COVID-19 Infection and Previous BCG Vaccination Coverage in the Ecuadorian Population
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [Green Version]
- Harapan, H.; Itoh, N.; Yufika, A.; Winardi, W.; Keam, S.; Te, H.; Megawati, D.; Hayati, Z.; Wagner, A.L.; Mudatsir, M. Coronavirus disease 2019 (COVID-19): A literature review. J. Infect. Public Health 2020, 13, 667–673. [Google Scholar] [CrossRef]
- Indwiani Astuti, Y. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 407–412. [Google Scholar] [CrossRef]
- Johns Hopkins University Coronavirus COVID-19 Global Cases by Johns Hopkins CSSE. Available online: https://agers.es/coronavirus-covid-19-global-cases-by-johns-hopkins-csse/ (accessed on 18 December 2020).
- World Health Organization. Modes of Transmission of Virus Causing COVID-19: Implications for IPC Precaution Recommendations: Scientific brief, 29 March 2020; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Nicolalde, B.; Añazco, D.; Mushtaq, M.; Aguilar, A.; Terán, E. Current Pharmacological Therapy against COVID-19: A Latin American Perspective. Clin. Sci. Med. Technol. 2020, 59–68. [Google Scholar] [CrossRef]
- Arias-Reyes, C.; Zubieta-Deurioste, N.; Poma-Machicao, L. Does the pathogenesis of SARS-CoV-2 virus decrease at high-altitude? Respir. Physiol. Neurobiol. 2020, 277, 103443. [Google Scholar] [CrossRef]
- Gupta, A.; Banerjee, S.; Das, S. Significance of geographical factors to the COVID-19 outbreak in India. Model. Earth Syst. Environ. 2020. [Google Scholar] [CrossRef] [PubMed]
- Dowd, J.B.; Andriano, L.; Brazel, D.M.; Rotondi, V.; Block, P.; Ding, X.; Liu, Y.; Mills, M.C. Demographic science aids in understanding the spread and fatality rates of COVID-19. Proc. Natl. Acad. Sci. USA 2020, 117, 9696–9698. [Google Scholar] [CrossRef] [Green Version]
- Ebrahim, S.H.; Ahmed, Q.A.; Gozzer, E.; Schlagenhauf, P.; Memish, Z.A. Covid-19 and community mitigation strategies in a pandemic. BMJ 2020, 368, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Registro Civil Ecuador Cifras Mortalidad 2020 (Mortality 2020). Available online: https://www.registrocivil.gob.ec/cifras/ (accessed on 18 August 2020).
- Klinger, D.; Blass, I.; Rappoport, N.; Linial, M. Significantly improved COVID-19 outcomes in countries with higher bcg vaccination coverage: A multivariable analysis. Vaccines 2020, 8, 378. [Google Scholar] [CrossRef]
- Hamiel, U.; Kozer, E.; Youngster, I. SARS-CoV-2 Rates in BCG-Vaccinated and Unvaccinated Young Adults. JAMA 2020, 323, 2340–2341. [Google Scholar] [CrossRef] [PubMed]
- Brewer, T.F.; Colditz, G.A. Relationship between Bacille Calmette-Guerin (BCG) Strains and the Efficacy of BCG Vaccine in the Prevention of Tuberculosis. Clin. Infect. Dis. 1995, 20, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Toraih, E.A.; Sedhom, J.A.; Dokunmu, T.M.; Hussein, M.H.; Ruiz, E.M.L.; Muthusamy, K.; Zerfaoui, M.; Hidden, E.K. The effects of BCG vaccination in COVID- 19 pandemic. J. Med. Virol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Arts, R.J.W.; Moorlag, S.J.C.F.M.; Novakovic, B.; Li, Y.; Wang, S.Y.; Oosting, M.; Kumar, V.; Xavier, R.J.; Wijmenga, C.; Joosten, L.A.B.; et al. BCG Vaccination Protects against Experimental Viral Infection in Humans through the Induction of Cytokines Associated with Trained Immunity. Cell Host Microbe 2018, 23, 89–100.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Laval, B.; Maurizio, J.; Kandalla, P.K.; Brisou, G.; Simonnet, L.; Huber, C.; Gimenez, G.; Matcovitch-Natan, O.; Reinhardt, S.; David, E.; et al. C/EBPβ-Dependent Epigenetic Memory Induces Trained Immunity in Hematopoietic Stem Cells. Cell Stem Cell 2020, 26, 657–674.e8. [Google Scholar] [CrossRef]
- Netea, M.G.; Domínguez-Andrés, J.; Barreiro, L.B.; Chavakis, T.; Divangahi, M.; Fuchs, E.; Joosten, L.A.B.; van der Meer, J.W.M.; Mhlanga, M.M.; Mulder, W.J.M.; et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 2020, 20, 375–388. [Google Scholar] [CrossRef] [Green Version]
- Glisic, S.; Perovic, V.R.; Sencanski, M.; Paessler, S.; Veljkovic, V. Biological Rationale for the Repurposing of BCG Vaccine against SARS-CoV-2. J. Proteome Res. 2020, 19, 4649–4654. [Google Scholar] [CrossRef]
- Lerner, S.P.; Bajorin, D.F.; Dinney, C.P.; Efstathiou, J.A.; Groshen, S.; Hahn, N.M.; Hansel, D.; Kwiatkowski, D.; O’Donnell, M.; Rosenberg, J.; et al. Summary and recommendations from the national cancer institute’s clinical trials planning meeting on novel therapeutics for non-muscle invasive bladder cancer. Bladder Cancer 2016, 2, 165–201. [Google Scholar] [CrossRef] [Green Version]
- Pettenati, C.; Ingersoll, M.A. Mechanisms of BCG immunotherapy and its outlook for bladder cancer. Nat. Rev. Urol. 2018, 15, 615–625. [Google Scholar] [CrossRef]
- Glaziou, P.; Sismanidis, C.; Floyd, K.; Raviglione, M. Global epidemiology of tuberculosis. Lancet 2006, 367, 938–940. [Google Scholar] [CrossRef] [Green Version]
- Wassenaar, T.M.; Buzard, G.S.; Newman, D.J. BCG vaccination early in life does not improve COVID-19 outcome of elderly populations, based on nationally reported data. Lett. Appl. Microbiol. 2020, 71, 498–505. [Google Scholar] [CrossRef]
- Ministerio de Salud Pública del Ecuador Esquema Nacional de Vacunación-Ecuador. Available online: https://www.salud.gob.ec/wp-content/uploads/2020/01/ESQUEMA-DE-VACUNACIÓN.DIC_.2019.ok_.pdf%0Ahttps://www.salud.gob.ec (accessed on 29 August 2020).
- Sharma, A.R.; Batra, G.; Kumar, M.; Mishra, A.; Singla, R.; Singh, A.; Singh, R.S.; Medhi, B. BCG as a game-changer to prevent the infection and severity of COVID-19 pandemic? Allergol. Immunopathol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Netea, M.G. Trained Innate Immunity, Epigenetics, and Covid-19. N. Engl. J. Med. 2020, 383, 1078–1080. [Google Scholar] [CrossRef] [PubMed]
- Nuovo, G.; Tili, E.; Suster, D.; Matys, E.; Hupp, L.; Magro, C. Strong homology between SARS-CoV-2 envelope protein and a Mycobacterium sp. antigen allows rapid diagnosis of Mycobacterial infections and may provide specific anti-SARS-CoV-2 immunity via the BCG vaccine. Ann. Diagn. Pathol. 2020, 48. [Google Scholar] [CrossRef]
- Rakshit, S.; Ahmed, A.; Adiga, V.; Sundararaj, B.K.; Sahoo, P.N.; Kenneth, J.; D’Souza, G.; Bonam, W.; Johnson, C.; Franken, K.L.M.C.; et al. BCG revaccination boosts adaptive polyfunctional Th1/Th17 and innate effectors in IGRA+ and IGRA− Indian adults. JCI Insight 2019, 4, 1–21. [Google Scholar] [CrossRef]
- Suliman, S.; Geldenhuys, H.; Johnson, J.L.; Hughes, J.E.; Smit, E.; Murphy, M.; Toefy, A.; Lerumo, L.; Christiaan Hopley, B.P.; Chheng, P.; et al. BCG Re-vaccination of Adults with Latent Mycobacterium tuberculosis Infection Induces Long-lived BCG-Reactive Natural Killer Cell Responses. J. Immunol. 2016, 197, 1100–1110. [Google Scholar] [CrossRef] [Green Version]
- Charoenlap, S.; Piromsopa, K.; Charoenlap, C. Potential role of Bacillus Calmette-Guérin (BCG) vaccination in COVID-19 pandemic mortality: Epidemiological and Immunological aspects. Asian Pac. J. Allergy Immunol. 2020, 38, 150–161. [Google Scholar] [CrossRef]
- Ahmad, N.A.; Akmal, H.; Hamid, A.; Sahril, N.; Fadhli, M.; Yusoff, M.; Naidu, B.M.; Aris, T. Bacille Calmette-Guerin (BCG) Revaccination: Is it Beneficial for. Open Access Sci. Rep. 2017. [Google Scholar] [CrossRef]
- Escobar, L.E.; Molina-Cruz, A.; Barillas-Mury, C. BCG vaccine protection from severe coronavirus disease 2019 (COVID-19). Proc. Natl. Acad. Sci. USA 2020, 117, 17720–17726. [Google Scholar] [CrossRef]
- Molina, M.A.; Jácome, M.; Navarro, A.; Martin, M. DOTS strategy and community participation: An experience. Int. J. Tuberc. Lung Dis. 2009, 13, 1569–1571. [Google Scholar]
- Urashima, M.; Otani, K.; Hasegawa, Y.; Akutsu, T. Bcg vaccination and mortality of covid-19 across 173 countries: An ecological study. Int. J. Environ. Res. Public Health 2020, 17, 5589. [Google Scholar] [CrossRef]
- Weng, C.H.; Saal, A.; Butt, W.W.W.; Bica, N.; Fisher, J.Q.; Tao, J.; Chan, P.A. Bacillus Calmette-Guérin vaccination and clinical characteristics and outcomes of COVID-19 in Rhode Island, United States: A cohort study. Epidemiol. Infect. 2020, 1, 3–5. [Google Scholar] [CrossRef] [PubMed]
- Netea, M.G.; Joosten, L.A.B.; Latz, E.; Mills, K.H.G.; Stunnenberg, H.G.; Neill, L.A.J.O.; Xavier, R.J. Trained immunity: A program of innate immune memory in health and disease. Science 2017, 352, 1–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riccò, M.; Gualerzi, G.; Ranzieri, S.; Luigi Bragazzi, N. Stop playing with data: There is no sound evidence that bacille calmette-guérin may avoid SARS-CoV-2 infection for now. Acta Biomed. 2020, 91, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Venkataraman, A.; Yusuff, M.; Liebeschuetz, S.; Riddell, A.; Prendergast, A.J. Management and outcome of Bacille Calmette-Guérin vaccine adverse reactions. Vaccine 2015, 33, 5470–5474. [Google Scholar] [CrossRef] [Green Version]
- Peschken, C.A. Possible consequences of a shortage of hydroxychloroquine for patients with systemic lupus erythematosus amid the COVID-19 pandemic. J. Rheumatol. 2020, 47, 787–790. [Google Scholar] [CrossRef] [Green Version]
- Teo, S.S.S.; Shingadia, D. Global Market Update BCG vaccine. Adv. Exp. Med. Biol. 2017, 568, 117–134. [Google Scholar]
- Bandari, J.; Maganty, A.; MacLeod, L.C.; Davies, B.J. Manufacturing and the Market: Rationalizing the Shortage of Bacillus Calmette-Guérin. Eur. Urol. Focus 2018, 4, 481–484. [Google Scholar] [CrossRef]
- Hu, L.; Chen, S.; Fu, Y.; Gao, Z.; Long, H.; Wang, J.-M.; Ren, H.-W.; Zuo, Y.; Li, H.; Wang, J.; et al. Accepted Risk Factors Associated with Clinical Outcomes in 323 COVID-19 Hospitalized Patients in Wuhan, China. Clin. Infect. Dis. 2020, 3. [Google Scholar] [CrossRef]
- Ministry of Finances Presupuesto General del Estado. 2019. Available online: https://www.finanzas.gob.ec/wp-content/uploads/downloads/2019/01/Justificativo-y-Gastos-Proforma-2019-10-dic.pdf%0Ahttps://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&ved=2ahUKEwipmun5iZbpAhWQdd8KHV0CAdwQFjADegQIBBAB&url=https%3A%2F%2Fwww.fina (accessed on 17 August 2020).
- Lopez, E. Venezuelan Refugees: The Ecuador/Colombia Border; U.S. Committee for Refugees and Immigrants: Whashington, DC, USA, 2018. [Google Scholar]
Region | Provinces | 20–49 Years Old | 50–64 Years Old | Coverage |
---|---|---|---|---|
Highlands | Azuay | 75.84 | 91.76 | 80.6 |
Bolivar | 117.27 | 109.73 | 67.2 | |
Cañar | 61.01 | 74.38 | 100.0 | |
Carchi | 139.12 | 135.45 | 78.2 | |
Cotopaxi | 89.70 | 116.58 | 73.0 | |
Chimborazo | 54.04 | 65.10 | 74.7 | |
Imbabura | 78.31 | 93.17 | 89.2 | |
Loja | 124.28 | 119.17 | 82.4 | |
Pichincha | 94.11 | 121.36 | 87.1 | |
Tungurahua | 77.34 | 89.60 | 90.7 | |
Coast | El Oro | 75.84 | 89.29 | 92.3 |
Esmeraldas | 80.44 | 114.64 | 79.3 | |
Guayas | 56.50 | 78.89 | 90.4 | |
Los Rios | 45.49 | 62.99 | 74.5 | |
Manabí | 69.20 | 93.09 | 76.8 | |
Santa Elena | 35.32 | 77.94 | ||
Santo Domingo | 146.64 | 145.85 | ||
Amazon | Morona Santiago | 213.01 | 224.96 | 82.6 |
Napo | 141.79 | 132.06 | 92.6 | |
Orellana | 176.76 | 153.38 | ||
Pastaza | 239.34 | 270.66 | 97.7 | |
Sucumbíos | 131.82 | 135.10 | ||
Zamora Chinchipe | 163.08 | 165.61 | 63.2 | |
Galapagos | 57.53 | 34.55 | 59.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garzon-Chavez, D.; Rivas-Condo, J.; Echeverria, A.; Mozo, J.; Quentin, E.; Reyes, J.; Teran, E. COVID-19 Infection and Previous BCG Vaccination Coverage in the Ecuadorian Population. Vaccines 2021, 9, 91. https://doi.org/10.3390/vaccines9020091
Garzon-Chavez D, Rivas-Condo J, Echeverria A, Mozo J, Quentin E, Reyes J, Teran E. COVID-19 Infection and Previous BCG Vaccination Coverage in the Ecuadorian Population. Vaccines. 2021; 9(2):91. https://doi.org/10.3390/vaccines9020091
Chicago/Turabian StyleGarzon-Chavez, Daniel, Jackson Rivas-Condo, Adriana Echeverria, Jhoanna Mozo, Emmanuelle Quentin, Jorge Reyes, and Enrique Teran. 2021. "COVID-19 Infection and Previous BCG Vaccination Coverage in the Ecuadorian Population" Vaccines 9, no. 2: 91. https://doi.org/10.3390/vaccines9020091
APA StyleGarzon-Chavez, D., Rivas-Condo, J., Echeverria, A., Mozo, J., Quentin, E., Reyes, J., & Teran, E. (2021). COVID-19 Infection and Previous BCG Vaccination Coverage in the Ecuadorian Population. Vaccines, 9(2), 91. https://doi.org/10.3390/vaccines9020091