Effectiveness of the 13-Valent Pneumococcal Conjugate Vaccine on Invasive Pneumococcal Disease in Greenland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setting
2.2. Study Population and Definitions
2.3. Data Sources
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Clinical Characteristics
3.3. Incidence Rates
3.4. Serotype Distribution
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization, SAGE Pneumococcal Conjugate Vaccine Working Group. Detailed Review Paper on Pneumococcal Conjugate Vaccine—Presented to the WHO Strategic Advisory Group of Experts (SAGE) on Immunization. World Health Organization: Geneva, Switzerland, 2006; pp. 1–69. [Google Scholar]
- Garcia-Rodriguez, J.A.; Fresnadillo Martinez, M.J. Dynamics of nasopharyngeal colonization by potential respiratory pathogens. J. Antimicrob. Chemother. 2002, 50 (Suppl. S2), 59–73. [Google Scholar] [CrossRef] [Green Version]
- Käthy, H.N.; Soininen, A.; Väkeväinen, M. Immunological Basis for Immunization: Module 12: Pneumococcal vaccines; World Health Organization: Geneva, Switzerland, 2009; pp. 1–61. [Google Scholar]
- Vadlamudi, N.K.; Patrick, D.M.; Hoang, L.; Sadarangani, M.; Marra, F. Incidence of invasive pneumococcal disease after introduction of the 13-valent conjugate pneumococcal vaccine in British Columbia: A retrospective cohort study. PLoS ONE 2020, 15, e0239848. [Google Scholar] [CrossRef]
- Torres, A.; Blasi, F.; Dartois, N.; Akova, M. Which individuals are at increased risk of pneumococcal disease and why? Impact of COPD, asthma, smoking, diabetes, and/or chronic heart disease on community-acquired pneumonia and invasive pneumococcal disease. Thorax 2015, 70, 984–989. [Google Scholar] [CrossRef] [Green Version]
- Christiansen, J.; Paulsen, P.; Ladefoged, K. Invasive pneumococcal disease in Greenland. Int. J. Circumpolar Health 2004, 63 (Suppl. 2), 214–218. [Google Scholar] [CrossRef]
- Meyer, A.; Ladefoged, K.; Poulsen, P.; Koch, A. Population-based survey of invasive bacterial diseases, Greenland, 1995–2004. Emerg. Infect. Dis. 2008, 14, 76–79. [Google Scholar] [CrossRef]
- Navne, J.E.; Koch, A.; Slotved, H.-C.; Andersson, M.; Melbye, M.; Ladefoged, K.; Børresen, M. Effect of the 13-valent pneumococcal conjugate vaccine on nasopharyngeal carriage by respiratory pathogens among Greenlandic children. Int. J. Circumpolar Health 2017, 76, 1309504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruce, M.G.; Deeks, S.L.; Zulz, T.; Bruden, D.; Navarro, C.; Lovgren, M.; Jetté, L.; Kristinsson, K.; Sigmundsdottir, G.; Jensen, K.B.; et al. International Circumpolar Surveillance System for invasive pneumococcal disease, 1999–2005. Emerg. Infect. Dis. 2008, 14, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Navne, J.; Børresen, M.; Slotved, H.C.; Hoffmann-Petersen, I.T.; Andersson, M.; Melbye, M.; Ladefoged, K.; Koch, A. Population-Based Study of Incidence, Risk Factors, and Mortality for Invasive Pneumococcal Disease in Greenland. Ph.D. Thesis, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark, 2014. [Google Scholar]
- Bruce, M.; Zulz, T.; Koch, A. Surveillance of infectious diseases in the Arctic. Public Health 2016, 137, 5–12. [Google Scholar] [CrossRef]
- Parkinson, A.J.; Bruce, M.G.; Zulz, T. International Circumpolar Surveillance, an Arctic network for the surveillance of infectious diseases. Emerg. Infect. Dis. 2008, 14, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Gounder, P.P.; Zulz, T.; Desai, S.; Stenz, F.; Rudolph, K.; Tsang, R.; Tyrrell, G.J.; Bruce, M.G. Epidemiology of bacterial meningitis in the North American Arctic, 2000–2010. J. Infect. 2015, 71, 179–187. [Google Scholar] [CrossRef] [Green Version]
- Navne, J.E.; Børresen, M.L.; Slotved, H.-C.; Andersson, M.; Melbye, M.; Ladefoged, K.; Koch, A. Nasopharyngeal bacterial carriage in young children in Greenland: A population at high risk of respiratory infections. Epidemiol. Infect. 2016, 144, 3226–3236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleist, F.S.; USI. Landslægeembedets Nyhedsbrev, Årgang 2010—Nummer 1. 2010. Available online: https://naalakkersuisut.gl//~/media/Nanoq/Files/Attached%20Files/Landslaegeembedet/DK/Aarsberetninger/2010/Kapitel%2013%20Landslgeembedets%20nyhedsbreve%20USI%20nr%201.pdf%200 (accessed on 16 October 2020).
- Albertsen, N.; Fencker, I.M.; Noasen, H.E.; Pedersen, M.L. Immunisation rates among children in Nuuk. Int. J. Circumpolar Health 2018, 77, 1426948. [Google Scholar] [CrossRef]
- Albertsen, N.; Lynge, A.R.; Skovgaard, N.; Olesen, J.S.; Pedersen, M.L. Coverage rates of the children vaccination programme in Greenland. Int. J. Circumpolar Health 2020, 79, 1721983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matanock, A.; Lee, G.; Gierke, R.; Kobayashi, M.; Leidner, A.; Pilishvili, T. Use of 13-Valent Pneumococcal Conjugate Vaccine and 23-Valent Pneumococcal Polysaccharide Vaccine Among Adults Aged >/=65 Years: Updated Recommendations of the Advisory Committee on Immunization Practices. MMWR Morb. Mortal. Wkly. Rep. 2019, 68, 1069–1075. [Google Scholar] [CrossRef] [Green Version]
- Shiri, T.; Datta, S.; Madan, J.; Tsertsvadze, A.; Royle, P.; Keeling, M.J.; McCarthy, N.D.; Petrou, S. Indirect effects of childhood pneumococcal conjugate vaccination on invasive pneumococcal disease: A systematic review and meta-analysis. Lancet Glob. Health 2017, 5, e51–e59. [Google Scholar] [CrossRef] [Green Version]
- Hanquet, G.; Krizova, P.; Valentiner-Branth, P.; Ladhani, S.N.; Nuorti, J.P.; Lepoutre, A.; Mereckiene, J.; Knol, M.; Winje, B.A.; Ciruela, P.; et al. Effect of childhood pneumococcal conjugate vaccination on invasive disease in older adults of 10 European countries: Implications for adult vaccination. Thorax 2019, 74, 473–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruce, M.G.; Singleton, R.; Bulkow, L.; Rudolph, K.; Zulz, T.; Gounder, P.; Hurlburt, D.; Bruden, D.; Hennessy, T. Impact of the 13-valent pneumococcal conjugate vaccine (pcv13) on invasive pneumococcal disease and carriage in Alaska. Vaccine 2015, 33, 4813–4819. [Google Scholar] [CrossRef] [Green Version]
- Singleton, R.; Wenger, J.; Klejka, J.A.; Bulkow, L.R.; Thompson, A.; Sarkozy, D.; Emini, E.A.; Gruber, W.C.; Scott, D.A. The 13-valent pneumococcal conjugate vaccine for invasive pneumococcal disease in Alaska native children: Results of a clinical trial. Pediatr. Infect. Dis. J. 2013, 32, 257–263. [Google Scholar] [CrossRef]
- Rudolph, K.; Bruce, M.; Bulkow, L.; Zulz, T.; Reasonover, A.; Harker-Jones, M.; Hurlburt, D.; Hennessy, T. Molecular epidemiology of serotype 19A Streptococcus pneumoniae among invasive isolates from Alaska, 1986–2010. Int. J. Circumpolar Health 2013, 72, 1–7. [Google Scholar] [CrossRef]
- Singleton, R.J.; Hennessy, T.W.; Bulkow, L.R.; Hammitt, L.L.; Zulz, T.; Hurlburt, D.A.; Butler, J.C.; Rudolph, K.; Parkinson, A. Invasive pneumococcal disease caused by nonvaccine serotypes among alaska native children with high levels of 7-valent pneumococcal conjugate vaccine coverage. JAMA 2007, 297, 1784–1792. [Google Scholar] [CrossRef]
- Dalcin, D.; Sieswerda, L.; Dubois, S.; Ulanova, M. Epidemiology of invasive pneumococcal disease in indigenous and non-indigenous adults in northwestern Ontario, Canada, 2006–2015. BMC Infect. Dis. 2018, 2018 18, 621. [Google Scholar] [CrossRef]
- Feikin, D.R.; Kagucia, E.W.; Loo, J.D.; Link-Gelles, R.; Puhan, M.; Cherian, T.; Levine, O.S.; Whitney, C.G.; O’Brien, K.; Moore, M.R.; et al. Serotype-specific changes in invasive pneumococcal disease after pneumococcal conjugate vaccine introduction: A pooled analysis of multiple surveillance sites. PLoS Med. 2013, 10, e1001517. [Google Scholar] [CrossRef] [Green Version]
- González-Díaz, A.; Càmara, J.; Ercibengoa, M.; Cercenado, E.; Larrosa, N.; Quesada, M.; Fontanals, D.; Cubero, M.; Marimón, J.; Yuste, J.; et al. Emerging non-13-valent pneumococcal conjugate vaccine (PCV13) serotypes causing adult invasive pneumococcal disease in the late-PCV13 period in Spain. Clin. Microbiol. Infect. 2020, 26, 753–759. [Google Scholar] [CrossRef]
- Ladhani, S.N.; Collins, S.; Djennad, A.; Sheppard, C.L.; Borrow, R.; Fry, N.K.; Andrews, N.J.; Miller, E.; Ramsay, M.E. Rapid increase in non-vaccine serotypes causing invasive pneumococcal disease in England and Wales, 2000–2017: A prospective national observational cohort study. Lancet Infect. Dis. 2018, 18, 441–451. [Google Scholar] [CrossRef] [Green Version]
- Statistics Greenland. Greenland in Figures 2020. 17th Revised Edition Ed. Statistics Greenland. 2020. Available online: https://stat.gl/publ/en/GF/2020/pdf/Greenland%20in%20Figures%202020.pdf (accessed on 27 October 2020).
- StatBank Greenland, Statistics Greenland. 1989. Available online: http://stat.gl (accessed on 5 November 2020).
- Nordholm, A.C.; Soborg, B.; Andersson, M.; Hoffmann, S.; Skinhoj, P.; Koch, A. CNS infections in Greenland: A nationwide register-based cohort study. PLoS ONE 2017, 12, e0171094. [Google Scholar] [CrossRef] [Green Version]
- Quan, H.; Sundararajan, V.; Halfon, P.; Fong, A.; Burnand, B.; Luthi, J.-C.; Saunders, L.D.; Beck, C.A.; Feasby, T.E.; Ghali, W.A. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med. Care 2005, 43, 1130–1139. [Google Scholar] [CrossRef]
- Tin Tin Htar, M.; Morato Martinez, J.; Theilacker, C.; Schmitt, H.J.; Swerdlow, D. Serotype evolution in Western Europe: Perspectives on invasive pneumococcal diseases (IPD). Expert Rev. Vaccines 2019, 18, 1145–1155. [Google Scholar] [CrossRef]
- Harboe, Z.B.; Dalby, T.; Weinberger, D.M.; Benfield, T.; Mølbak, K.; Slotved, H.C.; Suppli, C.H.; Konradsen, H.B.; Valentiner-Branth, P. Impact of 13-valent pneumococcal conjugate vaccination in invasive pneumococcal disease incidence and mortality. Clin. Infect. Dis. 2014, 59, 1066–1073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baxter, R.; Aukes, L.; Pelton, S.I.; Yee, A.; Klein, N.P.; Gruber, W.C.; Scott, D.A.; Center, K.J. Impact of the 13-Valent Pneumococcal Conjugate Vaccine on Invasive Pneumococcal Disease After Introduction Into Routine Pediatric Use. J. Pediatr. Infect Dis. Soc. 2020, 10, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Henckaerts, L.; Desmet, S.; Schalck, N.; Lagrou, K.; Verhaegen, J.; Peetermans, W.E.; Flamaing, J. The impact of childhood 13-valent pneumococcal conjugate vaccination on overall invasive pneumococcal disease, including the oldest old. Acta Clin. Belg. 2020, 76, 272–279. [Google Scholar] [CrossRef] [PubMed]
- De Miguel, S.; Domenech, M.; González-Camacho, F.; Sempere, J.; Vicioso, D.; Sanz, J.C.; Comas, L.G.; Ardanuy, C.; Fenoll, A.; Yuste, J. Nationwide trends of invasive pneumococcal disease in Spain (2009–2019) in children and adults during the pneumococcal conjugate vaccine era. Clin. Infect. Dis. 2020, 1–10. [Google Scholar] [CrossRef]
- Wijayasri, S.; Hillier, K.; Lim, G.H.; Harris, T.M.; Wilson, S.E.; Deeks, S.L. The shifting epidemiology and serotype distribution of invasive pneumococcal disease in Ontario, Canada, 2007–2017. PLoS ONE. 2019, 14, e0226353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, M.R.; Link-Gelles, R.; Schaffner, W.; Lynfield, R.; Lexau, C.; Bennett, N.M.; Petit, S.; Zansky, S.M.; Harrison, L.H.; Reingold, A.; et al. Effect of use of 13-valent pneumococcal conjugate vaccine in children on invasive pneumococcal disease in children and adults in the USA: Analysis of multisite, population-based surveillance. Lancet Infect. Dis. 2015, 15, 301–309. [Google Scholar] [CrossRef] [Green Version]
- Demczuk, W.H.; Martin, I.; Desai, S.; Griffith, A.; Caron-Poulin, L.; Lefebvre, B.; McGeer, A.; Tyrrell, G.J.; Zhanel, G.G.; Gubbay, J.; et al. Serotype distribution of invasive Streptococcus pneumoniae in adults 65years of age and over after the introduction of childhood 13-valent pneumococcal conjugate vaccination programs in Canada, 2010–2016. Vaccine 2018, 36, 4701–4707. [Google Scholar] [CrossRef] [PubMed]
- Regev-Yochay, G.; Katzir, M.; Strahilevitz, J.; Rahav, G.; Finn, T.; Miron, D.; Maor, Y.; Chazan, B.; Schindler, Y.; Dagan, R. The herd effects of infant PCV7/PCV13 sequential implementation on adult invasive pneumococcal disease, six years post implementation; a nationwide study in Israel. Vaccine 2017, 35, 2449–2456. [Google Scholar] [CrossRef]
- Steens, A.; Bergsaker, M.A.R.; Aaberge, I.S.; Rønning, K.; Vestrheim, D.F. Prompt effect of replacing the 7-valent pneumococcal conjugate vaccine with the 13-valent vaccine on the epidemiology of invasive pneumococcal disease in Norway. Vaccine 2013, 31, 6232–6238. [Google Scholar] [CrossRef]
- Ouldali, N.; Varon, E.; Levy, C.; Angoulvant, F.; Georges, S.; Ploy, M.-C.; Kempf, M.; Cremniter, J.; Cohen, R.; Bruhl, D.L.; et al. Invasive pneumococcal disease incidence in children and adults in France during the pneumococcal conjugate vaccine era: An interrupted time-series analysis of data from a 17-year national prospective surveillance study. Lancet Infect. Dis. 2020, 21, 137–147. [Google Scholar] [CrossRef]
- Van der Linden, M.; Imohl, M.; Perniciaro, S. Limited indirect effects of an infant pneumococcal vaccination program in an aging population. PLoS ONE 2019, 14, e0220453. [Google Scholar] [CrossRef] [Green Version]
- Vadlamudi, N.K.; Chen, A.; Marra, F. Impact of the 13-Valent Pneumococcal Conjugate Vaccine Among Adults: A Systematic Review and Meta-analysis. Clin. Infect. Dis. 2019, 69, 34–49. [Google Scholar] [CrossRef]
- LeMeur, J.B.; Lefebvre, B.; Proulx, J.F.; de Wals, P. Limited impact of pneumococcal vaccines on invasive pneumococcal disease in Nunavik (Quebec). Can. J. Public Health 2019, 110, 36–43. [Google Scholar] [CrossRef]
- Eton, V.; Schroeter, A.; Kelly, L.; Kirlew, M.; Tsang, R.S.W.; Ulanova, M. Epidemiology of invasive pneumococcal and Haemophilus influenzae diseases in Northwestern Ontario, Canada, 2010–2015. Int. J. Infect. Dis. 2017, 65, 27–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slotved, H.C.; Dalby, T.; Hoffmann, S. The effect of pneumococcal conjugate vaccines on the incidence of invasive pneumococcal disease caused by ten non-vaccine serotypes in Denmark. Vaccine 2016, 34, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Hansen, H.L. Vejledning om den Udvidede Vaccinationspakke. Til Læger, Sygeplejersker, m.m. Landslægeembedet. 2020. Available online: https://nun.gl/-/media/landslaegeembedet/sundhedsprofessionelle/landslaegens-vejledninger-for-sundhedsprofessionelle/vaccinationer/vejledning-om-vaccination-mod-saesoninfluenza/vaccination-mod-ssoninfl-2010dk.pdf?la=da (accessed on 15 December 2020).
Total Period (1995–2020) | Pre-PCV13 Period (1995–2010) | Post-PCV13 Period (2010–2020) | p-Value 1 | |
---|---|---|---|---|
Cases (%) | Cases (%) | Cases (%) | ||
No. of cases | 295 | 206 | 89 | |
Sex 2 | ||||
Female | 117 (39.7%) | 88 (42.7%) | 29 (32.6%) | 0.133 |
Male | 177 (60.0%) | 117 (56.8%) | 60 (67.4%) | |
Age group | ||||
Median (IQR 25%;75%) | 48 (30; 59) | 44 (24; 56) | 57 (43; 64) | <0.001 3 |
≥1 | 26 (8.8%) | 21 (10.2%) | 5 (5.6%) | 0.294 |
2–4 | 8 (2.7%) | 8 (3.9%) | 0 | 0.136 |
5–9 | 9 (3.1%) | 7 (3.4%) | 2 (2.2%) | 0.874 |
10–19 | 12 (4.1%) | 11 (5.3%) | 1 (1.1%) | 0.173 |
20–29 | 16 (5.4%) | 11 (5.3%) | 5 (5.6%) | 1 |
30–39 | 29 (9.8%) | 23 (11.2%) | 6 (6.7%) | 0.338 |
40–49 | 63 (21.4%) | 50 (24.3%) | 13 (14.6%) | 0.088 |
50–59 | 62 (21.0%) | 44 (21.4%) | 18 (20.2%) | 0.949 |
60–69 | 49 (16.6%) | 23 (11.2%) | 26 (29.2%) | <0.001 |
≤70 | 21 (7.1%) | 8 (3.9%) | 13 (14.6%) | 0.002 |
Ethnicity | ||||
Inuit | 279 (95.2%) | 197 (96.6%) | 82 (92.1%) | 0.349 |
Non-Inuit | 14 (4.8%) | 7 (3.4%) | 7 (7.9%) | |
Region of Greenland 4 | ||||
Nuuk | 151 (52.8%) | 97 (49.0%) | 54 (61.4%) | 0.044 |
North | 22 (7.7%) | 18 (9.1%) | 4 (4.5%) | 0.302 |
South | 30 (10.5%) | 21 (10.6%) | 9 (10.2%) | 1 |
East | 20 (7.0%) | 16 (8.1%) | 4 (4.5%) | 0.439 |
West | 63 (22.0%) | 46 (23.2%) | 17 (19.3%) | 0.600 |
Total Period (1995–2020) | Pre-PCV13 Period (1995–2010) | Post-PCV13 Period (2010–2020) | ||
---|---|---|---|---|
Cases (%) | Cases (%) | Cases (%) | p-value 1 | |
S. pneumoniae serotypes | ||||
Vaccine serotypes (VT) | 94 (31.9%) | 73 (35.4%) | 21 (23.6%) | 0.062 |
Non-vaccine serotypes (NVT) | 91 (30.8%) | 42 (20.4%) | 49 (55.1%) | <0.001 |
Not serotyped | 83 (28.1%) | 68 (33.0%) | 15 (16.9%) | 0.007 |
Not isolated 2 | 27 (9.2%) | 23 (11.2%) | 4 (4.5%) | 0.171 |
Cultured from | ||||
Blood | 187 (69.8%) | 122 (66.7%) | 65 (76.5%) | 0.138 |
Cerebrospinal fluid | 52 (19.4%) | 41 (22.4%) | 11 (12.9%) | 0.097 |
Cerebrospinal fluid and blood | 20 (7.5%) | 14 (7.7%) | 6 (7.1%) | 1 |
Other 3 | 9 (3.4%) | 6 (3.3%) | 3 (3.5%) | 1 |
Clinical diagnosis | ||||
Meningitis 4 | 94 (31.9%) | 76 (36.9%) | 18 (20.2%) | 0.007 |
Sepsis 5 | 91 (30.8%) | 62 (30.1%) | 29 (32.6%) | 0.774 |
Bacteraemia 6 | 14 (4.7%) | 5 (2.4%) | 9 (10.1%) | 0.011 |
Pneumonia with sepsis 7 | 37 (12.5%) | 20 (9.7%) | 17 (19.1%) | 0.041 |
Pneumonia with bacteraemia | 33 (11.2%) | 22 (10.7%) | 11 (12.4%) | 0.827 |
Septic arthritis 8 | 8 (2.7%) | 5 (2.4%) | 3 (3.4%) | 0.946 |
Meningitis or sepsis 9 | 18 (6.1%) | 16 (7.8%) | 2 (2.2%) | 0.120 |
Charlson Comorbidity Index | ||||
Low (0) | 180 (75.3%) | 127 (79.4%) | 53 (67.1%) | 0.027 |
Moderate (1–2) | 42 (17.6%) | 25 (15.6%) | 17 (21.5%) | 0.067 |
High (<3) | 17 (7.1%) | 8 (5.0%) | 9 (11.4%) | 0.140 |
Total Period (1995–2020) | Pre-PCV13 Period (1995–2010) | Post-PCV13 Period (2010–2020) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
n | PYRS | IR (95% CI) | Cases | PYRS | IR (95% CI) | Cases | PYRS | IR (95% CI) | IRR (95% CI) 1 | p-value 2 | |
All | 295 | 1,449,469 | 20.4 (18.1–22.8) | 206 | 883,256 | 23.3 (20.3–26.7) | 89 | 566,213 | 15.3 (12.7–19.2) | 0.7 (0.5–0.9) | 0.002 |
Sex 3 | |||||||||||
Female | 117 | 680,151 | 17.2 (14.3–20.5) | 88 | 413,069 | 21.3 (17.2–26.1) | 29 | 267,082 | 10.9 (7.4–15.3) | 0.5 (0.3–0.8) | 0.002 |
Male | 177 | 769,319 | 23.01 (19.8–26.6) | 117 | 470,187 | 24.9 (20.6–29.7) | 60 | 299,131 | 20.1 (15.4–25.6) | 0.8 (0.6–1.1) | 0.175 |
Age group | |||||||||||
≤1 | 26 | 45,008 | 57.8 (38.3–82.9) | 21 | 28,590 | 73.5 (46.3–109.5) | 5 | 16,418 | 30.5 (10.9-65.50) | 0.4 (0.1-1.0) | 0.077 |
2–4 | 8 | 69,185 | 11.6 (5.3–21.5) | 8 | 44,952 | 17.8 (8.1–33.1) | 0 | 24,232 | 0 | ||
5–9 | 9 | 117,184 | 7.7 (3.7–13.8) | 7 | 77,396 | 9.1 (3.9–17.5) | 2 | 39,789 | 5.0 (0.8-15.5) | 0.6 (0.1-2.3) | 0.464 |
10–19 | 12 | 221,989 | 5.4 (2.9–9.1) | 11 | 141,832 | 7.8 (4.0–13.3) | 1 | 80,156 | 1.2 (0.1- 5.5) | 0.2 (0.0-0.8) | 0.080 |
20–29 | 16 | 208,531 | 7.7 (4.5–12.1) | 11 | 119,610 | 9.2 (4.8–15.8) | 5 | 88,921 | 5.6 (2.0–12.1) | 0.6 (0.2–1.7) | 0.362 |
30–39 | 29 | 230,469 | 12.6 (8.5–17.7) | 23 | 155,672 | 14.8 (9.5–21.7) | 6 | 74,798 | 8.0 (3.2–16.3) | 0.5 (0.2–1.3) | 0.183 |
40–49 | 63 | 223,440 | 28.2 (21.8–35.7) | 50 | 143,123 | 34.9 (26.1–45.5) | 13 | 80,317 | 16.2 (8.9-26.6) | 0.5 (0.2-0.8) | 0.014 |
50–59 | 62 | 181,978 | 34.1 (26.3–43.3) | 44 | 93,236 | 47.2 (34.6–62.5) | 18 | 88,742 | 20.3 (12.3-31.2) | 0.4 (0.2-0.7) | 0.003 |
60–69 | 49 | 99,643 | 492 (36.7–63.3) | 23 | 52,483 | 43.8 (28.3–62.3) | 26 | 47,160 | 55.1 (36.6-79.1) | 1.3 (0.7-2.2) | 0.423 |
≥70 | 21 | 52,043 | 40.4 (25.5–60.2) | 8 | 26,362 | 30.4 (13.9–56.5) | 13 | 25,681 | 50.6 (27.8-83.3) | 1.7 (0.7-4.2) | 0.255 |
Ethnicity 4 | |||||||||||
Inuit | 279 | 1,305,472 | 21.4 (19.0–24.0) | 197 | 791,603 | 24.9 (21.6–28.5) | 82 | 513,870 | 16.00 (12.8–19.7) | 0.6 (0.5–0.8) | <0.001 |
Non-Inuit | 14 | 143,988 | 9.7 (5.5–15.7) | 7 | 91,652 | 7.6 (3.3–14.8) | 7 | 52,337 | 13.4 (5.8–25.9) | 1.8 (0.6–5.1) | 0.295 |
Region of Greenland 5 | |||||||||||
Nuuk | 151 | 401,371 | 37.6 (31.9–43.9) | 97 | 225,510 | 43.0 (35.0–52.2) | 54 | 175,861 | 30.7 (23.2–39.6) | 0.7 (0.5–1.0) | 0.047 |
North | 22 | 162,837 | 13.5 (8.6–20.0) | 18 | 103,202 | 17.4 (10.6–26.8) | 4 | 59,634 | 6.7 (2.1–15.6) | 0.4 (0.1–1.0) | 0.084 |
South | 30 | 241,246 | 12.4 (8.5–17.4) | 21 | 156,136 | 13.5 (8.5–20.1) | 9 | 85,109 | 10.6 (5.1–19.1) | 0.8 (0.3–1.7) | 0.546 |
East | 20 | 89,131 | 22.4 (14.0–33.8) | 16 | 55,099 | 29.0 (17.0–45.7) | 4 | 34,032 | 11.8 (3.7–27.3) | 0.4 (0.1–1.1) | 0.106 |
West | 63 | 554,868 | 11.4 (8.8–14.4) | 46 | 343,307 | 13.4 (9.9–17.7) | 17 | 211,561 | 8.0 (4.8–12.5) | 0.6 (0.3–1.0) | 0.072 |
Clinical Diagnosis 6 | |||||||||||
Meningitis | 94 | 1,449,469 | 6.5 (5.3–7.9) | 76 | 883,256 | 8.6 (6.8–10.7) | 18 | 566,213 | 3.2 (1.9–4.9) | 0.4 (0.2–0.6) | <0.001 |
Non- meningitis | 183 | 1,449,469 | 12.6 (10.9–14.5) | 114 | 883,256 | 12.9 (10.7–15.4) | 69 | 566,213 | 12.2 (9.5–15.3) | 0.9 (0.7–1.3) | 0.706 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikolova, K.A.; Andersson, M.; Slotved, H.-C.; Koch, A. Effectiveness of the 13-Valent Pneumococcal Conjugate Vaccine on Invasive Pneumococcal Disease in Greenland. Vaccines 2021, 9, 1123. https://doi.org/10.3390/vaccines9101123
Nikolova KA, Andersson M, Slotved H-C, Koch A. Effectiveness of the 13-Valent Pneumococcal Conjugate Vaccine on Invasive Pneumococcal Disease in Greenland. Vaccines. 2021; 9(10):1123. https://doi.org/10.3390/vaccines9101123
Chicago/Turabian StyleNikolova, Kristiana Alexandrova, Mikael Andersson, Hans-Christian Slotved, and Anders Koch. 2021. "Effectiveness of the 13-Valent Pneumococcal Conjugate Vaccine on Invasive Pneumococcal Disease in Greenland" Vaccines 9, no. 10: 1123. https://doi.org/10.3390/vaccines9101123
APA StyleNikolova, K. A., Andersson, M., Slotved, H.-C., & Koch, A. (2021). Effectiveness of the 13-Valent Pneumococcal Conjugate Vaccine on Invasive Pneumococcal Disease in Greenland. Vaccines, 9(10), 1123. https://doi.org/10.3390/vaccines9101123