Peptide-Based Vaccines for Neurodegenerative Diseases: Recent Endeavors and Future Perspectives
Abstract
:1. Introduction
2. Aβ, Tau, and α-Syn as Biomolecular Targets of Peptide-Based Vaccines for Neurodegenerative Diseases
2.1. Biomolecular Targets of Vaccines for Neurodegenerative Diseases
2.2. Aβ, Tau, and α-Syn as Targets of Vaccines for Neurodegenerative Diseases
2.2.1. Aβ
2.2.2. Tau
2.2.3. α-Syn
2.3. Other Neurotherapeutic Strategies Targeting Aβ, Tau, and α-Syn
2.3.1. Passive Immunotherapies
2.3.2. Peptides with Putative Action on Neurotoxic Aggregate-Species
3. Aβ-, Tau- and α-Syn Peptide Epitopes Used in Peptide-Based Vaccines for Neurodegenerative Diseases
3.1. Peptides Epitopes: General Concepts
3.2. Peptide Epitopes Used in Aβ-Vaccines
3.3. Peptide Epitopes Used in Tau-Vaccines
3.4. Peptide Epitopes Used in α-Syn Vaccines
Target/Vaccine | Peptide Epitope | Carrier Protein/Delivery System | Adjuvant | Type of Study | Reference |
---|---|---|---|---|---|
Aβ/AN1792 | Aβ(1-42) | Pre-aggregated peptide | QS-21 | Clinical | [3,5,59,61,62] |
Aβ/CAD106 | Aβ(1-6) | Qβ-VLPs 1 | Alum or MF59 | Clinical | [1,3,4,5,14,61,62,63,64] |
Aβ/ACC-001 | Aβ(1-7) | CRM197 2 | QS-21 | Clinical | [1,3,5,14,61,62,65] |
Aβ/Lu AF20513 | Aβ(1-12) | Tetanus toxoid | - | Clinical | [3,4,5,61,62] |
Aβ/UB-311 | Aβ(1-14) | UBITh 3 | Alum + CpG 4 | Clinical | [3,4,5,14,61,62,66] |
Aβ/ACI-24 | Aβ(1-15) | Liposomes | MLPA 5 | Clinical | [1,3,5,14,61,62] |
Aβ/V950 | Aβ(1-15) | ISCOMATRIX | Quil A | Clinical | [3,61,62,66] |
Aβ/ABvac40 | Aβ(33-40) | KLH 6 | Alum | Clinical | [1,3,4,5,14,61,67] |
Aβ/AFFITOPE AD01 | Aβ N-terminus mimotope | KLH | Alum | Clinical | [3] |
Aβ/AFFITOPE AD02 | Aβ N-terminus mimotope | KLH | Alum | Clinical | [3,5,14,61,62,69] |
Aβ/AFFITOPE AD03 | Aβ N-terminus mimotope | KLH | Alum | Clinical | [3,62] |
Tau/AADvac1 | Tau(294-305) | KLH | Alum | Clinical | [1,3,4,14,61,85,86,87,88] |
Tau/ACI-35 | Tau(393-408) [p7396/p404] | Liposomes | MLPA | Clinical | [1,3,4,14,86,88] |
α-Syn/AFFITOPE PD01A | α-syn C-terminus mimotope | KLH | Alum | Clinical | [14,46,104,105,106,107] |
α-Syn/ AFFITOPE PD03A | α-syn C-terminus mimotope | KLH | Alum | Clinical | [14,46,104,105,106] |
Aβ | Aβ(1-6) | BLPs 8 fused with peptidoglycan anchoring domain (PA) | - | Preclinical | [74] |
Aβ | Aβ(1-6) | Norovirus P Particles | CpG 5 | Preclinical | [73] |
Aβ | Aβ(3-10) | KLH | CFA/IFA | Preclinical | [70,71,72] |
Aβ | Aβ(1-11) | Bacterial protein domain E2 | Alum | Preclinical | [80] |
Aβ/AV-1959D DNA vaccine | Aβ(1-11) | MultiTEP 9 | - | Preclinical | [79] |
Aβ/Y-5A15 | Aβ(1-15) | Yeast cells (EBY-100) | Preclinical | [77] | |
Aβ | Aβ(1-15) | Silkworm pupae | Cholera toxin B subunit | Preclinical | [76] |
Aβ | Aβ(1-6), Aβ(1-15) | Multiple antigenic peptide system | CFA/IFA 10 | Preclinical | [75] |
Aβ | cyclo[Aβ(22-28)-Y 11NGK’] cyclo[Aβ(23-29)-YNGK’], cyclo[Aβ(22-29)-YNGK’] | Tetanus toxoid | Alum+MLPA | Preclinical | [81] |
Aβ/AOE1 | Oligomer-specific Aβ mimotope peptide | Yeast cell (EBY-100) | - | Preclinical | [84] |
Aβ | Aβ(1-42) | CFA+bvPLA2 12 | Preclinical | [82] | |
Aβ/ DNA vaccine | Aβ(1-42) | Gold particles | - | Preclinical | [83] |
Aβ, Tau | Aβ(1-11), Tau(2-18) | MultiTEP | Advax 13+CpG | Preclinical | [78] |
Aβ, Tau | Linear Aβ(1-6), Aβ(1-6)3, Aβ(1-15), Tau(294-305), p7Tau(396-404), pTau422 cycloAβ(1-7), cycloEP1 14, cycloEP2 14 | HBc-VLPs conjugated with peptides via SpyCatcher/SpyTag technology 15 | Alum | Preclinical | [40] |
Tau | Tau(2-18) | MultiTEP | Advax+CpG | Preclinical | [34,92] |
Tau | Tau(294-305) | HBc-VLPs 16 | Alum | Preclinical | [94] |
Tau | Tau(175-190)[p181] | Qβ-VLPs | Preclinical | [96] | |
Tau | Tau(195-213) [p202/205], Tau(207-220) [p212/214], Tau(224-238) [p231] | - | CFA+pertussis toxin | Preclinical | [95] |
Tau | Tau(379-408) [p396/404] | Alum | Preclinical | [100] | |
Tau | pTau30 [p202/205/238/262], pTau31 [p202/205/396/404] pTau35 [p238/262/396/404] | Norovirus P particles | CpG+AS01 | Preclinical | [97] |
α-Syn | α-Syn(85-99) α-Syn(109-126) α-Syn(126-140) | Tetanus toxoid | Quil A | Preclinical | [111] |
α-Syn | middle region: C11GGKNEEGAPQ (PD1) N-terminal: MDVFMKGLGGC (PD2) C-terminal: CGGEGYQDYEPEA (PD3) | Qβ-VLPs | - | Preclinical | [43] |
4. Formulation Components of Peptide-Based Vaccines for Neurodegenerative Diseases
4.1. Carrier Proteins
4.2. Delivery Systems
4.2.1. Virus-like, Bacterium-like, and Inorganic Particles
4.2.2. Liposomes and Miscellaneous Other Systems
4.3. Adjuvants
4.3.1. Alum Adjuvants
4.3.2. Emulsion Adjuvants
4.3.3. Saponin Adjuvants
4.3.4. Miscellaneous Other Adjuvants
5. Animal Studies as a Research Tool for the Preclinical Evaluation of the Peptide-Based Vaccines against Neurodegenerative Diseases
5.1. Animal Models and Immunization Schemes Used in Recent Preclinical Studies
5.2. Methods for Assessing Vaccination Efficacy
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mortada, I.; Farah, R.; Nabha, S.; Ojcius, D.M.; Fares, Y.; Almawi, W.Y.; Sadier, N.S. Immunotherapies for Neurodegenerative Diseases. Front. Neurol. 2021, 12, 654739. [Google Scholar] [CrossRef]
- Drouin, E.; Drouin, G. The first report of Alzheimer’s disease. Lancet Neurol. 2017, 16, 687. [Google Scholar] [CrossRef]
- Kwan, P.; Konno, H.; Chan, K.Y.; Baum, L. Rationale for the development of an Alzheimer’s disease vaccine. Hum. Vaccines Immunother. 2020, 16, 645–653. [Google Scholar] [CrossRef] [Green Version]
- Malonis, R.J.; Lai, J.R.; Vergnolle, O. Peptide-Based Vaccines: Current Progress and Future Challenges. Chem. Rev. 2020, 120, 3210–3229. [Google Scholar] [CrossRef] [Green Version]
- Mantile, F.; Prisco, A. Vaccination against β-Amyloid as a Strategy for the Prevention of Alzheimer’s Disease. Biology 2020, 9, 425. [Google Scholar] [CrossRef]
- Armstrong, R.A. What causes alzheimer’s disease? Folia Neuropathol. 2013, 51, 169–188. [Google Scholar] [CrossRef]
- Yan, D.; Zhang, Y.; Liu, L.; Yan, H. Pesticide exposure and risk of Alzheimer’s disease: A systematic review and meta-analysis. Sci. Rep. 2016, 6, 32222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoiljkovic, M.; Horvath, T.L.; Hajós, M. Therapy for Alzheimer’s disease: Missing targets and functional markers? Ageing Res. Rev. 2021, 68, 101318. [Google Scholar] [CrossRef]
- Bertram, L.; Tanzi, R.E. The genetics of Alzheimer’s disease. Prog. Mol. Biol. Transl. Sci. 2012, 107, 79–100. [Google Scholar] [CrossRef] [PubMed]
- Selkoe, D.J.; Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 2016, 8, 595–608. [Google Scholar] [CrossRef]
- Hoskin, J.L.; Sabbagh, M.N.; Al-Hasan, Y.; Decourt, B. Tau immunotherapies for Alzheimer’s disease. Expert Opin. Investig. Drugs 2019, 28, 545–554. [Google Scholar] [CrossRef]
- Eisele, Y.S.; Monteiro, C.; Fearns, C.; Encalada, S.E.; Wiseman, R.L.; Powers, E.T.; Kelly, J.W. Targeting protein aggregation for the treatment of degenerative diseases. Nat. Rev. Drug Discov. 2015, 14, 759–780. [Google Scholar] [CrossRef] [Green Version]
- Spires-Jones, T.L.; Hyman, B.T. The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron 2014, 82, 756–771. [Google Scholar] [CrossRef] [Green Version]
- Kwon, S.; Iba, M.; Kim, C.; Masliah, E. Immunotherapies for Aging-Related Neurodegenerative Diseases-Emerging Perspectives and New Targets. Neurother. J. Am. Soc. Exp. Neurother. 2020, 17, 935–954. [Google Scholar] [CrossRef]
- Lashuel, H.A.; Overk, C.R.; Oueslati, A.; Masliah, E. The many faces of α-synuclein: From structure and toxicity to therapeutic target. Nat. Rev. Neurosci. 2013, 14, 38–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeTure, M.A.; Dickson, D.W. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener. 2019, 14, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Twohig, D.; Nielsen, H.M. α-synuclein in the pathophysiology of Alzheimer’s disease. Mol. Neurodegener. 2019, 14, 23. [Google Scholar] [CrossRef] [Green Version]
- Wells, C.; Brennan, S.; Keon, M.; Ooi, L. The role of amyloid oligomers in neurodegenerative pathologies. Int. J. Biol. Macromol. 2021, 181, 582–604. [Google Scholar] [CrossRef]
- Jack, C.R., Jr. Preclinical Alzheimer’s disease: A valid concept. Lancet Neurol. 2020, 19, 31. [Google Scholar] [CrossRef] [Green Version]
- Biogen’s Alzheimer’s Drug Gets FDA Approval, Mixed Reviews. Available online: https://www.the-scientist.com/news-opinion/biogen-s-alzheimer-s-drug-gets-fda-approval-mixed-reviews-68851 (accessed on 20 October 2021).
- Sevigny, J.; Chiao, P.; Bussière, T.; Weinreb, P.H.; Williams, L.; Maier, M.; Dunstan, R.; Salloway, S.; Chen, T.; Ling, Y.; et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 2016, 537, 50–56. [Google Scholar] [CrossRef]
- Tolar, M.; Abushakra, S.; Hey, J.A.; Porsteinsson, A.; Sabbagh, M. Aducanumab, gantenerumab, BAN2401, and ALZ-801-the first wave of amyloid-targeting drugs for Alzheimer’s disease with potential for near term approval. Alzheimer’s Res. Ther. 2020, 12, 95. [Google Scholar] [CrossRef]
- Knopman, D.S.; Jones, D.T.; Greicius, M.D. Failure to demonstrate efficacy of aducanumab: An analysis of the EMERGE and ENGAGE trials as reported by Biogen, December 2019. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2021, 17, 696–701. [Google Scholar] [CrossRef] [PubMed]
- Mullard, A. Controversial Alzheimer’s drug approval could affect other diseases. Nature 2021, 595, 162–163. [Google Scholar] [CrossRef] [PubMed]
- Apostolopoulos, V.; Bojarska, J.; Chai, T.-T.; Elnagdy, S.; Kaczmarek, K.; Matsoukas, J.; New, R.; Parang, K.; Lopez, O.P.; Parhiz, H.; et al. A Global Review on Short Peptides: Frontiers and Perspectives. Molecules 2021, 26, 430. [Google Scholar] [CrossRef] [PubMed]
- Valera, E.; Spencer, B.; Masliah, E. Immunotherapeutic Approaches Targeting Amyloid-β, α-Synuclein, and Tau for the Treatment of Neurodegenerative Disorders. Neurother. J. Am. Soc. Exp. Neurother. 2016, 13, 179–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bard, F.; Cannon, C.; Barbour, R.; Burke, R.L.; Games, D.; Grajeda, H.; Guido, T.; Hu, K.; Huang, J.; Johnson-Wood, K.; et al. Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat. Med. 2000, 6, 916–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freir, D.B.; Nicoll, A.J.; Klyubin, I.; Panico, S.; Mc Donald, J.M.; Risse, E.; Asante, E.A.; Farrow, M.A.; Sessions, R.B.; Saibil, H.R.; et al. Interaction between prion protein and toxic amyloid β assemblies can be therapeutically targeted at multiple sites. Nat. Commun. 2011, 2, 336. [Google Scholar] [CrossRef] [PubMed]
- Corbett, G.T.; Wang, Z.; Hong, W.; Colom-Cadena, M.; Rose, J.; Liao, M.; Asfaw, A.; Hall, T.C.; Ding, L.; DeSousa, A.; et al. PrP is a central player in toxicity mediated by soluble aggregates of neurodegeneration-causing proteins. Acta Neuropathol. 2020, 139, 503–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boutajangout, A.; Zhang, W.; Kim, J.; Abdali, W.A.; Prelli, F.; Wisniewski, T. Passive Immunization with a Novel Monoclonal Anti-PrP Antibody TW1 in an Alzheimer’s Mouse Model With Tau Pathology. Front. Aging Neurosci. 2021, 13, 640677. [Google Scholar] [CrossRef]
- Zhou, Q.; Mareljic, N.; Michaelsen, M.; Parhizkar, S.; Heindl, S.; Nuscher, B.; Farny, D.; Czuppa, M.; Schludi, C.; Graf, A.; et al. Active poly-GA vaccination prevents microglia activation and motor deficits in a C9orf72 mouse model. EMBO Mol. Med. 2020, 12, e10919. [Google Scholar] [CrossRef]
- Ramsingh, A.I.; Manley, K.; Rong, Y.; Reilly, A.; Messer, A. Transcriptional dysregulation of inflammatory/immune pathways after active vaccination against Huntington’s disease. Hum. Mol. Genet. 2015, 24, 6186–6197. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, N.; Skelton, A.A. Structure and Function of Alzheimer’s Amyloid βeta Proteins from Monomer to Fibrils: A Mini Review. Protein J. 2019, 38, 425–434. [Google Scholar] [CrossRef]
- Joly-Amado, A.; Davtyan, H.; Serraneau, K.; Jules, P.; Zitnyar, A.; Pressman, E.; Zagorski, K.; Antonyan, T.; Hovakimyan, A.; Paek, H.J.; et al. Active immunization with tau epitope in a mouse model of tauopathy induced strong antibody response together with improvement in short memory and pSer396-tau pathology. Neurobiol. Dis. 2020, 134, 104636. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Yang, J.; Zhang, B.; Gao, M.; Su, Z.; Huang, Y. The structure and phase of tau: From monomer to amyloid filament. Cell. Mol. Life Sci. CMLS 2021, 78, 1873–1886. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, A.W.P.; Falcon, B.; He, S.; Murzin, A.G.; Murshudov, G.; Garringer, H.J.; Crowther, R.A.; Ghetti, B.; Goedert, M.; Scheres, S.H.W. Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature 2017, 547, 185–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Hilaly, Y.K.; Foster, B.E.; Biasetti, L.; Lutter, L.; Pollack, S.J.; Rickard, J.E.; Storey, J.M.D.; Harrington, C.R.; Xue, W.F.; Wischik, C.M.; et al. Tau (297-391) forms filaments that structurally mimic the core of paired helical filaments in Alzheimer’s disease brain. FEBS Lett. 2020, 594, 944–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rösler, T.W.; Marvian, A.T.; Brendel, M.; Nykänen, N.P.; Höllerhage, M.; Schwarz, S.C.; Hopfner, F.; Koeglsperger, T.; Respondek, G.; Schweyer, K.; et al. Four-repeat tauopathies. Prog. Neurobiol. 2019, 180, 101644. [Google Scholar] [CrossRef] [PubMed]
- Augustinack, J.C.; Schneider, A.; Mandelkow, E.M.; Hyman, B.T. Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta Neuropathol. 2002, 103, 26–35. [Google Scholar] [CrossRef]
- Ji, M.; Xie, X.; Liu, D.-Q.; Lu, S.; Zhang, L.; Huang, Y.-R.; Liu, R. Engineered hepatitis B core virus-like particle carrier for precise and personalized Alzheimer’s disease vaccine preparation via fixed-point coupling. Appl. Mater. Today 2020, 19, 100575. [Google Scholar] [CrossRef]
- Stefanis, L.; Emmanouilidou, E.; Pantazopoulou, M.; Kirik, D.; Vekrellis, K.; Tofaris, G.K. How is alpha-synuclein cleared from the cell? J. Neurochem. 2019, 150, 577–590. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Wang, B.; Li, X.; Fu, C.; Wang, C.; Kang, X. α-Synuclein: A Multifunctional Player in Exocytosis, Endocytosis, and Vesicle Recycling. Front. Neurosci. 2019, 13, 28. [Google Scholar] [CrossRef]
- Doucet, M.; El-Turabi, A.; Zabel, F.; Hunn, B.H.M.; Bengoa-Vergniory, N.; Cioroch, M.; Ramm, M.; Smith, A.M.; Gomes, A.C.; Cabral de Miranda, G.; et al. Preclinical development of a vaccine against oligomeric alpha-synuclein based on virus-like particles. PLoS ONE 2017, 12, e0181844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bendor, J.T.; Logan, T.P.; Edwards, R.H. The function of α-synuclein. Neuron 2013, 79, 1044–1066. [Google Scholar] [CrossRef] [Green Version]
- Wong, Y.C.; Krainc, D. α-synuclein toxicity in neurodegeneration: Mechanism and therapeutic strategies. Nat. Med. 2017, 23, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Jamal, F. Immunotherapies Targeting α-Synuclein in Parkinson Disease. Fed. Pract. Health Care Prof. VA DoD PHS 2020, 37, 375–379. [Google Scholar] [CrossRef]
- Plotkin, S.S.; Cashman, N.R. Passive immunotherapies targeting Aβ and tau in Alzheimer’s disease. Neurobiol. Dis. 2020, 144, 105010. [Google Scholar] [CrossRef]
- Baig, M.H.; Ahmad, K.; Saeed, M.; Alharbi, A.M.; Barreto, G.E.; Ashraf, G.M.; Choi, I. Peptide based therapeutics and their use for the treatment of neurodegenerative and other diseases. Biomed. Pharmacother. 2018, 103, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.; Gracia, P.; Navarro, S.; Peña-Díaz, S.; Pujols, J.; Cremades, N.; Pallarès, I.; Ventura, S. α-Helical peptidic scaffolds to target α-synuclein toxic species with nanomolar affinity. Nat. Commun. 2021, 12, 3752. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, Y.; Niikura, T.; Tajima, H.; Yasukawa, T.; Sudo, H.; Ito, Y.; Kita, Y.; Kawasumi, M.; Kouyama, K.; Doyu, M.; et al. A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer’s disease genes and Abeta. Proc. Natl. Acad. Sci. USA 2001, 98, 6336–6341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benaki, D.; Zikos, C.; Evangelou, A.; Livaniou, E.; Vlassi, M.; Mikros, E.; Pelecanou, M. Solution structure of humanin, a peptide against Alzheimer’s disease-related neurotoxicity. Biochem. Biophys. Res. Commun. 2005, 329, 152–160. [Google Scholar] [CrossRef]
- Zou, P.; Ding, Y.; Sha, Y.; Hu, B.; Nie, S. Humanin peptides block calcium influx of rat hippocampal neurons by altering fibrogenesis of Abeta(1-40). Peptides 2003, 24, 679–685. [Google Scholar] [CrossRef]
- Price, D.; Dorandish, S.; Williams, A.; Iwaniec, B.; Stephens, A.; Marshall, K.; Guthrie, J.; Heyl, D.; Evans, H.G. Humanin Blocks the Aggregation of Amyloid-β Induced by Acetylcholinesterase, an Effect Abolished in the Presence of IGFBP-3. Biochemistry 2020, 59, 1981–2002. [Google Scholar] [CrossRef] [PubMed]
- Skwarczynski, M.; Toth, I. Peptide-based synthetic vaccines. Chem. Sci. 2016, 7, 842–854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez-Trincado, J.L.; Gomez-Perosanz, M.; Reche, P.A. Fundamentals and Methods for T- and B-Cell Epitope Prediction. J. Immunol. Res. 2017, 2017, 2680160. [Google Scholar] [CrossRef] [Green Version]
- Fleri, W.; Paul, S.; Dhanda, S.K.; Mahajan, S.; Xu, X.; Peters, B.; Sette, A. The Immune Epitope Database and Analysis Resource in Epitope Discovery and Synthetic Vaccine Design. Front. Immunol. 2017, 8, 278. [Google Scholar] [CrossRef] [Green Version]
- Raoufi, E.; Hemmati, M.; Eftekhari, S.; Khaksaran, K.; Mahmodi, Z.; Farajollahi, M.M.; Mohsenzadegan, M. Epitope Prediction by Novel Immunoinformatics Approach: A State-of-the-art Review. Int. J. Pept. Res. Ther. 2020, 26, 1155–1163. [Google Scholar] [CrossRef] [PubMed]
- Schenk, D.; Barbour, R.; Dunn, W.; Gordon, G.; Grajeda, H.; Guido, T.; Hu, K.; Huang, J.; Johnson-Wood, K.; Khan, K.; et al. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 1999, 400, 173–177. [Google Scholar] [CrossRef]
- Nicoll, J.A.R.; Buckland, G.R.; Harrison, C.H.; Page, A.; Harris, S.; Love, S.; Neal, J.W.; Holmes, C.; Boche, D. Persistent neuropathological effects 14 years following amyloid-β immunization in Alzheimer’s disease. Brain J. Neurol. 2019, 142, 2113–2126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wisniewski, T.; Goñi, F. Immunotherapeutic approaches for Alzheimer’s disease. Neuron 2015, 85, 1162–1176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marciani, D.J. Promising Results from Alzheimer’s Disease Passive Immunotherapy Support the Development of a Preventive Vaccine. Research 2019, 2019, 5341375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mo, J.J.; Li, J.Y.; Yang, Z.; Liu, Z.; Feng, J.S. Efficacy and safety of anti-amyloid-β immunotherapy for Alzheimer’s disease: A systematic review and network meta-analysis. Ann. Clin. Transl. Neurol. 2017, 4, 931–942. [Google Scholar] [CrossRef]
- Farlow, M.R.; Andreasen, N.; Riviere, M.E.; Vostiar, I.; Vitaliti, A.; Sovago, J.; Caputo, A.; Winblad, B.; Graf, A. Long-term treatment with active Aβ immunotherapy with CAD106 in mild Alzheimer’s disease. Alzheimer’s Res. Ther. 2015, 7, 23. [Google Scholar] [CrossRef] [Green Version]
- Vandenberghe, R.; Riviere, M.E.; Caputo, A.; Sovago, J.; Maguire, R.P.; Farlow, M.; Marotta, G.; Sanchez-Valle, R.; Scheltens, P.; Ryan, J.M.; et al. Active Aβ immunotherapy CAD106 in Alzheimer’s disease: A phase 2b study. Alzheimer’s Dement. 2017, 3, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Pasquier, F.; Sadowsky, C.; Holstein, A.; Leterme Gle, P.; Peng, Y.; Jackson, N.; Fox, N.C.; Ketter, N.; Liu, E.; Ryan, J.M. Two Phase 2 Multiple Ascending-Dose Studies of Vanutide Cridificar (ACC-001) and QS-21 Adjuvant in Mild-to-Moderate Alzheimer’s Disease. J. Alzheimer’s Dis. 2016, 51, 1131–1143. [Google Scholar] [CrossRef]
- Wang, C.Y.; Wang, P.N.; Chiu, M.J.; Finstad, C.L.; Lin, F.; Lynn, S.; Tai, Y.H.; De Fang, X.; Zhao, K.; Hung, C.H.; et al. UB-311, a novel UBITh(®) amyloid β peptide vaccine for mild Alzheimer’s disease. J. Alzheimer’s Dis. 2017, 3, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Lacosta, A.M.; Pascual-Lucas, M.; Pesini, P.; Casabona, D.; Pérez-Grijalba, V.; Marcos-Campos, I.; Sarasa, L.; Canudas, J.; Badi, H.; Monleón, I.; et al. Safety, tolerability and immunogenicity of an active anti-Aβ(40) vaccine (ABvac40) in patients with Alzheimer’s disease: A randomised, double-blind, placebo-controlled, phase I trial. Alzheimer’s Res. Ther. 2018, 10, 12. [Google Scholar] [CrossRef]
- Marciani, D.J. A retrospective analysis of the Alzheimer’s disease vaccine progress—The critical need for new development strategies. J. Neurochem. 2016, 137, 687–700. [Google Scholar] [CrossRef] [Green Version]
- Schneeberger, A.; Hendrix, S.; Mandler, M.; Ellison, N.; Bürger, V.; Brunner, M.; Frölich, L.; Mimica, N.; Hort, J.; Rainer, M.; et al. Results from a Phase II Study to Assess the Clinical and Immunological Activity of AFFITOPE® AD02 in Patients with Early Alzheimer’s Disease. J. Prev. Alzheimer’s Dis. 2015, 2, 103–114. [Google Scholar] [CrossRef]
- Wang, J.C.; Zhu, K.; Zhang, H.Y.; Wang, G.Q.; Liu, H.Y.; Cao, Y.P. Early active immunization with Aβ(3-10)-KLH vaccine reduces tau phosphorylation in the hippocampus and protects cognition of mice. Neural Regen. Res. 2020, 15, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Meng, Y.; Zhang, H.Y.; Yin, W.C.; Yan, Y.; Cao, Y.P. Prophylactic active immunization with a novel epitope vaccine improves cognitive ability by decreasing amyloid plaques and neuroinflammation in APP/PS1 transgenic mice. Neurosci. Res. 2017, 119, 7–14. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Meng, Y.; Yan, X.J.; Liu, S.; Wang, G.Q.; Cao, Y.P. Immunization with Aβ3-10-KLH vaccine improves cognitive function and ameliorates mitochondrial dysfunction and reduces Alzheimer’s disease-like pathology in Tg-APPswe/PSEN1dE9 mice. Brain Res. Bull. 2021, 174, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Guo, Y.; Sun, Y.; Yu, B.; Zhang, H.; Wu, J.; Yu, X.; Wu, H.; Kong, W. Active immunization with norovirus P particle-based amyloid-β chimeric protein vaccine induces high titers of anti-Aβ antibodies in mice. BMC Immunol. 2019, 20, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, L.; Guo, Y.; Sun, Y.; Dong, Y.; Wu, J.; Yu, B.; Zhang, H.; Yu, X.; Wu, H.; Kong, W. A novel Aβ epitope vaccine based on bacterium-like particle against Alzheimer’s disease. Mol. Immunol. 2018, 101, 259–267. [Google Scholar] [CrossRef]
- Sun, D.; Qiao, Y.; Jiang, X.; Li, P.; Kuai, Z.; Gong, X.; Liu, D.; Fu, Q.; Sun, L.; Li, H.; et al. Multiple Antigenic Peptide System Coupled with Amyloid Beta Protein Epitopes As An Immunization Approach to Treat Alzheimer’s Disease. ACS Chem. Neurosci. 2019, 10, 2794–2800. [Google Scholar] [CrossRef]
- Li, S.; Jin, Y.; Wang, C.; Chen, J.; Yu, W.; Jin, Y.; Lv, Z. Effects of a 15-amino-acid isoform of amyloid- β expressed by silkworm pupae on B6C3-Tg Alzheimer’s disease transgenic mice. J. Biotechnol. 2019, 296, 83–92. [Google Scholar] [CrossRef]
- Liu, D.Q.; Lu, S.; Zhang, L.; Huang, Y.R.; Ji, M.; Sun, X.Y.; Liu, X.G.; Liu, R.T. Yeast-Based Aβ1-15 Vaccine Elicits Strong Immunogenicity and Attenuates Neuropathology and Cognitive Deficits in Alzheimer’s Disease Transgenic Mice. Vaccines 2020, 8, 351. [Google Scholar] [CrossRef]
- Davtyan, H.; Hovakimyan, A.; Shabestari, S.K.; Antonyan, T.; Coburn, M.A.; Zagorski, K.; Chailyan, G.; Petrushina, I.; Svystun, O.; Danhash, E.; et al. Testing a MultiTEP-based combination vaccine to reduce Aβ and tau pathology in Tau22/5xFAD bigenic mice. Alzheimer’s Res. Ther. 2019, 11, 107. [Google Scholar] [CrossRef] [PubMed]
- Petrushina, I.; Hovakimyan, A.; Harahap-Carrillo, I.S.; Davtyan, H.; Antonyan, T.; Chailyan, G.; Kazarian, K.; Antonenko, M.; Jullienne, A.; Hamer, M.M.; et al. Characterization and preclinical evaluation of the cGMP grade DNA based vaccine, AV-1959D to enter the first-in-human clinical trials. Neurobiol. Dis. 2020, 139, 104823. [Google Scholar] [CrossRef]
- Mantile, F.; Capasso, A.; Villacampa, N.; Donnini, M.; Liguori, G.L.; Constantin, G.; De Berardinis, P.; Heneka, M.T.; Prisco, A. Vaccination with (1-11)E2 in alum efficiently induces an antibody response to β-amyloid without affecting brain β-amyloid load and microglia activation in 3xTg mice. Aging Clin. Exp. Res. 2021, 33, 1383–1387. [Google Scholar] [CrossRef] [Green Version]
- Oberman, K.; Gouweleeuw, L.; Hoogerhout, P.; Eisel, U.L.M.; van Riet, E.; Schoemaker, R.G. Vaccination Prevented Short-Term Memory Loss, but Deteriorated Long-Term Spatial Memory in Alzheimer’s Disease Mice, Independent of Amyloid-β Pathology. J. Alzheimer’s Dis. Rep. 2020, 4, 261–280. [Google Scholar] [CrossRef]
- Baek, H.; Lee, C.J.; Choi, D.B.; Kim, N.S.; Kim, Y.S.; Ye, Y.J.; Kim, Y.S.; Kim, J.S.; Shim, I.; Bae, H. Bee venom phospholipase A2 ameliorates Alzheimer’s disease pathology in Aβ vaccination treatment without inducing neuro-inflammation in a 3xTg-AD mouse model. Sci. Rep. 2018, 8, 17369. [Google Scholar] [CrossRef]
- Rosenberg, R.N.; Fu, M.; Lambracht-Washington, D. Active full-length DNA Aβ(42) immunization in 3xTg-AD mice reduces not only amyloid deposition but also tau pathology. Alzheimer’s Res. Ther. 2018, 10, 115. [Google Scholar] [CrossRef]
- Yu, X.L.; Zhu, J.; Liu, X.M.; Xu, P.X.; Zhang, Y.; Liu, R.T. Vaccines targeting the primary amino acid sequence and conformational epitope of amyloid-β had distinct effects on neuropathology and cognitive deficits in EAE/AD mice. Br. J. Pharmacol. 2020, 177, 2860–2871. [Google Scholar] [CrossRef]
- Novak, P.; Schmidt, R.; Kontsekova, E.; Zilka, N.; Kovacech, B.; Skrabana, R.; Vince-Kazmerova, Z.; Katina, S.; Fialova, L.; Prcina, M.; et al. Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer’s disease: A randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurol. 2017, 16, 123–134. [Google Scholar] [CrossRef]
- Novak, P.; Kontsekova, E.; Zilka, N.; Novak, M. Ten Years of Tau-Targeted Immunotherapy: The Path Walked and the Roads Ahead. Front. Neurosci. 2018, 12, 798. [Google Scholar] [CrossRef] [PubMed]
- Novak, P.; Schmidt, R.; Kontsekova, E.; Kovacech, B.; Smolek, T.; Katina, S.; Fialova, L.; Prcina, M.; Parrak, V.; Dal-Bianco, P.; et al. FUNDAMANT: An interventional 72-week phase 1 follow-up study of AADvac1, an active immunotherapy against tau protein pathology in Alzheimer’s disease. Alzheimer’s Res. Ther. 2018, 10, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herline, K.; Drummond, E.; Wisniewski, T. Recent advancements toward therapeutic vaccines against Alzheimer’s disease. Expert Rev. Vaccines 2018, 17, 707–721. [Google Scholar] [CrossRef] [PubMed]
- Kontsekova, E.; Zilka, N.; Kovacech, B.; Skrabana, R.; Novak, M. Identification of structural determinants on tau protein essential for its pathological function: Novel therapeutic target for tau immunotherapy in Alzheimer’s disease. Alzheimer’s Res. Ther. 2014, 6, 45. [Google Scholar] [CrossRef] [Green Version]
- Kontsekova, E.; Zilka, N.; Kovacech, B.; Novak, P.; Novak, M. First-in-man tau vaccine targeting structural determinants essential for pathological tau-tau interaction reduces tau oligomerisation and neurofibrillary degeneration in an Alzheimer’s disease model. Alzheimer’s Res. Ther. 2014, 6, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davtyan, H.; Zagorski, K.; Rajapaksha, H.; Hovakimyan, A.; Davtyan, A.; Petrushina, I.; Kazarian, K.; Cribbs, D.H.; Petrovsky, N.; Agadjanyan, M.G.; et al. Alzheimer’s disease Advax(CpG)- adjuvanted MultiTEP-based dual and single vaccines induce high-titer antibodies against various forms of tau and Aβ pathological molecules. Sci. Rep. 2016, 6, 28912. [Google Scholar] [CrossRef] [Green Version]
- Hovakimyan, A.; Antonyan, T.; Shabestari, S.K.; Svystun, O.; Chailyan, G.; Coburn, M.A.; Carlen-Jones, W.; Petrushina, I.; Chadarevian, J.P.; Zagorski, K.; et al. A MultiTEP platform-based epitope vaccine targeting the phosphatase activating domain (PAD) of tau: Therapeutic efficacy in PS19 mice. Sci. Rep. 2019, 9, 15455. [Google Scholar] [CrossRef] [Green Version]
- Bittar, A.; Bhatt, N.; Kayed, R. Advances and considerations in AD tau-targeted immunotherapy. Neurobiol. Dis. 2020, 134, 104707. [Google Scholar] [CrossRef]
- Ji, M.; Xie, X.X.; Liu, D.Q.; Yu, X.L.; Zhang, Y.; Zhang, L.X.; Wang, S.W.; Huang, Y.R.; Liu, R.T. Hepatitis B core VLP-based mis-disordered tau vaccine elicits strong immune response and alleviates cognitive deficits and neuropathology progression in Tau.P301S mouse model of Alzheimer’s disease and frontotemporal dementia. Alzheimer’s Res. Ther. 2018, 10, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benhamron, S.; Rozenstein-Tsalkovich, L.; Nitzan, K.; Abramsky, O.; Rosenmann, H. Phos-tau peptide immunization of amyloid-tg-mice reduced non-mutant phos-tau pathology, improved cognition and reduced amyloid plaques. Exp. Neurol. 2018, 303, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Maphis, N.M.; Peabody, J.; Crossey, E.; Jiang, S.; Jamaleddin Ahmad, F.A.; Alvarez, M.; Mansoor, S.K.; Yaney, A.; Yang, Y.; Sillerud, L.O.; et al. Qß Virus-like particle-based vaccine induces robust immunity and protects against tauopathy. NPJ Vaccines 2019, 4, 26. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Guo, Y.; Feng, X.; Fu, L.; Zheng, Y.; Dong, Y.; Zhang, Y.; Yu, X.; Kong, W.; Wu, H. Norovirus P particle-based tau vaccine-generated phosphorylated tau antibodies markedly ameliorate tau pathology and improve behavioral deficits in mouse model of Alzheimer’s disease. Signal Transduct. Target. Ther. 2021, 6, 61. [Google Scholar] [CrossRef] [PubMed]
- Shahpasand, K.; Sepehri Shamloo, A.; Nabavi, S.M.; Lu, P.K.; Zhou, X.Z. “Tau immunotherapy: Hopes and hindrances”. Hum. Vaccines Immunother. 2018, 14, 277–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teng, I.T.; Li, X.; Yadikar, H.A.; Yang, Z.; Li, L.; Lyu, Y.; Pan, X.; Wang, K.K.; Tan, W. Identification and Characterization of DNA Aptamers Specific for Phosphorylation Epitopes of Tau Protein. J. Am. Chem. Soc. 2018, 140, 14314–14323. [Google Scholar] [CrossRef] [PubMed]
- Rajamohamedsait, H.; Rasool, S.; Rajamohamedsait, W.; Lin, Y.; Sigurdsson, E.M. Prophylactic Active Tau Immunization Leads to Sustained Reduction in Both Tau and Amyloid-β Pathologies in 3xTg Mice. Sci. Rep. 2017, 7, 17034. [Google Scholar] [CrossRef] [Green Version]
- Almandoz-Gil, L.; Lindström, V.; Sigvardson, J.; Kahle, P.J.; Lannfelt, L.; Ingelsson, M.; Bergström, J. Mapping of Surface-Exposed Epitopes of In Vitro and In Vivo Aggregated Species of Alpha-Synuclein. Cell. Mol. Neurobiol. 2017, 37, 1217–1226. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Koudstaal, W.; Fletcher, L.; Costa, M.; van Winsen, M.; Siregar, B.; Inganäs, H.; Kim, J.; Keogh, E.; Macedo, J.; et al. Naturally occurring antibodies isolated from PD patients inhibit synuclein seeding in vitro and recognize Lewy pathology. Acta Neuropathol. 2019, 137, 825–836. [Google Scholar] [CrossRef] [Green Version]
- Mandaci, S.Y.; Caliskan, M.; Sariaslan, M.F.; Uversky, V.N.; Coskuner-Weber, O. Epitope region identification challenges of intrinsically disordered proteins in neurodegenerative diseases: Secondary structure dependence of α-synuclein on simulation techniques and force field parameters. Chem. Biol. Drug Des. 2020, 96, 659–667. [Google Scholar] [CrossRef] [PubMed]
- McFarthing, K.; Simuni, T. Clinical Trial Highlights: Targetting Alpha-Synuclein. J. Parkinson’s Dis. 2019, 9, 5–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatterjee, D.; Kordower, J.H. Immunotherapy in Parkinson’s disease: Current status and future directions. Neurobiol. Dis. 2019, 132, 104587. [Google Scholar] [CrossRef] [PubMed]
- Meissner, W.G.; Traon, A.P.; Foubert-Samier, A.; Galabova, G.; Galitzky, M.; Kutzelnigg, A.; Laurens, B.; Lührs, P.; Medori, R.; Péran, P.; et al. A Phase 1 Randomized Trial of Specific Active α-Synuclein Immunotherapies PD01A and PD03A in Multiple System Atrophy. Mov. Disord. Off. J. Mov. Disord. Soc. 2020, 35, 1957–1965. [Google Scholar] [CrossRef]
- Volc, D.; Poewe, W.; Kutzelnigg, A.; Lührs, P.; Thun-Hohenstein, C.; Schneeberger, A.; Galabova, G.; Majbour, N.; Vaikath, N.; El-Agnaf, O.; et al. Safety and immunogenicity of the α-synuclein active immunotherapeutic PD01A in patients with Parkinson’s disease: A randomised, single-blinded, phase 1 trial. Lancet Neurol. 2020, 19, 591–600. [Google Scholar] [CrossRef]
- Affitope PD01A, PD03A. Available online: https://www.alzforum.org/therapeutics/affitope-pd01a-pd03a (accessed on 21 October 2021).
- Sulzer, D.; Alcalay, R.N.; Garretti, F.; Cote, L.; Kanter, E.; Agin-Liebes, J.; Liong, C.; McMurtrey, C.; Hildebrand, W.H.; Mao, X.; et al. T cells from patients with Parkinson’s disease recognize α-synuclein peptides. Nature 2017, 546, 656–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masliah, E.; Rockenstein, E.; Adame, A.; Alford, M.; Crews, L.; Hashimoto, M.; Seubert, P.; Lee, M.; Goldstein, J.; Chilcote, T.; et al. Effects of alpha-synuclein immunization in a mouse model of Parkinson’s disease. Neuron 2005, 46, 857–868. [Google Scholar] [CrossRef] [Green Version]
- Ghochikyan, A.; Petrushina, I.; Davtyan, H.; Hovakimyan, A.; Saing, T.; Davtyan, A.; Cribbs, D.H.; Agadjanyan, M.G. Immunogenicity of epitope vaccines targeting different B cell antigenic determinants of human α-synuclein: Feasibility study. Neurosci. Lett. 2014, 560, 86–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marciani, D.J. New Th2 adjuvants for preventive and active immunotherapy of neurodegenerative proteinopathies. Drug Discov. Today 2014, 19, 912–920. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Zhao, F.; Shao, J.; Li, Y.; Li, S.; Chang, H.; Zhang, Y. Application of built-in adjuvants for epitope-based vaccines. PeerJ 2019, 6, e6185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davtyan, H.; Ghochikyan, A.; Petrushina, I.; Hovakimyan, A.; Davtyan, A.; Poghosyan, A.; Marleau, A.M.; Movsesyan, N.; Kiyatkin, A.; Rasool, S.; et al. Immunogenicity, efficacy, safety, and mechanism of action of epitope vaccine (Lu AF20513) for Alzheimer’s disease: Prelude to a clinical trial. J. Neurosci. Off. J. Soc. Neurosci. 2013, 33, 4923–4934. [Google Scholar] [CrossRef]
- Qu, B.X.; Lambracht-Washington, D.; Fu, M.; Eagar, T.N.; Stüve, O.; Rosenberg, R.N. Analysis of three plasmid systems for use in DNA A beta 42 immunization as therapy for Alzheimer’s disease. Vaccine 2010, 28, 5280–5287. [Google Scholar] [CrossRef] [Green Version]
- Steeghs, L.; Keestra, A.M.; van Mourik, A.; Uronen-Hansson, H.; van der Ley, P.; Callard, R.; Klein, N.; van Putten, J.P. Differential activation of human and mouse Toll-like receptor 4 by the adjuvant candidate LpxL1 of Neisseria meningitidis. Infect. Immun. 2008, 76, 3801–3807. [Google Scholar] [CrossRef] [Green Version]
- Shi, S.; Zhu, H.; Xia, X.; Liang, Z.; Ma, X.; Sun, B. Vaccine adjuvants: Understanding the structure and mechanism of adjuvanticity. Vaccine 2019, 37, 3167–3178. [Google Scholar] [CrossRef]
- Azmi, F.; Ahmad Fuaad, A.A.; Skwarczynski, M.; Toth, I. Recent progress in adjuvant discovery for peptide-based subunit vaccines. Hum. Vaccines Immunother. 2014, 10, 778–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindblad, E.B. Aluminium adjuvants—In retrospect and prospect. Vaccine 2004, 22, 3658–3668. [Google Scholar] [CrossRef]
- Oscherwitz, J.; Hankenson, F.C.; Yu, F.; Cease, K.B. Low-dose intraperitoneal Freund’s adjuvant: Toxicity and immunogenicity in mice using an immunogen targeting amyloid-beta peptide. Vaccine 2006, 24, 3018–3025. [Google Scholar] [CrossRef]
- Bashiri, S.; Koirala, P.; Toth, I.; Skwarczynski, M. Carbohydrate Immune Adjuvants in Subunit Vaccines. Pharmaceutics 2020, 12, 965. [Google Scholar] [CrossRef]
- Kohyama, K.; Matsumoto, Y. Alzheimer’s disease and immunotherapy: What is wrong with clinical trials? ImmunoTargets Ther. 2015, 4, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Petrovsky, N.; Cooper, P.D. Advax™, a novel microcrystalline polysaccharide particle engineered from delta inulin, provides robust adjuvant potency together with tolerability and safety. Vaccine 2015, 33, 5920–5926. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Bazin-Lee, H.; Evans, J.T.; Casella, C.R.; Mitchell, T.C. MPL Adjuvant Contains Competitive Antagonists of Human TLR4. Front. Immunol. 2020, 11, 577823. [Google Scholar] [CrossRef]
- Sukoff Rizzo, S.J.; Crawley, J.N. Behavioral Phenotyping Assays for Genetic Mouse Models of Neurodevelopmental, Neurodegenerative, and Psychiatric Disorders. Annu. Rev. Anim. Biosci. 2017, 5, 371–389. [Google Scholar] [CrossRef]
- Cacabelos, R. How plausible is an Alzheimer’s disease vaccine? Expert Opin. Drug Discov. 2020, 15, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneeberger, A.; Mandler, M.; Otawa, O.; Zauner, W.; Mattner, F.; Schmidt, W. Development of AFFITOPE vaccines for Alzheimer’s disease (AD)—From concept to clinical testing. J. Nutr. Health Aging 2009, 13, 264–267. [Google Scholar] [CrossRef]
- Nelde, A.; Rammensee, H.G.; Walz, J.S. The Peptide Vaccine of the Future. Mol. Cell. Proteom. 2021, 20, 100022. [Google Scholar] [CrossRef] [PubMed]
- Birmpilis, A.I.; Karachaliou, C.E.; Samara, P.; Ioannou, K.; Selemenakis, P.; Kostopoulos, I.V.; Kavrochorianou, N.; Kalbacher, H.; Livaniou, E.; Haralambous, S.; et al. Antitumor Reactive T-Cell Responses Are Enhanced In Vivo by DAMP Prothymosin Alpha and Its C-Terminal Decapeptide. Cancers 2019, 11, 1764. [Google Scholar] [CrossRef] [Green Version]
- Zhai, P.; Ding, Y.; Wu, X.; Long, J.; Zhong, Y.; Li, Y. The epidemiology, diagnosis and treatment of COVID-19. Int. J. Antimicrob. Agents 2020, 55, 105955. [Google Scholar] [CrossRef]
- Armstrong, R.A. Risk factors for Alzheimer’s disease. Folia Neuropathol. 2019, 57, 87–105. [Google Scholar] [CrossRef] [Green Version]
- Ogino, S.; Nowak, J.A.; Hamada, T.; Milner, D.A., Jr.; Nishihara, R. Insights into Pathogenic Interactions among Environment, Host, and Tumor at the Crossroads of Molecular Pathology and Epidemiology. Annu. Rev. Pathol. 2019, 14, 83–103. [Google Scholar] [CrossRef] [PubMed]
- Willyard, C. How gut microbes could drive brain disorders. Nature 2021, 590, 22–25. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.G.; Stribinskis, V.; Rane, M.J.; Demuth, D.R.; Gozal, E.; Roberts, A.M.; Jagadapillai, R.; Liu, R.; Choe, K.; Shivakumar, B.; et al. Exposure to the Functional Bacterial Amyloid Protein Curli Enhances Alpha-Synuclein Aggregation in Aged Fischer 344 Rats and Caenorhabditis elegans. Sci. Rep. 2016, 6, 34477. [Google Scholar] [CrossRef] [PubMed]
- Ashton, N.J.; Janelidze, S.; Al Khleifat, A.; Leuzy, A.; van der Ende, E.L.; Karikari, T.K.; Benedet, A.L.; Pascoal, T.A.; Lleó, A.; Parnetti, L.; et al. A multicentre validation study of the diagnostic value of plasma neurofilament light. Nat. Commun. 2021, 12, 3400. [Google Scholar] [CrossRef] [PubMed]
- Wongta, A.; Hongsibsong, S.; Chantara, S.; Pattarawarapan, M.; Sapbamrer, R.; Sringarm, K.; Xu, Z.L.; Wang, H. Development of an Immunoassay for the Detection of Amyloid Beta 1-42 and Its Application in Urine Samples. J. Immunol. Res. 2020, 2020, 8821181. [Google Scholar] [CrossRef] [PubMed]
- Razzino, C.A.; Serafín, V.; Gamella, M.; Pedrero, M.; Montero-Calle, A.; Barderas, R.; Calero, M.; Lobo, A.O.; Yáñez-Sedeño, P.; Campuzano, S.; et al. An electrochemical immunosensor using gold nanoparticles-PAMAM-nanostructured screen-printed carbon electrodes for tau protein determination in plasma and brain tissues from Alzheimer patients. Biosens. Bioelectron. 2020, 163, 112238. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, A.; Kaneko, N.; Villemagne, V.L.; Kato, T.; Doecke, J.; Doré, V.; Fowler, C.; Li, Q.X.; Martins, R.; Rowe, C.; et al. High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature 2018, 554, 249–254. [Google Scholar] [CrossRef]
Target | Peptide Epitope | Animal Model | Vaccination Scheme (Administration Route/Doses/Time Intervals) | Methods for Evaluating Vaccination Efficacy | Reference |
---|---|---|---|---|---|
Aβ | Aβ(1-6) | C57/BL6 mice | i.m. 1/x4/2 w intervals | In vitro: ELISA; ELISpot; MTT 2 assay | [74] |
Aβ | Aβ(1-6) | C57/BL6 mice | i.m./x4/2 w intervals | In vitro: ELISA; ELISpot | [73] |
Aβ | Aβ(3-10) | APPSwe/PSEN1dE9- mice | s.c. 1/x6/ 2 w intervals | In vitro: ELISA; immunohistochemistry; Western Blot; TUNEL 3 staining; ROS 4 staining | [72] |
Aβ | Aβ(3-10) | 3xTg-AD mice | s.c./x7/2 w or 4 w intervals | In vitro: ELISA; immunohistochemistry; Western Blot In vivo: MWM test | [70] |
Aβ | Aβ(3-10) | APP/PS1 mice | s.c./x5/ 2 w or 4 w inter-vals | In vitro: ELISA; immunohistochemistry In vivo: MWM test | [71] |
Aβ | Aβ(1-11) | 3xTg-AD mice | s.c./x3/4 m or 5 m intervals | In vitro: ELISA; immunohistochemistry; Thioflavin S staining | [80] |
Aβ | Aβ(1-11) DNA vaccine | Tg2576 mice Tg-SwDI mice | i.d. 1/x4/ 2 w or 4 w intervals | In vitro: ELISA; immunohistochemistry In vivo: MRI5 imaging | [79] |
Aβ | Aβ(1-15) | APP/PS1 mice | s.c./x3/ 2 w intervals | In vitro: ELISA; immunohistochemistry; Western Blot In vivo: Spontaneous Y maze test; NOR 6 test; MWM 7 test | [77] |
Aβ | Aβ(1-15) | APPSwe/PSEN1dE9- mice | Orally/every day for ~9 months | In vitro: ELISA; Immunohistochemistry In vivo: water maze test | [76] |
Aβ | Aβ(1-6), Aβ(1-15) | Balb/C mice | s.c./x4/2 w intervals | In vitro: ELISA; Dot Blot; Thioflavin T staining; TEM 8 scanning | [75] |
Aβ | cyclo[Aβ(22-28)-Y9NGK’], cyclo[Aβ(23-29)- YNGK’], cyclo[Aβ(22-29)- YNGK’] | J20 | s.c./x3/1 m intervals | In vitro: ELISA; immunohistochemistry In vivo: OF 10 test; SA 11 test; NOR test; NLR 12 test; MWM test | [81] |
Aβ | Oligomer-specific Aβ mimotope peptide | EAE/AD mice | s.c./x5/2 w intervals | In vitro: ELISA; Immunohistochemistry In vivo: MWM test; Y maze test; NOR test | [84] |
Aβ | Aβ(1-42) | 3xTg-AD mice or Neuroinflammation model in C57/BL6 | s.c./x6/2 w intervals | In vitro: ELISA; immunohistochemistry; Flow cytometry In vivo: MWM test; PET 13 scanning | [82] |
Aβ | Aβ(1-42) DNA vaccine | 3xTg-AD mice | i.d./x13/ 2 w or 6 w intervals | In vitro: ELISA; ELISpot; immunohistochemistry; Western Blot | [83] |
Aβ, Tau | Aβ(1–11), Tau(2–18) | Tau22/5xFAD bigenic mice (T5x) | i.m./x4/1 m or 1.5 m intervals | In vitro: ELISA; immunohistochemistry; Western Blot; SPR 14 biosensor | [78] |
Aβ, Tau | Linear Aβ(1-6), Aβ(1-6)3, Aβ(1-15), Tau(294-305), p 15Tau(396-404), pTau422 cycloAβ(1-7), cycloEP1 16, cycloEP2 16 | BALB/c mice and TauP301S mice | s.c. 3 times at 2 w intervals s.c. 4 times at 2 w intervals | In vitro: ELISA; immunohistochemistry In vivo: Forced Y maze test; NOR test; MWM test | [40] |
Tau | Tau(2-18) | Tg4510 mice | i.m./x7/2 w or 4 w intervals | In vitro: ELISA; ELISpot; immunohistochemistry; Western blot In vivo: NOR test; RAWM 17 test | [34] |
Tau | Tau(2-18) | PS19 mice | i.m./x4 times/1 m, 1.5 m, or 2.5 m intervals | In vitro: ELISA; immunohistochemistry; Western blot, Dot Blot, confocal microscopy In vivo: Rotarod test; Y-maze test; NOR test; NPR 18 test | [92] |
Tau | Tau(294-305) | TauP301S mice | s.c./x4/2 w or 3 w intervals | In vitro: ELISA; immunohistochemistry; Western blot In vivo: Forced Y maze test; Spontaneous Y maze test; NOR test; MWM test | [94] |
Tau | Tau(175-190)[p181] | Tg4510 mice | i.m./x3 times/2 w intervals | In vitro: ELISA; immunohistochemistry; Western blot In vivo: NOR test; MWM test | [96] |
Tau | Tau(195-213) [p 15202/205]; Tau(207-220) [p212/214]; Tau(224-238) [p231] | APPSwe/PSEN1dE9 mice | s.c./x2/1 w interval | In vitro: ELISA; immunohistochemistry; immunoblot In vivo: T maze test; MWM test; EAE 19 score | [95] |
Tau | Tau(379-408) [p396/404] | 3xTg-AD mice | s.c./x4/2 w or 4 w intervals | In vitro: ELISA; immunohistochemistry; Western blot In vivo: Rotarod test; RAWM test; close field symmetrical maze; locomotor activity; traverse beam test | [100] |
Tau | pTau30 [p202/205/238/262], pTau31 [p202/205/396/404], pTau35 [p238/262/396/404] | TauP301S mice | -/x4/- | In vitro: ELISA; ELISpot; immunohistochemistry In vivo: Rotarod test; hind-limb clasping test; grip strength test; kyphosis test | [97] |
α-Syn | α-Syn(85-99) α-Syn(109-126) α-Syn(126-140) | B6SJL mice | s.c./x4/2 w interval | In vitro: ELISA; ELISpot; immunohistochemistry; Western blot | [111] |
α-Syn | middle region: C9GGKNEEGAPQ (PD1) N-terminal: MDVFMKGLGGC (PD2) C-terminal: CGGEGYQDYEPEA (PD3) | SNCA-OVX mice | s.c./x3, x4, x5, x14/2 w or 4 w intervals | In vitro: ELISA; immuno-histochemistry; Western blot; AS-PLA 20 In vivo: Rotarod test; locomotor activity; digitized gait assessment; inverted screen test | [43] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vassilakopoulou, V.; Karachaliou, C.-E.; Evangelou, A.; Zikos, C.; Livaniou, E. Peptide-Based Vaccines for Neurodegenerative Diseases: Recent Endeavors and Future Perspectives. Vaccines 2021, 9, 1278. https://doi.org/10.3390/vaccines9111278
Vassilakopoulou V, Karachaliou C-E, Evangelou A, Zikos C, Livaniou E. Peptide-Based Vaccines for Neurodegenerative Diseases: Recent Endeavors and Future Perspectives. Vaccines. 2021; 9(11):1278. https://doi.org/10.3390/vaccines9111278
Chicago/Turabian StyleVassilakopoulou, Vyronia, Chrysoula-Evangelia Karachaliou, Alexandra Evangelou, Christos Zikos, and Evangelia Livaniou. 2021. "Peptide-Based Vaccines for Neurodegenerative Diseases: Recent Endeavors and Future Perspectives" Vaccines 9, no. 11: 1278. https://doi.org/10.3390/vaccines9111278
APA StyleVassilakopoulou, V., Karachaliou, C. -E., Evangelou, A., Zikos, C., & Livaniou, E. (2021). Peptide-Based Vaccines for Neurodegenerative Diseases: Recent Endeavors and Future Perspectives. Vaccines, 9(11), 1278. https://doi.org/10.3390/vaccines9111278