Impact of Molecular Modifications on the Immunogenicity and Efficacy of Recombinant Raccoon Poxvirus-Vectored Rabies Vaccine Candidates in Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells and Viruses
2.2. Design and Construction of Recombinant Viruses
2.3. Immunofluorescence Assay for In-Vitro Expression
2.4. Quantification of Expression in Immunofluorescence Assay
2.5. Virus Growth Curve
2.6. Immunogenicity and Challenge Study
2.7. Rabies Diagnosis and Serology
2.8. Statistical Analysis
3. Results
3.1. In-Vitro Protein Expression and Viral Growth
3.2. Mouse Immunogenicity and Challenge Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Available online: http://www.who.int/mediacentre/factsheets/fs099/en/ (accessed on 17 May 2021).
- World Health Organization. WHO Expert Consultation on Rabies; World Health Organization: Geneva, Sweden, 2005; pp. 12–14. [Google Scholar]
- Ma, X.; Monroe, B.P.; Cleaton, J.M.; Orciari, L.A.; Li, Y.; Kirby, J.D.; Chipman, R.B.; Petersen, B.W.; Wallace, R.M.; Blanton, J.D. Rabies surveillance in the United States during 2017. J. Am. Vet. Med Assoc. 2018, 253, 1555–1568. [Google Scholar] [CrossRef] [Green Version]
- Wallace, R.M.; Gilbert, A.; Slate, D.; Chipman, R.; Singh, A.; Wedd, C.; Blanton, J.D. Right place, wrong species: A 20-year review of rabies virus cross species transmission among terrestrial mammals in the United States. PLoS ONE 2014, 9, e107539. [Google Scholar] [CrossRef] [PubMed]
- Johnson, N.; Vos, A.; Freuling, C.; Tordo, N.; Fooks, A.R.; Müller, T. Human rabies due to lyssavirus infection of bat origin. Vet. Microbiol. 2010, 142, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.C.; Romijn, P.C.; Uieda, W.; Tamayo, H.; Silva, D.F.; Belotto, A.; Silva, J.B.; Leanes, L.F. Rabies transmitted by vampire bats to humans: An emerging zoonotic disease in Latin America? Rev. Panam. De Salud Pública 2009, 25, 260–269. [Google Scholar] [CrossRef] [Green Version]
- Blackwood, J.C.; Streicker, D.G.; Altizer, S.; Rohani, P. Resolving the roles of immunity, pathogenesis, and immigration for rabies persistence in vampire bats. Proc. Natl. Acad. Sci. USA 2013, 110, 20837–20842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Streicker, D.G.; Recuenco, S.; Valderrama, W.; Gomez Benavides, J.; Vargas, I.; Pacheco, V.; Condori Condori, R.E.; Montgomery, J.; Rupprecht, C.E.; Rohani, P.; et al. Ecological and anthropogenic drivers of rabies exposure in vampire bats: Implications for transmission and control. Proc. R. Soc. B Boil. Sci. 2012, 279, 3384–3392. [Google Scholar] [CrossRef] [Green Version]
- Sidwa, T.J.; Wilson, P.J.; Moore, G.M.; Oertli, E.H.; Hicks, B.N.; Rohde, R.E.; Johnston, D.H. Evaluation of oral rabies vaccination programs for control of rabies epizootics in coyotes and gray foxes: 1995–2003. J. Am. Veter- Med. Assoc. 2005, 227, 785–792. [Google Scholar] [CrossRef] [Green Version]
- Slate, D.; Rupprecht, C.E.; Rooney, J.A.; Donovan, D.; Lein, D.H.; Chipman, R.B. Status of oral rabies vaccination in wild carnivores in the United States. Virus Res. 2005, 111, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Sétien, A.A.; Brochier, B.; Tordo, N.; De Paz, O.; Desmettre, P.; Péharpré, D.; Pastoret, P.P. Experimental rabies infection and oral vaccination in vampire bats (Desmodus rotundus). Vaccine 1998, 16, 1122–1126. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Human vaccinia infection after contact with a raccoon rabies vaccine bait-Pennsylvania, 2009. MMWR Morb. Mortal. Wkly. Rep. 2009, 58, 1204–1207. [Google Scholar]
- Megid, J.; Appolinário, C.M.; Langoni, H.; Pituco, E.M.; Okuda, L.H. Vaccinia virus in humans and cattle in southwest region of Sao Paulo state, Brazil. Am. J. Trop. Med. Hyg. 2008, 79, 647–651. [Google Scholar] [CrossRef]
- Banyard, A.; Evans, J.; Luo, T.; Fooks, A. Lyssaviruses and Bats: Emergence and Zoonotic Threat. Viruses 2014, 6, 2974–2990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calisher, C.H.; Ellison, J.A. The other rabies viruses: The emergence and importance of lyssaviruses from bats and other vertebrates. Travel Med. Infect. Dis. 2012, 10, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Fisher, C.R.; Streicker, D.G.; Schnell, M.J. The spread and evolution of rabies virus: Conquering new frontiers. Nat. Rev. Genet. 2018, 16, 241–255. [Google Scholar] [CrossRef] [PubMed]
- Stading, B.; Ellison, J.A.; Carson, W.C.; Satheshkumar, P.S.; Rocke, T.E.; Osorio, J.E. Protection of bats (Eptesicus fuscus) against rabies following topical or oronasal exposure to a recombinant raccoon poxvirus vaccine. PLoS Negl. Trop. Dis. 2017, 11, e0005958. [Google Scholar] [CrossRef] [Green Version]
- Hwa, S.H.; Iams, K.P.; Hall, J.S.; Kingstad, B.A.; Osorio, J.E. Characterization of recombinant raccoonpox vaccine vectors in chickens. Avian Dis. 2010, 54, 1157–1165. [Google Scholar] [CrossRef]
- Wyatt, L.S.; Shors, S.T.; Murphy, B.R.; Moss, B. Development of a replication-deficient recombinant vaccinia virus vaccine effective against parainfluenza virus 3 infection in an animal model. Vaccine 1996, 14, 1451–1458. [Google Scholar] [CrossRef]
- Earl, P.L.; Moss, B.; Wyatt, L.S.; Carroll, M.W. Generation of recombinant vaccinia viruses. Curr. Protoc. Mol. Biol. 2001. [Google Scholar] [CrossRef]
- Meza, D.K.; Broos, A.; Becker, D.J.; Behdenna, A.; Willett, B.J.; Viana, M.; Streicker, D.G. Predicting the presence and titer of rabies virus neutralizing antibodies from low-volume serum samples in low-containment facilities. BioRxiv 2020. [Google Scholar] [CrossRef]
- Rasband, W.S. ImageJ; U. S. National Institutes of Health: Bethesda, MD, USA, 1997–2015. Available online: https://imagej.nih.gov/ij/ (accessed on 6 September 2021).
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Reed, L.J.; Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [Google Scholar] [CrossRef]
- Smith, T.G.; Gilbert, A.T. Comparison of a micro-neutralization test with the rapid fluorescent focus inhibition test for measuring rabies virus neutralizing antibodies. Trop. Med. Infect. Dis. 2017, 2, 24. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.S.; Yager, P.A.; Baer, G.M. A Rapid Fluorescent Focus Inhibition Test (RFFIT) for Determining Rabies Virus-Neutralizing Antibody, 4th ed.; Laboratory Techniques in Rabies; Meslin, F.X., Kaplan, M.M., Koprowski, H., Eds.; World Health Organization: Geneva, Switzerland, 1996. [Google Scholar]
- Dean, D.J.; Abelseth, M.K.; Atanasiu, P. The flourescent antibody test. Laboratory Techniques in Rabies; Meslin, F.X., Kaplan, M.M., Koprowski, H., Eds.; World Health Organization: Geneva, Switzerland, 1996; pp. 83–93. [Google Scholar]
- Chakrabarti, S.; Sisler, J.R.; Moss, B. Compact, synthetic, vaccinia virus early/late promoter for protein expression. Biotechniques 1997, 23, 1094–1097. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Song, W.T.; Li, Y.; Chen, W.J.; Yang, D.; Zhong, G.C.; Zhou, H.Z.; Ren, C.Y.; Yu, H.T.; Ling, H. Improved expression of secretory and trimeric proteins in mammalian cells via the introduction of a new trimer motif and a mutant of the tPA signal sequence. Appl. Microbiol. Biotechnol. 2011, 91, 731–740. [Google Scholar] [CrossRef]
- Osorio, J.E.; Powell, T.D.; Frank, R.S.; Moss, K.; Haanes, E.J.; Smith, S.R.; Rocke, T.E.; Stinchcomb, D.T. Recombinant raccoon pox vaccine protects mice against lethal plague. Vaccine 2002, 21, 1232–1238. [Google Scholar] [CrossRef]
- Kou, Y.; Xu, Y.; Zhao, Z.; Liu, J.; Wu, Y.; You, Q.; Wang, L.; Gao, F.; Cai, L.; Jiang, C. Tissue plasminogen activator (tPA) signal sequence enhances immunogenicity of MVA-based vaccine against tuberculosis. Immunol. Lett. 2017, 190, 51–57. [Google Scholar] [CrossRef]
- Haddad, D.; Liljeqvist, S.; Ståhl, S.; Andersson, I.; Perlmann, P.; Berzins, K.; Ahlborg, N. Comparative study of DNA-based immunization vectors: Effect of secretion signals on the antibody responses in mice. FEMS Immunol. Med. Microbiol. 1997, 18, 193–202. [Google Scholar] [CrossRef]
- Zhao, R.; Shan, Y.; Li, M.; Lou, Z.; Feng, Y.; Huang, L.; Ren, W.; Wang, P.; Sun, Y.; Sun, Y.; et al. Novel strategy for expression and characterization of rabies virus glycoprotein. Protein Expr. Purif. 2020, 168, 105567. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.M.; Hanlon, C.A. Rabies-specific antibodies: Measuring surrogates of protection against a fatal disease. PLoS Negl. Trop. Dis. 2010, 4, e595. [Google Scholar] [CrossRef] [Green Version]
- Rupprecht, C.E.; Wiktor, T.J.; Johnston, D.H.; Hamir, A.N.; Dietzschold, B.; Wunner, W.H.; Glickman, L.T.; Koprowski, H. Oral immunization and protection of raccoons (Procyon lotor) with a vaccinia-rabies glycoprotein recombinant virus vaccine. Proc. Natl. Acad. Sci. USA 1986, 83, 7947–7950. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J. Mammalian cell protein expression for biopharmaceutical production. Biotechnol. Adv. 2012, 30, 1158–1170. [Google Scholar] [CrossRef]
- Thomas, P.; Smart, T.G. HEK293 cell line: A vehicle for the expression of recombinant proteins. J. Pharmacol. Toxicol. Methods 2005, 51, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Lui, Y.L.; Lin, Z.; Lee, J.J.; Chow, V.T.; Poh, C.L.; Tan, E.L. Beta-actin variant is necessary for Enterovirus 71 replication. Biochem. Biophys. Res. Commun. 2013, 433, 607–610. [Google Scholar] [CrossRef] [PubMed]
- Barber, R.D.; Harmer, D.W.; Coleman, R.A.; Clark, B.J. GAPDH as a housekeeping gene: Analysis of GAPDH mRNA expression in a panel of 72 human tissues. Physiol. Genom. 2005, 21, 389–395. [Google Scholar] [CrossRef] [Green Version]
- Cárdenas-Canales, E.M.; Gigante, C.M.; Greenberg, L.; Velasco-Villa, A.; Ellison, J.A.; Satheshkumar, P.S.; Medina-Magües, L.G.; Griesser, R.; Falendysz, E.; Amezcua, I.; et al. Clinical presentation and serologic response during a rabies epizootic in captive common vampire bats (Desmodus rotundus). Trop. Med. Infect. Dis. 2020, 5, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malavé, C.M.; Lopera-Madrid, J.; Medina-Magües, L.G.; Rocke, T.E.; Osorio, J.E. In Vitro Expression, Immunogenicity, and Efficacy Data from Recombinant Raccoon Poxvirus-Vectored Rabies Vaccine Candidates Tested in Mice; U.S. Geological Survey Data Release: Reston, VA, USA, 2021. Available online: https://www.sciencebase.gov/catalog/item/6196c135d34eb622f691acc6 (accessed on 2 December 2021).
Virus | RCN-MoG | RCN-tPA-MoG | RCN-SS-TD-MoG |
---|---|---|---|
Mean fluorescent particles | 144.0 | 2295.7 | 1488.3 |
SD | 48.383 | 104.222 | 260.776 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malavé, C.M.; Lopera-Madrid, J.; Medina-Magües, L.G.; Rocke, T.E.; Osorio, J.E. Impact of Molecular Modifications on the Immunogenicity and Efficacy of Recombinant Raccoon Poxvirus-Vectored Rabies Vaccine Candidates in Mice. Vaccines 2021, 9, 1436. https://doi.org/10.3390/vaccines9121436
Malavé CM, Lopera-Madrid J, Medina-Magües LG, Rocke TE, Osorio JE. Impact of Molecular Modifications on the Immunogenicity and Efficacy of Recombinant Raccoon Poxvirus-Vectored Rabies Vaccine Candidates in Mice. Vaccines. 2021; 9(12):1436. https://doi.org/10.3390/vaccines9121436
Chicago/Turabian StyleMalavé, Carly M., Jaime Lopera-Madrid, Lex G. Medina-Magües, Tonie E. Rocke, and Jorge E. Osorio. 2021. "Impact of Molecular Modifications on the Immunogenicity and Efficacy of Recombinant Raccoon Poxvirus-Vectored Rabies Vaccine Candidates in Mice" Vaccines 9, no. 12: 1436. https://doi.org/10.3390/vaccines9121436
APA StyleMalavé, C. M., Lopera-Madrid, J., Medina-Magües, L. G., Rocke, T. E., & Osorio, J. E. (2021). Impact of Molecular Modifications on the Immunogenicity and Efficacy of Recombinant Raccoon Poxvirus-Vectored Rabies Vaccine Candidates in Mice. Vaccines, 9(12), 1436. https://doi.org/10.3390/vaccines9121436