel, P.; Del Carro, A.; Masoero, L. Serological survey of canine parvovirus 2 antibody titres in breeding kennels in northern Italy. BMC Vet. Res. 2019, 15, 335. [Google Scholar] [CrossRef] [PubMed]
- Bouvet, J.; Cariou, C.; Poulard, A.; Oberli, F.; Cupillard, L.; Guigal, P.M. Compatibility between a rabies vaccine and a combined vaccine against canine distemper, adenovirosis, parvovirosis, parainfluenza virus and leptospirosis. Vet. Immunol. Immunopathol. 2018, 205, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Nolden, T.; Pfaff, F.; Nemitz, S.; Freuling, C.M.; Höper, D.; Müller, T.; Finke, S. Reverse genetics in high throughput: Rapid generation of complete negative strand RNA virus cDNA clones and recombinant viruses thereof. Sci. Rep. 2016, 6, 23887. [Google Scholar] [CrossRef] [PubMed]
- Lebrun, A.; Portocarrero, C.; Kean, R.B.; Barkhouse, D.A.; Faber, M.; Hooper, D.C. T-bet Is Required for the Rapid Clearance of Attenuated Rabies Virus from Central Nervous System Tissue. J. Immunol. 2015, 195, 4358–4368. [Google Scholar] [CrossRef] [Green Version]
- Bergeron, L.M.; McCandless, E.E.; Dunham, S.; Dunkle, B.; Zhu, Y.; Shelly, J.; Lightle, S.; Gonzales, A.; Bainbridge, G. Comparative functional characterization of canine IgG subclasses. Vet. Immunol. Immunopathol. 2014, 157, 31–41. [Google Scholar] [CrossRef]
- Coe, J.E.; Bell, J.F. Antibody response to rabies virus in Syrian hamsters. Infect. Immun. 1977, 16, 915–919. [Google Scholar] [CrossRef] [Green Version]
- Cho, H.C.; Fenje, P.; Sparkes, J.D. Antibody and immunoglobulin response to antirabies vaccination in man. Infect. Immun. 1972, 6, 483–486. [Google Scholar] [CrossRef] [Green Version]
- Champion, J.M.; Kean, R.; Rupprecht, C.; Notkins, A.; Koprowsk, H.; Dietzschold, B.; Hooper, D.C. The development of monoclonal human rabies virus-neutralizing antibodies as a substitute for pooled human immune globulin in the prophylactic treatment of rabies virus exposure. J. Immunol. Methods 2000, 235, 81–90. [Google Scholar] [CrossRef]
- Donaghy, D.; Moore, A.R. Identification of canine IgG and its subclasses, IgG1, IgG2, IgG3 and IgG4, by immunofixation and commercially available antisera. Vet. Immunol. Immunopathol. 2020, 221, 110014. [Google Scholar] [CrossRef] [PubMed]
- Overgaard, N.H.; Fan, T.M.; Schachtschneider, K.M.; Principe, D.R.; Schook, L.B.; Jungersen, G. Of Mice, Dogs, Pigs, and Men: Choosing the Appropriate Model for Immuno-Oncology Research. ILAR J. 2018, 59, 247–262. [Google Scholar] [CrossRef] [PubMed]
- Dietzschold, B.; Tollis, M.; Lafon, M.; Wunner, W.H.; Koprowski, H. Mechanisms of Rabies Virus Neutralization by Glycoprotein-Specific Monoclonal-Antibodies. Virology 1987, 161, 29–36. [Google Scholar] [CrossRef]
- Gerber, J.D.; Sharpee, R.L.; Swieczkowski, T.C.; Beckenhauer, W.H. Cell-mediated immune response to rabies virus in dogs following vaccination and challenge. Vet. Immunol. Immunopathol. 1985, 9, 13–22. [Google Scholar] [CrossRef]
- Hooper, D.C.; Morimoto, K.; Bette, M.; Weihe, E.; Koprowski, H.; Dietzschold, B. Collaboration of antibody and inflammation in clearance of rabies virus from the central nervous system. J. Virol. 1998, 72, 3711–3719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, N.; Cunningham, A.F.; Fooks, A.R. The immune response to rabies virus infection and vaccination. Vaccine 2010, 28, 3896–3901. [Google Scholar] [CrossRef]
- McGettigan, J.P. Experimental rabies vaccines for humans. Expert Rev. Vaccines 2010, 9, 1177–1186. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
te Kamp, V.; Friedrichs, V.; Freuling, C.M.; Vos, A.; Potratz, M.; Klein, A.; Zaeck, L.M.; Eggerbauer, E.; Schuster, P.; Kaiser, C.; et al. Comparable Long-Term Rabies Immunity in Foxes after IntraMuscular and Oral Application Using a Third-Generation Oral Rabies Virus Vaccine. Vaccines 2021, 9, 49. https://doi.org/10.3390/vaccines9010049
te Kamp V, Friedrichs V, Freuling CM, Vos A, Potratz M, Klein A, Zaeck LM, Eggerbauer E, Schuster P, Kaiser C, et al. Comparable Long-Term Rabies Immunity in Foxes after IntraMuscular and Oral Application Using a Third-Generation Oral Rabies Virus Vaccine. Vaccines. 2021; 9(1):49. https://doi.org/10.3390/vaccines9010049
Chicago/Turabian Stylete Kamp, Verena, Virginia Friedrichs, Conrad M. Freuling, Ad Vos, Madlin Potratz, Antonia Klein, Luca M. Zaeck, Elisa Eggerbauer, Peter Schuster, Christian Kaiser, and et al. 2021. "Comparable Long-Term Rabies Immunity in Foxes after IntraMuscular and Oral Application Using a Third-Generation Oral Rabies Virus Vaccine" Vaccines 9, no. 1: 49. https://doi.org/10.3390/vaccines9010049
APA Stylete Kamp, V., Friedrichs, V., Freuling, C. M., Vos, A., Potratz, M., Klein, A., Zaeck, L. M., Eggerbauer, E., Schuster, P., Kaiser, C., Ortmann, S., Kretzschmar, A., Bobe, K., Knittler, M. R., Dorhoi, A., Finke, S., & Müller, T. (2021). Comparable Long-Term Rabies Immunity in Foxes after IntraMuscular and Oral Application Using a Third-Generation Oral Rabies Virus Vaccine. Vaccines, 9(1), 49. https://doi.org/10.3390/vaccines9010049