Human Transcriptomic Response to the VSV-Vectored Ebola Vaccine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. RNA Extraction, Library Preparation and Sequencing
2.3. Data Exploration and Differential Gene Expression Analysis
2.4. Gene Set Enrichment Analysis
2.5. Correlation Analysis
2.6. Data and Materials Availability
3. Results
3.1. Unsupervised Analysis Identified Day 1 Post-Vaccination as the Time Point with Highest Transcriptomic Changes
3.2. Vaccination with rVSVΔG-ZEBOV-GP Induces a Persistent Blood Transcriptomic Signal
3.3. Module Enrichment Analysis Reveals Long-Lasting Activation of Innate Immune Pathways
3.4. B Cell Activation and BCR Signalling Modules Correlate with Anti-EBOV-GP Antibody Titers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ebola Virus Disease. Available online: https://www.who.int/news-room/fact-sheets/detail/ebola-virus-disease (accessed on 7 December 2020).
- 2014–2016 Ebola Outbreak in West Africa|History|Ebola (Ebola Virus Disease)|CDC. Available online: https://www.cdc.gov/vhf/ebola/history/2014-2016-outbreak/index.html (accessed on 7 December 2020).
- Dixon, M.G.; Schafer, I.J. Centers for Disease Control and Prevention (CDC) Ebola Viral Disease Outbreak—West Africa, 2014. MMWR Morb. Mortal. Wkly. Rep. 2014, 63, 548–551. [Google Scholar] [PubMed]
- Ebola Health Update—North Kivu/Ituri, DRC, 2018–2020. Available online: https://www.who.int/emergencies/diseases/ebola/drc-2019 (accessed on 7 December 2020).
- Vaccine against Ebola: Commission Grants Market Authorisation. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_19_6246 (accessed on 7 December 2020).
- Commissioner, O. First FDA-Approved Vaccine for the Prevention of Ebola Virus Disease, Marking a Critical Milestone in Public Health Preparedness and Response. Available online: https://www.fda.gov/news-events/press-announcements/first-fda-approved-vaccine-prevention-ebola-virus-disease-marking-critical-milestone-public-health (accessed on 7 December 2020).
- Garbutt, M.; Liebscher, R.; Wahl-Jensen, V.; Jones, S.; Möller, P.; Wagner, R.; Volchkov, V.; Klenk, H.-D.; Feldmann, H.; Ströher, U. Properties of Replication-Competent Vesicular Stomatitis Virus Vectors Expressing Glycoproteins of Filoviruses and Arenaviruses. J. Virol. 2004, 78, 5458–5465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, S.M.; Feldmann, H.; Ströher, U.; Geisbert, J.B.; Fernando, L.; Grolla, A.; Klenk, H.-D.; Sullivan, N.J.; Volchkov, V.E.; Fritz, E.A.; et al. Live Attenuated Recombinant Vaccine Protects Nonhuman Primates against Ebola and Marburg Viruses. Nat. Med. 2005, 11, 786–790. [Google Scholar] [CrossRef] [PubMed]
- Marzi, A.; Reynolds, P.; Mercado-Hernandez, R.; Callison, J.; Feldmann, F.; Rosenke, R.; Thomas, T.; Scott, D.P.; Hanley, P.W.; Haddock, E.; et al. Single Low-Dose VSV-EBOV Vaccination Protects Cynomolgus Macaques from Lethal Ebola Challenge. EBioMedicine 2019, 49, 223–231. [Google Scholar] [CrossRef] [Green Version]
- Henao-Restrepo, A.M.; Camacho, A.; Longini, I.M.; Watson, C.H.; Edmunds, W.J.; Egger, M.; Carroll, M.W.; Dean, N.E.; Diatta, I.; Doumbia, M.; et al. Efficacy and Effectiveness of an RVSV-Vectored Vaccine in Preventing Ebola Virus Disease: Final Results from the Guinea Ring Vaccination, Open-Label, Cluster-Randomised Trial (Ebola Ça Suffit!). Lancet 2017, 389, 505–518. [Google Scholar] [CrossRef] [Green Version]
- Coller, B.-A.G.; Blue, J.; Das, R.; Dubey, S.; Finelli, L.; Gupta, S.; Helmond, F.; Grant-Klein, R.J.; Liu, K.; Simon, J.; et al. Clinical Development of a Recombinant Ebola Vaccine in the Midst of an Unprecedented Epidemic. Vaccine 2017, 35, 4465–4469. [Google Scholar] [CrossRef]
- Halperin, S.A.; Das, R.; Onorato, M.T.; Liu, K.; Martin, J.; Grant-Klein, R.J.; Nichols, R.; Coller, B.-A.; Helmond, F.A.; Simon, J.K.; et al. Immunogenicity, Lot Consistency, and Extended Safety of RVSVΔG-ZEBOV-GP Vaccine: A Phase 3 Randomized, Double-Blind, Placebo-Controlled Study in Healthy Adults. J. Infect. Dis. 2019, 220, 1127–1135. [Google Scholar] [CrossRef]
- Heppner, D.G.; Kemp, T.L.; Martin, B.K.; Ramsey, W.J.; Nichols, R.; Dasen, E.J.; Link, C.J.; Das, R.; Xu, Z.J.; Sheldon, E.A.; et al. Safety and Immunogenicity of the RVSV∆G-ZEBOV-GP Ebola Virus Vaccine Candidate in Healthy Adults: A Phase 1b Randomised, Multicentre, Double-Blind, Placebo-Controlled, Dose-Response Study. Lancet Infect. Dis. 2017, 17, 854–866. [Google Scholar] [CrossRef] [Green Version]
- Huttner, A.; Dayer, J.-A.; Yerly, S.; Combescure, C.; Auderset, F.; Desmeules, J.; Eickmann, M.; Finckh, A.; Goncalves, A.R.; Hooper, J.W.; et al. The Effect of Dose on the Safety and Immunogenicity of the VSV Ebola Candidate Vaccine: A Randomised Double-Blind, Placebo-Controlled Phase 1/2 Trial. Lancet Infect. Dis. 2015, 15, 1156–1166. [Google Scholar] [CrossRef]
- Regules, J.A.; Beigel, J.H.; Paolino, K.M.; Voell, J.; Castellano, A.R.; Hu, Z.; Muñoz, P.; Moon, J.E.; Ruck, R.C.; Bennett, J.W.; et al. A Recombinant Vesicular Stomatitis Virus Ebola Vaccine. N. Engl. J. Med. 2017, 376, 330–341. [Google Scholar] [CrossRef]
- Agnandji, S.T.; Huttner, A.; Zinser, M.E.; Njuguna, P.; Dahlke, C.; Fernandes, J.F.; Yerly, S.; Dayer, J.-A.; Kraehling, V.; Kasonta, R.; et al. Phase 1 Trials of RVSV Ebola Vaccine in Africa and Europe. N. Engl. J. Med. 2016, 374, 1647–1660. [Google Scholar] [CrossRef] [PubMed]
- Second Ebola Vaccine to Complement “Ring Vaccination” Given Green Light in DRC. Available online: https://www.who.int/news/item/23-09-2019-second-ebola-vaccine-to-complement-ring-vaccination-given-green-light-in-drc (accessed on 7 December 2020).
- Ebola-Ring-Vaccination-Results-12-April-2019.Pdf. Available online: https://www.who.int/csr/resources/publications/ebola/ebola-ring-vaccination-results-12-april-2019.pdf (accessed on 7 December 2020).
- Davis, C.; Tipton, T.; Sabir, S.; Aitken, C.; Bennett, S.; Becker, S.; Evans, T.; Fehling, S.K.; Gunson, R.; Hall, Y.; et al. Post-Exposure Prophylaxis with RVSV-ZEBOV Following Exposure to a Patient with Ebola Virus Disease Relapse in the UK: An Operational, Safety and Immunogenicity Report. Clin. Infect. Dis. 2019, 71, 2872–2879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huttner, A.; Agnandji, S.T.; Combescure, C.; Fernandes, J.F.; Bache, E.B.; Kabwende, L.; Ndungu, F.M.; Brosnahan, J.; Monath, T.P.; Lemaître, B.; et al. Determinants of Antibody Persistence across Doses and Continents after Single-Dose RVSV-ZEBOV Vaccination for Ebola Virus Disease: An Observational Cohort Study. Lancet Infect. Dis. 2018, 18, 738–748. [Google Scholar] [CrossRef] [Green Version]
- Medaglini, D.; Siegrist, C.-A. Immunomonitoring of Human Responses to the RVSV-ZEBOV Ebola Vaccine. Curr. Opin. Virol. 2017, 23, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Medaglini, D.; Santoro, F.; Siegrist, C.-A. Correlates of Vaccine-Induced Protective Immunity against Ebola Virus Disease. Semin. Immunol. 2018, 39, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Medaglini, D.; Harandi, A.M.; Ottenhoff, T.H.M.; Siegrist, C.-A. VSV-Ebovac Consortium Ebola Vaccine R&D: Filling the Knowledge Gaps. Sci. Transl. Med. 2015, 7, 317ps24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huttner, A.; Combescure, C.; Grillet, S.; Haks, M.C.; Quinten, E.; Modoux, C.; Agnandji, S.T.; Brosnahan, J.; Dayer, J.-A.; Harandi, A.M.; et al. A Dose-Dependent Plasma Signature of the Safety and Immunogenicity of the RVSV-Ebola Vaccine in Europe and Africa. Sci. Transl. Med. 2017, 9, eaaj1701. [Google Scholar] [CrossRef] [Green Version]
- Pejoski, D.; de Rham, C.; Martinez-Murillo, P.; Santoro, F.; Auderset, F.; Medaglini, D.; Pozzi, G.; Vono, M.; Lambert, P.-H.; Huttner, A.; et al. Rapid Dose-Dependent Natural Killer (NK) Cell Modulation and Cytokine Responses Following Human RVSV-ZEBOV Ebolavirus Vaccination. Npj Vaccines 2020, 5, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Rouphael, N.; Duraisingham, S.; Romero-Steiner, S.; Presnell, S.; Davis, C.; Schmidt, D.S.; Johnson, S.E.; Milton, A.; Rajam, G.; et al. Molecular Signatures of Antibody Responses Derived from a Systems Biology Study of Five Human Vaccines. Nat. Immunol. 2014, 15, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Scheuermann, R.H.; Sinkovits, R.S.; Schenkelberg, T.; Koff, W.C. A Bioinformatics Roadmap for the Human Vaccines Project. Expert Rev. Vaccines 2017, 16, 535–544. [Google Scholar] [CrossRef]
- Rechtien, A.; Richert, L.; Lorenzo, H.; Martrus, G.; Hejblum, B.; Dahlke, C.; Kasonta, R.; Zinser, M.; Stubbe, H.; Matschl, U.; et al. Systems Vaccinology Identifies an Early Innate Immune Signature as a Correlate of Antibody Responses to the Ebola Vaccine RVSV-ZEBOV. Cell Rep. 2017, 20, 2251–2261. [Google Scholar] [CrossRef] [Green Version]
- Nakaya, H.I.; Hagan, T.; Duraisingham, S.S.; Lee, E.K.; Kwissa, M.; Rouphael, N.; Frasca, D.; Gersten, M.; Mehta, A.K.; Gaujoux, R.; et al. Systems Analysis of Immunity to Influenza Vaccination across Multiple Years and in Diverse Populations Reveals Shared Molecular Signatures. Immunity 2015, 43, 1186–1198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKay, P.F.; Cizmeci, D.; Aldon, Y.; Maertzdorf, J.; Weiner, J.; Kaufmann, S.H.; Lewis, D.J.; van den Berg, R.A.; Del Giudice, G.; Shattock, R.J. Identification of Potential Biomarkers of Vaccine Inflammation in Mice. eLife 2019, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Menicucci, A.R.; Jankeel, A.; Feldmann, H.; Marzi, A.; Messaoudi, I. Antiviral Innate Responses Induced by VSV-EBOV Vaccination Contribute to Rapid Protection. mBio 2019, 10, e00597-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santoro, F.; Pettini, E.; Kazmin, D.; Ciabattini, A.; Fiorino, F.; Gilfillan, G.D.; Evenroed, I.M.; Andersen, P.; Pozzi, G.; Medaglini, D. Transcriptomics of the Vaccine Immune Response: Priming With Adjuvant Modulates Recall Innate Responses After Boosting. Front. Immunol. 2018, 9, 1248. [Google Scholar] [CrossRef]
- Francesco Santoro Supporting Transcriptomic Data for: “Human Transcriptomic Response to the VSV-Vectored Ebola Vaccine” 2020. Available online: https://zenodo.org/record/3974487 (accessed on 7 December 2020). [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. EdgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Lun, A.T.; McCarthy, D.J.; Ritchie, M.E.; Phipson, B.; Hu, Y.; Zhou, X.; Robinson, M.D.; Smyth, G.K. EdgeR: Empirical Analysis of Digital Gene Expression Data in R; Bioconductor Version: Release (3.12); R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Robinson, M.D.; Oshlack, A. A Scaling Normalization Method for Differential Expression Analysis of RNA-Seq Data. Genome Biol. 2010, 11, R25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lun, A.T.L.; Chen, Y.; Smyth, G.K. It’s DE-Licious: A Recipe for Differential Expression Analyses of RNA-Seq Experiments Using Quasi-Likelihood Methods in EdgeR. Methods Mol. Biol. 2016, 1418, 391–416. [Google Scholar] [CrossRef] [PubMed]
- Weiner, J., 3rd; Domaszewska, T. Tmod: An R Package for General and Multivariate Enrichment Analysis; PeerJ Inc.: San Diego, CA, USA, 2016. [Google Scholar]
- Sauvageau, G.; Lansdorp, P.M.; Eaves, C.J.; Hogge, D.E.; Dragowska, W.H.; Reid, D.S.; Largman, C.; Lawrence, H.J.; Humphries, R.K. Differential Expression of Homeobox Genes in Functionally Distinct CD34+ Subpopulations of Human Bone Marrow Cells. Proc. Natl. Acad. Sci. USA 1994, 91, 12223–12227. [Google Scholar] [CrossRef] [Green Version]
- Perez-Zsolt, D.; Erkizia, I.; Pino, M.; García-Gallo, M.; Martin, M.T.; Benet, S.; Chojnacki, J.; Fernández-Figueras, M.T.; Guerrero, D.; Urrea, V.; et al. Anti-Siglec-1 Antibodies Block Ebola Viral Uptake and Decrease Cytoplasmic Viral Entry. Nat. Microbiol. 2019, 4, 1558–1570. [Google Scholar] [CrossRef]
- Clarke, D.K.; Hendry, R.M.; Singh, V.; Rose, J.K.; Seligman, S.J.; Klug, B.; Kochhar, S.; Mac, L.M.; Carbery, B.; Chen, R.T.; et al. Live Virus Vaccines Based on a Vesicular Stomatitis Virus (VSV) Backbone: Standardized Template with Key Considerations for a Risk/Benefit Assessment. Vaccine 2016, 34, 6597–6609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McElroy, A.K.; Erickson, B.R.; Flietstra, T.D.; Rollin, P.E.; Nichol, S.T.; Towner, J.S.; Spiropoulou, C.F. Ebola Hemorrhagic Fever: Novel Biomarker Correlates of Clinical Outcome. J. Infect. Dis. 2014, 210, 558–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruibal, P.; Oestereich, L.; Lüdtke, A.; Becker-Ziaja, B.; Wozniak, D.M.; Kerber, R.; Korva, M.; Cabeza-Cabrerizo, M.; Bore, J.A.; Koundouno, F.R.; et al. Unique Human Immune Signature of Ebola Virus Disease in Guinea. Nature 2016, 533, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Querec, T.D.; Akondy, R.S.; Lee, E.K.; Cao, W.; Nakaya, H.I.; Teuwen, D.; Pirani, A.; Gernert, K.; Deng, J.; Marzolf, B.; et al. Systems Biology Approach Predicts Immunogenicity of the Yellow Fever Vaccine in Humans. Nat. Immunol. 2009, 10, 116–125. [Google Scholar] [CrossRef] [Green Version]
Gene | Annotation | Log2 Fold-Change | ||||
---|---|---|---|---|---|---|
Day 1 | Day 2 | Day 3 | Day 7 | Day 14 | ||
AGRN | Development of neuromuscular junction | 4.42 | 2.7 | 1.84 | 2.43 | 1.45 |
CCL2 | Chemotactic factor for monocytes and basophils | 7.91 | 5.13 | 2.79 | 3.42 | 2.10 |
CMPK2 | nucleotide synthesis salvage pathway gene/role in terminal differentiation of monocytic cells | 5.60 | 4.16 | 3.17 | 3.36 | 1.99 |
EPSTI1 | M1 macrophage polarization gene | 4.18 | 3.15 | 2.46 | 2.42 | 1.33 |
HERC5 | IFN-induced, positive regulator of innate antiviral response | 5.86 | 3.37 | 2.29 | 2.93 | 1.37 |
IFI27 | Involved in type-I interferon-induced apoptosis | 4.57 | 5.74 | 7.10 | 5.80 | 5.49 |
IFI44 | IFN-induced, forms microtubular structures | 4.76 | 4.23 | 3.60 | 3.41 | 1.97 |
IFI44L | IFN-induced, antiviral activity | 5.53 | 5.04 | 4.29 | 4.06 | 2.42 |
IFI6 | IFN-induced, role in apoptosis, antiviral activity | 5.28 | 3.62 | 2.77 | 2.76 | 1.53 |
IFIT1 | IFN-induced, antiviral RNA-binding protein | 6.12 | 4.11 | 3.12 | 3.41 | 1.84 |
IFIT3 | IFN-induced, antiviral and antiproliferative protein | 5.12 | 3.43 | 2.54 | 2.7 | 1.50 |
ISG15 | IFN-induced, ubiquitin-like protein, antiviral activity, induces NK cell proliferation, chemotactic factor for neutrophils and IFN-gamma-inducing cytokine | 6.67 | 4.35 | 3.77 | 3.64 | 1.93 |
LY6E | Involved in T-cell development | 3.95 | 3.53 | 3.09 | 3.03 | 1.87 |
MX1 | IFN-induced, dynamin-like GTPase with antiviral activity | 5.34 | 3.36 | 2.51 | 2.89 | 1.64 |
OAS1 | IFN-induced, antiviral enzyme, regulator of apoptosis, cell growth, and differentiation | 4.43 | 3.38 | 2.60 | 2.71 | 1.37 |
OAS2 | IFN-induced, antiviral enzyme, inhibitor of protein synthesis | 4.49 | 3.44 | 2.52 | 2.53 | 1.47 |
OAS3 | IFN-induced, antiviral enzyme | 5.48 | 3.83 | 2.93 | 3.27 | 1.93 |
OASL | IFN-induced, antiviral activity | 5.33 | 3.18 | 2.33 | 2.52 | 1.12 |
RSAD2 | IFN-induced, iron-sulphur (4FE-4S) cluster-binding antiviral protein, promotes production of IFN-beta production in plasmacytoid dendritic cells (pDCs), plays a role in CD4+ T-cells activation and differentiation | 6.78 | 4.87 | 3.80 | 4.27 | 2.53 |
SIGLEC1 (CD169) | Mediates clathrin dependent endocytosis and sialic-acid dependent binding to lymphocytes | 5.92 | 5.04 | 4.37 | 4.02 | 2.61 |
USP18 | Regulation of inflammatory response to type 1 IFN | 6.71 | 4.43 | 3.20 | 3.54 | 1.89 |
XAF1 | Mediates TNF-alpha-induced apoptosis | 3.88 | 3.17 | 2.59 | 2.46 | 1.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santoro, F.; Donato, A.; Lucchesi, S.; Sorgi, S.; Gerlini, A.; Haks, M.C.; Ottenhoff, T.H.M.; Gonzalez-Dias, P.; Consortium, V.-E.; Consortium, V.-E.; et al. Human Transcriptomic Response to the VSV-Vectored Ebola Vaccine. Vaccines 2021, 9, 67. https://doi.org/10.3390/vaccines9020067
Santoro F, Donato A, Lucchesi S, Sorgi S, Gerlini A, Haks MC, Ottenhoff THM, Gonzalez-Dias P, Consortium V-E, Consortium V-E, et al. Human Transcriptomic Response to the VSV-Vectored Ebola Vaccine. Vaccines. 2021; 9(2):67. https://doi.org/10.3390/vaccines9020067
Chicago/Turabian StyleSantoro, Francesco, Alessia Donato, Simone Lucchesi, Sara Sorgi, Alice Gerlini, Marielle C. Haks, Tom H. M. Ottenhoff, Patricia Gonzalez-Dias, VSV-EBOVAC Consortium, VSV-EBOPLUS Consortium, and et al. 2021. "Human Transcriptomic Response to the VSV-Vectored Ebola Vaccine" Vaccines 9, no. 2: 67. https://doi.org/10.3390/vaccines9020067
APA StyleSantoro, F., Donato, A., Lucchesi, S., Sorgi, S., Gerlini, A., Haks, M. C., Ottenhoff, T. H. M., Gonzalez-Dias, P., Consortium, V.-E., Consortium, V.-E., Nakaya, H. I., Huttner, A., Siegrist, C.-A., Medaglini, D., & Pozzi, G. (2021). Human Transcriptomic Response to the VSV-Vectored Ebola Vaccine. Vaccines, 9(2), 67. https://doi.org/10.3390/vaccines9020067