An Advax-Adjuvanted Inactivated Cell-Culture Derived Japanese Encephalitis Vaccine Induces Broadly Neutralising Anti-Flavivirus Antibodies, Robust Cellular Immunity and Provides Single Dose Protection
Abstract
:1. Introduction
2. Methods
2.1. Animals
2.2. Cell and Viruses
2.3. Immunisation Schedule
2.4. Antibody Isotypes
2.5. Plaque Reduction Neutralisation Tests
2.6. Antibody-Dependent Infection Enhancement Assay
2.7. Multiplex Immunoassay for Quantification of Secreted Cytokines
2.8. Enzyme-Linked Immunospot (ELISPOT) Assay
2.9. JEV Challenge
2.10. Statistics
3. Results
3.1. ccJE+Advax Vaccine Induces Broadly Cross-Neutralising Antibody
3.2. ccJE+Advax Stimulates a Balanced Th1/Th2 Antibody Response
3.3. Antibody-Dependent Infection Enhancement
3.4. Cellular Immune Response
3.5. ccJE-Advax Provides Robust JEV Protection
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erlanger, T.E.; Weiss, S.; Keiser, J.; Utzinger, J.; Wiedenmayer, K. Past, present, and future of Japanese encephalitis. Emerg. Infect. Dis. 2009, 15, 1–7. [Google Scholar] [CrossRef]
- Campbell, G.L.; Hills, S.L.; Fischer, M.; Jacobson, J.A.; Hoke, C.H.; Hombach, J.M.; Marfin, A.A.; Solomon, T.; Tsai, T.F.; Tsu, V.D. Estimated global incidence of Japanese encephalitis: A systematic review. Bull. World Health Organ. 2011, 89, 766–774. [Google Scholar] [CrossRef]
- Connor, B.; Bunn, W.B. The changing epidemiology of Japanese encephalitis and New data: The implications for New recommendations for Japanese encephalitis vaccine. Trop. Dis. Travel Med. Vaccines 2017, 3, 14. [Google Scholar] [CrossRef] [PubMed]
- Hoke, C.H.; Nisalak, A.; Sangawhipa, N.; Jatanasen, S.; Laorakapongse, T.; Innis, B.L.; Kotchasenee, S.-O.; Gingrich, J.B.; Latendresse, J.; Fukai, K. Protection against Japanese encephalitis by inactivated vaccines. N. Engl. J. Med. 1988, 319, 608–614. [Google Scholar] [CrossRef] [PubMed]
- Tauber, E.; Dewasthaly, S. Japanese encephalitis vaccines–needs, flaws and achievements. Biol Chem. 2008, 389, 547–550. [Google Scholar] [CrossRef]
- Hegde, N.R.; Gore, M.M. Japanese encephalitis vaccines: Immunogenicity, protective efficacy, effectiveness, and impact on the burden of disease. Hum. Vaccines Immunother. 2017, 13, 1320–1337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ni, H.; Chang, G.J.; Xie, H.; Trent, D.W.; Barrett, A.D. Molecular basis of attenuation of neurovirulence of wild-type Japanese encephalitis virus strain SA14. J. Gen. Virol. 1995, 76 Pt 2, 409–413. [Google Scholar] [CrossRef]
- Gromowski, G.D.; Firestone, C.Y.; Bustos-Arriaga, J.; Whitehead, S.S. Genetic and phenotypic properties of vero cell-adapted Japanese encephalitis virus SA14-14-2 vaccine strain variants and a recombinant clone, which demonstrates attenuation and immunogenicity in mice. Am. J. Trop. Med. Hyg. 2015, 92, 98–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nitayaphan, S.; Grant, J.A.; Chang, G.J.; Trent, D.W. Nucleotide sequence of the virulent SA-14 strain of Japanese encephalitis virus and its attenuated vaccine derivative, SA-14-14-2. Virology 1990, 177, 541–552. [Google Scholar] [CrossRef]
- Tauber, E.; Kollaritsch, H.; Korinek, M.; Rendi-Wagner, P.; Jilma, B.; Firbas, C.; Schranz, S.; Jong, E.; Klingler, A.; Dewasthaly, S. Safety and immunogenicity of a Vero-cell-derived, inactivated Japanese encephalitis vaccine: A non-inferiority, phase III, randomised controlled trial. Lancet 2007, 370, 1847–1853. [Google Scholar] [CrossRef]
- Le Flohic, G.; Porphyre, V.; Barbazan, P.; Gonzalez, J.-P. Review of climate, landscape, and viral genetics as drivers of the Japanese encephalitis virus ecology. PLoS Negl. Trop. Dis. 2013, 7, e2208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rathore, A.P.S.; St John, A.L. Cross-Reactive Immunity Among Flaviviruses. Front. Immunol. 2020, 11, 334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martina, B.E.; Koraka, P.; van Den Doel, P.; van Amerongen, G.; Rimmelzwaan, G.F.; Osterhaus, A.D. Immunization with West Nile virus envelope domain III protects mice against lethal infection with homologous and heterologous virus. Vaccine 2008, 26, 153–157. [Google Scholar] [CrossRef]
- Takasaki, T.; Yabe, S.; Nerome, R.; Ito, M.; Yamada, K.-I.; Kurane, I. Partial protective effect of inactivated Japanese encephalitis vaccine on lethal West Nile virus infection in mice. Vaccine 2003, 21, 4514–4518. [Google Scholar] [CrossRef]
- Lobigs, M.; Pavy, M.; Hall, R. Cross-protective and infection-enhancing immunity in mice vaccinated against flaviviruses belonging to the Japanese encephalitis virus serocomplex. Vaccine 2003, 21, 1572–1579. [Google Scholar] [CrossRef]
- Lobigs, M.; Larena, M.; Alsharifi, M.; Lee, E.; Pavy, M. Live chimeric and inactivated Japanese encephalitis virus vaccines differ in their cross-protective values against Murray Valley encephalitis virus. J. Virol. 2009, 83, 2436–2445. [Google Scholar] [CrossRef] [Green Version]
- Wallace, M.; Smith, D.; Broom, A.; Mackenzie, J.; Hall, R.; Shellam, G.; McMinn, P. Antibody-dependent enhancement of Murray Valley encephalitis virus virulence in mice. J. Gen. Virol. 2003, 84, 1723–1728. [Google Scholar] [CrossRef] [PubMed]
- Broom, A.K.; Wallace, M.J.; Mackenzie, J.S.; Smith, D.W.; Hall, R.A. Immunisation with gamma globulin to Murray Valley encephalitis virus and with an inactivated Japanese encephalitis virus vaccine as prophylaxis against Australian encephalitis: Evaluation in a mouse model. J. Med Virol. 2000, 61, 259–265. [Google Scholar] [CrossRef]
- Singh, K.P.; Mishra, G.; Jain, P.; Pandey, N.; Nagar, R.; Gupta, S.; Prakash, S.; Prakash, O.; Khan, D.N.; Shrivastav, S. Co-positivity of anti-dengue virus and anti-Japanese encephalitis virus IgM in endemic area: Co-infection or cross reactivity? Asian Pac. J. Trop. Med. 2014, 7, 124–129. [Google Scholar] [CrossRef]
- Wahala, W.M.; De Silva, A.M. The human antibody response to dengue virus infection. Viruses 2011, 3, 2374–2395. [Google Scholar] [CrossRef] [Green Version]
- Murali-Krishna, K.; Ravi, V.; Manjunath, R. Protection of adult but not newborn mice against lethal intracerebral challenge with Japanese encephalitis virus by adoptively transferred virus-specific cytotoxic T lymphocytes: Requirement for L3T4+ T cells. J. Gen. Virol. 1996, 77 Pt 4, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Ashok, M.S.; Rangarajan, P.N. Immunization with plasmid DNA encoding the envelope glycoprotein of Japanese Encephalitis virus confers significant protection against intracerebral viral challenge without inducing detectable antiviral antibodies. Vaccine 1999, 18, 68–75. [Google Scholar] [CrossRef]
- Kumar, P.; Sulochana, P.; Nirmala, G.; Chandrashekar, R.; Haridattatreya, M.; Satchidanandam, V. Impaired T helper 1 function of nonstructural protein 3-specific T cells in Japanese patients with encephalitis with neurological sequelae. J. Infect. Dis. 2004, 189, 880–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrovsky, N.; Cooper, P.D. Advax™, a novel microcrystalline polysaccharide particle engineered from delta inulin, provides robust adjuvant potency together with tolerability and safety. Vaccine 2015, 33, 5920–5926. [Google Scholar] [CrossRef]
- Lobigs, M.; Pavy, M.; Hall, R.A.; Lobigs, P.; Cooper, P.; Komiya, T.; Toriniwa, H.; Petrovsky, N. An inactivated Vero cell-grown Japanese encephalitis vaccine formulated with Advax, a novel inulin-based adjuvant, induces protective neutralizing antibody against homologous and heterologous flaviviruses. J. Gen. Virol. 2010, 91, 1407–1417. [Google Scholar] [CrossRef]
- Hayasaka, D.; Shirai, K.; Aoki, K.; Nagata, N.; Simantini, D.S.; Kitaura, K.; Takamatsu, Y.; Gould, E.; Suzuki, R.; Morita, K. TNF-α acts as an immunoregulator in the mouse brain by reducing the incidence of severe disease following Japanese encephalitis virus infection. PLoS ONE 2013, 8, e71643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Licon Luna, R.M.; Lee, E.; Müllbacher, A.; Blanden, R.V.; Langman, R.; Lobigs, M. Lack of both Fas ligand and perforin protects from flavivirus-mediated encephalitis in mice. J. Virol. 2002, 76, 3202–3211. [Google Scholar] [CrossRef] [Green Version]
- Toriniwa, H.; Komiya, T. Long-term stability of Vero cell-derived inactivated Japanese encephalitis vaccine prepared using serum-free medium. Vaccine 2008, 26, 3680–3689. [Google Scholar] [CrossRef]
- Moi, M.L.; Lim, C.-K.; Chua, K.B.; Takasaki, T.; Kurane, I. Dengue virus infection-enhancing activity in serum samples with neutralizing activity as determined by using FcγR-expressing cells. PLoS Negl. Trop. Dis. 2012, 6, e1536. [Google Scholar] [CrossRef] [Green Version]
- Van Gessel, Y.; Klade, C.S.; Putnak, R.; Formica, A.; Krasaesub, S.; Spruth, M.; Cena, B.; Tungtaeng, A.; Gettayacamin, M.; Dewasthaly, S. Correlation of protection against Japanese encephalitis virus and JE vaccine (IXIARO(®)) induced neutralizing antibody titers. Vaccine 2011, 29, 5925–5931. [Google Scholar] [CrossRef]
- Finkelman, F.; Katona, I.; Mosmann, T.; Coffman, R. IFN-gamma regulates the isotypes of Ig secreted during in vivo humoral immune responses. J. Immunol. 1988, 140, 1022–1027. [Google Scholar] [PubMed]
- Dalton, D.K.; Pitts-Meek, S.; Keshav, S.; Figari, I.S.; Bradley, A.; Stewart, T.A. Multiple defects of immune cell function in mice with disrupted interferon-gamma genes. Science 1993, 259, 1739–1742. [Google Scholar] [CrossRef]
- Wilder-Smith, A.; Ooi, E.E.; Horstick, O.; Wills, B. Dengue. Lancet 2019, 393, 350–363. [Google Scholar] [CrossRef]
- Saito, Y.; Moi, M.L.; Takeshita, N.; Lim, C.-K.; Shiba, H.; Hosono, K.; Saijo, M.; Kurane, I.; Takasaki, T. Japanese encephalitis vaccine-facilitated dengue virus infection-enhancement antibody in adults. BMC Infect. Dis. 2016, 16, 578. [Google Scholar] [CrossRef] [Green Version]
- Larena, M.; Regner, M.; Lobigs, M. Cytolytic effector pathways and IFN-γ help protect against J apanese encephalitis. Eur. J. Immunol. 2013, 43, 1789–1798. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, M.; Aoshi, T.; Haseda, Y.; Kobiyama, K.; Wijaya, E.; Nakatsu, N.; Igarashi, Y.; Standley, D.M.; Yamada, H.; Honda-Okubo, Y. Advax, a delta inulin microparticle, potentiates in-built adjuvant property of co-administered vaccines. EBioMedicine 2017, 15, 127–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, D.; Kelley, P.; Heinzel, S.; Cooper, P.; Petrovsky, N. Immunogenicity and safety of Advax™, a novel polysaccharide adjuvant based on delta inulin, when formulated with hepatitis B surface antigen: A randomized controlled Phase 1 study. Vaccine 2014, 32, 6469–6477. [Google Scholar] [CrossRef] [Green Version]
- Gordon, D.L.; Sajkov, D.; Honda-Okubo, Y.; Wilks, S.H.; Aban, M.; Barr, I.G.; Petrovsky, N. Human Phase 1 trial of low-dose inactivated seasonal influenza vaccine formulated with Advax™ delta inulin adjuvant. Vaccine 2016, 34, 3780–3786. [Google Scholar] [CrossRef] [PubMed]
- Gordon, D.L.; Sajkov, D.; Woodman, R.J.; Honda-Okubo, Y.; Cox, M.M.; Heinzel, S.; Petrovsky, N. Randomized clinical trial of immunogenicity and safety of a recombinant H1N1/2009 pandemic influenza vaccine containing Advax™ polysaccharide adjuvant. Vaccine 2012, 30, 5407–5416. [Google Scholar] [CrossRef] [Green Version]
- Nolan, T.; Richmond, P.C.; Formica, N.T.; Höschler, K.; Skeljo, M.V.; Stoney, T.; McVernon, J.; Hartel, G.; Sawlwin, D.C.; Bennet, J. Safety and immunogenicity of a prototype adjuvanted inactivated split-virus influenza A (H5N1) vaccine in infants and children. Vaccine 2008, 26, 6383–6391. [Google Scholar] [CrossRef]
- Heddle, R.; Smith, A.; Woodman, R.; Hissaria, P.; Petrovsky, N. Randomized controlled trial demonstrating the benefits of delta inulin adjuvanted immunotherapy in patients with bee venom allergy. J. Allergy Clin. Immunol. 2019, 144, 504–513. [Google Scholar] [CrossRef]
- Petrovsky, N.; Larena, M.; Siddharthan, V.; Prow, N.A.; Hall, R.A.; Lobigs, M.; Morrey, J. An inactivated cell culture Japanese encephalitis vaccine (JE-ADVAX) formulated with delta inulin adjuvant provides robust heterologous protection against West Nile encephalitis via cross-protective memory B cells and neutralizing antibody. J. Virol. 2013, 87, 10324–10333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kool, M.; Fierens, K.; Lambrecht, B.N. Alum adjuvant: Some of the tricks of the oldest adjuvant. J. Med. Microbiol. 2012, 61, 927–934. [Google Scholar] [CrossRef] [Green Version]
- Kanesa-Thasan, N.; Putnak, J.; Mangiafico, J.; Saluzzo, J.; Ludwig, G. absence of protective neutralizng antibodies to West Nile virus in subjects following vaccination with Japanese encephalitis or dengue vaccines. Am. J. Trop. Med. Hyg. 2002, 66, 115–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, F.; Zhang, J.-S.; Liu, W.; Zhao, Q.-M.; Zhang, F.; Wu, X.-M.; Yang, H.; Ly, H.; Cao, W.-C. Failure of Japanese encephalitis vaccine and infection in inducing neutralizing antibodies against West Nile virus, People’s Republic of China. Am. J. Trop. Med. Hyg. 2008, 78, 999–1001. [Google Scholar] [CrossRef]
- Poland, J.D.; Bruce Cropp, C.; Craven, R.B.; Monath, T.P. Evaluation of the potency and safety of inactivated Japanese encephalitis vaccine in US inhabitants. J. Infect. Dis. 1990, 161, 878–882. [Google Scholar] [CrossRef]
- Halstead, S.B.; Jacobson, J.; Dubischar-Kastner, K. Japanese encephalitis vaccines. In Vaccines, 6th ed.; Plotkin, S.A., Orenstein, W.A., Offit, P.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 311–352. [Google Scholar]
- Kuzuhara, S.; Nakamura, H.; Hayashida, K.; Obata, J.; Abe, M.; Sonoda, K.; Nishiyama, K.; Sugawara, K.; Takeda, K.; Honda, T. Non-clinical and phase I clinical trials of a Vero cell-derived inactivated Japanese encephalitis vaccine. Vaccine 2003, 21, 4519–4526. [Google Scholar] [CrossRef]
- Jelinek, T.; Cromer, M.A.; Cramer, J.P.; Mills, D.J.; Lessans, K.; Gherardin, A.W.; Barnett, E.D.; Hagmann, S.H.; Askling, H.H.; Kiermayr, S. Safety and immunogenicity of an inactivated Vero cell_derived Japanese encephalitis vaccine (IXIARO®, JESPECT®) in a pediatric population in JE non-endemic countries: An uncontrolled, open-label phase 3 study. Travel Med. Infect. Dis. 2018, 22, 18–24. [Google Scholar] [CrossRef]
- Clark, D.C.; Brault, A.C.; Hunsperger, E. The contribution of rodent models to the pathological assessment of flaviviral infections of the central nervous system. Arch. Virol. 2012, 157, 1423–1440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, T.; Sasaki, M.; Okumura, M.; Kim, E.; Sawa, H. Flavivirus encephalitis: Pathological aspects of mouse and other animal models. Vet. Pathol. 2010, 47, 806–818. [Google Scholar] [CrossRef] [PubMed]
Challenge Virus | ||||||
---|---|---|---|---|---|---|
Immunised Mouse Sera | JEV | WNV | MVEV | SLEV | DENV1 | DENV2 |
(i) ccJE+Advax | 2.67 | 1.20 | 1.87 | 0.37 | 1.21 | 1.91 |
(ii) ccJE+alum | 2.99 | 0.96 | 1.45 | N.D. | 0.89 | 1.81 |
(iii) ccJE | 2.89 | 0.87 | 1.45 | N.D. | 1.02 | 1.56 |
(iv) mbJE | 3.37 | N.D. | 1.19 | N.D. | N.D. | 0.74 |
Host Mouse | Antigen Specific Antibodies | Immunised Mouse Sera (IgG2b/IgG1 Ratio) | |||
---|---|---|---|---|---|
ccJE+Advax | ccJE+Alum | ccJE | mbJE | ||
(i) Wild Type | JEV | 1.75 | 0.58 | 0.79 | 0.82 |
(ii) Wild Type | WNV | 3.28 | 0.02 | 0.10 | 0.85 |
(iii) Wild Type | DENV2 | 3.6 | 0.24 | 9.2 | 11.5 |
(iv) IFN-γ KO | JEV | 1.87 | 0.36 | 0.53 | 0.22 |
(v) IFN-γ KO | WNV | 2.46 | 0.14 | 0.26 | 0.10 |
Immunised Mouse Sera | DENV2 | |||
---|---|---|---|---|
(A) Plaque-Reduction Neutralisation Test (PRNT50) | (B) Infection Enhancement | |||
BHK | BHK-FcγRIIA | BHK | BHK-FcγRIIA | |
(i) ccJE+Advax | 1.37 | 1.31 | 0.07 | 0.15 |
(ii) ccJE+alum | 1.13 | N.D. | 0.33 | 3.06 |
(iii) ccJE | 1.51 | N.D. | 0.20 | 2.21 |
(iv) mbJE | N.D. | N.D. | 0.66 | 11.31 |
Immunised Mouse Sera | JEV | ||
---|---|---|---|
Single | Double | ||
500 ng | 200 ng | 50 ng | |
(i) ccJE+Advax | 1.972 | 0.967 | 2.512 |
(ii) ccJE | 1.182 | 0.786 | 2.098 |
(iii) mbJE | 0.966 | 1.433 | 1.343 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komiya, T.; Honda-Okubo, Y.; Baldwin, J.; Petrovsky, N. An Advax-Adjuvanted Inactivated Cell-Culture Derived Japanese Encephalitis Vaccine Induces Broadly Neutralising Anti-Flavivirus Antibodies, Robust Cellular Immunity and Provides Single Dose Protection. Vaccines 2021, 9, 1235. https://doi.org/10.3390/vaccines9111235
Komiya T, Honda-Okubo Y, Baldwin J, Petrovsky N. An Advax-Adjuvanted Inactivated Cell-Culture Derived Japanese Encephalitis Vaccine Induces Broadly Neutralising Anti-Flavivirus Antibodies, Robust Cellular Immunity and Provides Single Dose Protection. Vaccines. 2021; 9(11):1235. https://doi.org/10.3390/vaccines9111235
Chicago/Turabian StyleKomiya, Tomoyoshi, Yoshikazu Honda-Okubo, Jeremy Baldwin, and Nikolai Petrovsky. 2021. "An Advax-Adjuvanted Inactivated Cell-Culture Derived Japanese Encephalitis Vaccine Induces Broadly Neutralising Anti-Flavivirus Antibodies, Robust Cellular Immunity and Provides Single Dose Protection" Vaccines 9, no. 11: 1235. https://doi.org/10.3390/vaccines9111235
APA StyleKomiya, T., Honda-Okubo, Y., Baldwin, J., & Petrovsky, N. (2021). An Advax-Adjuvanted Inactivated Cell-Culture Derived Japanese Encephalitis Vaccine Induces Broadly Neutralising Anti-Flavivirus Antibodies, Robust Cellular Immunity and Provides Single Dose Protection. Vaccines, 9(11), 1235. https://doi.org/10.3390/vaccines9111235