Perspectives on New Vaccines against Arboviruses Using Insect-Specific Viruses as Platforms
Abstract
:1. Introduction
2. Overview of Health Public Problems Caused by Arboviruses
3. Currently Available Arbovirus Vaccines
4. Interaction between Insect-Specific Viruses and Arboviruses
5. Perspectives for the Prevention of Disease Caused by Arboviruses
5.1. ISVs as Platforms for Vaccine against Arboviruses
5.1.1. Advantages and Disadvantages of ISV-Based Vaccines
5.1.2. Perspectives for the Use of ISV-Based Vaccines
5.1.3. Strategies of Research
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO Vaccines and Immunization: What is Vaccination? Available online: https://www.who.int/news-room/q-a-detail/vaccines-and-immunization-what-is-vaccination (accessed on 22 January 2021).
- Wallis, J.; Shenton, D.P.; Carlisle, R.C. Novel approaches for the design, delivery and administration of vaccine technologies. Clin. Exp. Immunol. 2019, 196, 189–204. [Google Scholar] [CrossRef] [Green Version]
- Vetter, V.; Denizer, G.; Friedland, L.R.; Krishnan, J.; Shapiro, M. Understanding modern-day vaccines: What you need to know. Ann. Med. 2018, 50, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Weaver, S.C.; Reisen, W.K. Present and Future Arboviral Threats. Antivir. Res. 2010, 85, 328–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasconcelos, P.F.C.; Calisher, C.H. Emergence of Human Arboviral Diseases in the Americas, 2000–2016. Vector-Borne Zoonotic Dis. 2016, 16, 295–301. [Google Scholar] [CrossRef]
- Vasilakis, N.; Tesh, R.B. Insect-specific viruses and their potential impact on arbovirus transmission. Curr. Opin. Virol. 2015, 15, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Bolling, B.G.; Weaver, S.C.; Tesh, R.B.; Vasilakis, N. Insect-specific virus discovery: Significance for the arbovirus community. Viruses 2015, 7, 4911–4928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brady, O.J.; Gething, P.W.; Bhatt, S.; Messina, J.P.; Brownstein, J.S.; Hoen, A.G.; Moyes, C.L.; Farlow, A.W.; Scott, T.W.; Hay, S.I. Refining the Global Spatial Limits of Dengue Virus Transmission by Evidence-Based Consensus. PLoS Negl. Trop. Dis. 2012, 6. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef]
- WHO Dengue and Severe Dengue. Available online: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue (accessed on 22 January 2021).
- WHO Zika Virus. Available online: https://www.who.int/news-room/fact-sheets/detail/zika-virus (accessed on 22 January 2021).
- Musso, D.; Ko, A.I.; Baud, D. Zika Virus Infection—After the Pandemic. N. Engl. J. Med. 2019, 381, 1444–1457. [Google Scholar] [CrossRef]
- Brady, O.J.; Hay, S.I. The first local cases of Zika virus in Europe. Lancet 2019, 394, 1991–1992. [Google Scholar] [CrossRef] [Green Version]
- WHO Chikungunya Fact Sheet. Available online: https://www.who.int/news-room/fact-sheets/detail/chikungunya (accessed on 22 January 2021).
- CDC Symptoms, Diagnosis, & Treatment|Chikungunya virus|CDC. Available online: https://www.cdc.gov/chikungunya/symptoms/index.html (accessed on 22 January 2021).
- WHO West Nile Virus. Available online: https://www.who.int/news-room/fact-sheets/detail/west-nile-virus (accessed on 7 February 2021).
- Collins, M.H.; Metz, S.W. Progress and Works in Progress: Update on Flavivirus Vaccine Development. Clin. Ther. 2017, 39, 1519–1536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO Immunization, Vaccines and Biologicals. Available online: https://www.who.int/teams/immunization-vaccines-and-biologicals/diseases (accessed on 22 January 2021).
- FDA Vaccines Licensed for Use in the United States|FDA. Available online: https://www.fda.gov/vaccines-blood-biologics/vaccines/vaccines-licensed-use-united-states (accessed on 22 January 2021).
- Guy, B.; Briand, O.; Lang, J.; Saville, M.; Jackson, N. Development of the Sanofi Pasteur tetravalent dengue vaccine: One more step forward. Vaccine 2015, 33, 7100–7111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Silveira, L.T.C.; Tura, B.; Santos, M. Systematic review of dengue vaccine efficacy. BMC Infect. Dis. 2019, 19, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Poland, G.A.; Ovsyannikova, I.G.; Kennedy, R.B. Zika Vaccine Development: Current Status. Mayo Clin. Proc. 2019, 94, 2572–2586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, S.; Song, S.; Zhang, L. Recent Progress in Vaccine Development against Chikungunya Virus. Front. Microbiol. 2019, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerke, C.; Frantz, P.N.; Ramsauer, K.; Tangy, F. Measles-vectored vaccine approaches against viral infections: A focus on Chikungunya. Expert Rev. Vaccines 2019, 18, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.L.; Coates, E.E.; Plummer, S.H.; Carter, C.A.; Berkowitz, N.; Conan-Cibotti, M.; Cox, J.H.; Beck, A.; O’Callahan, M.; Andrews, C.; et al. Effect of a Chikungunya Virus-Like Particle Vaccine on Safety and Tolerability Outcomes: A Randomized Clinical Trial. JAMA J. Am. Med. Assoc. 2020, 323, 1369–1377. [Google Scholar] [CrossRef] [PubMed]
- Stapleford, K.A.; Mulligan, M.J. A New Vaccine for Chikungunya Virus. JAMA 2020, 323, 1351. [Google Scholar] [CrossRef] [PubMed]
- Kenney, J.L.; Solberg, O.D.; Langevin, S.A.; Brault, A.C. Characterization of a novel insect-specific flavivirus from Brazil: Potential for inhibition of infection of arthropod cells with medically important flaviviruses. J. Gen. Virol. 2014, 95, 2796–2808. [Google Scholar] [CrossRef]
- Goenaga, S.; Kenney, J.L.; Duggal, N.K.; Delorey, M.; Ebel, G.D.; Zhang, B.; Levis, S.C.; Enria, D.A.; Brault, A.C. Potential for co-infection of a mosquito-specific flavivirus, nhumirim virus, to block west nile virus transmission in mosquitoes. Viruses 2015, 7, 5801–5812. [Google Scholar] [CrossRef] [Green Version]
- Nasar, F.; Erasmus, J.H.; Haddow, A.D.; Tesh, R.B.; Weaver, S.C. Eilat virus induces both homologous and heterologous interference. Virology 2015, 484, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Manning, J.E.; Morens, D.M.; Kamhawi, S.; Valenzuela, J.G.; Memoli, M. Mosquito Saliva: The Hope for a Universal Arbovirus Vaccine? J. Infect. Dis. 2018, 218, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Pingen, M.; Bryden, S.R.; Pondeville, E.; Schnettler, E.; Kohl, A.; Merits, A.; Fazakerley, J.K.; Graham, G.J.; McKimmie, C.S. Host Inflammatory Response to Mosquito Bites Enhances the Severity of Arbovirus Infection. Immunity 2016, 44, 1455–1469. [Google Scholar] [CrossRef] [Green Version]
- Erasmus, J.H.; Needham, J.; Raychaudhuri, S.; Diamond, M.S.; Beasley, D.W.C.; Morkowski, S.; Salje, H.; Fernandez Salas, I.; Kim, D.Y.; Frolov, I.; et al. Utilization of an Eilat Virus-Based Chimera for Serological Detection of Chikungunya Infection. PLoS Negl. Trop. Dis. 2015, 9, 1–16. [Google Scholar] [CrossRef]
- Erasmus, J.H.; Weaver, S.C. Biotechnological applications of an insect-specific alphavirus. DNA Cell Biol. 2017, 36, 1045–1049. [Google Scholar] [CrossRef] [PubMed]
- Erasmus, J.H.; Auguste, A.J.; Kaelber, J.T.; Luo, H.; Rossi, S.L.; Fenton, K.; Leal, G.; Kim, D.Y.; Chiu, W.; Wang, T.; et al. A chikungunya fever vaccine utilizing an insect-specific virus platform. Nat. Med. 2017, 23, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Adam, A.; Luo, H.; Osman, S.R.; Wang, B.; Roundy, C.M.; Auguste, A.J.; Plante, K.S.; Peng, B.-H.; Thangamani, S.; Frolova, E.I.; et al. Optimized production and immunogenicity of an insect virus-based chikungunya virus candidate vaccine in cell culture and animal models. Emerg. Microbes Infect. 2021, 10, 1–33. [Google Scholar] [CrossRef]
- Erasmus, J.H.; Seymour, R.L.; Kaelber, J.T.; Kim, D.Y.; Leal, G.; Sherman, M.B.; Chiu, W.; Weaver, S.C. Novel Insect-Specific Eilat Virus-Based Chimeric Vaccine Candidates Provide Durable, Mono- and Multivalent, Single- Dose Protection against Lethal Alphavirus Challenge. Vaccines Antivir. Agents 2018, 92, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Hobson-Peters, J.; Harrison, J.J.; Watterson, D.; Hazlewood, J.E.; Vet, L.J.; Newton, N.D.; Warrilow, D.; Colmant, A.M.G.; Taylor, C.; Huang, B.; et al. A recombinant platform for flavivirus vaccines and diagnostics using chimeras of a new insect-specific virus. Sci. Transl. Med. 2019, 11, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Scott, R.; Shelton, A.; Eckels, K.; Bancroft, W.; Summers, R.; Russell, P. Human hypersensitivity to a sham vaccine prepared from mosquito-cell culture fluids. J. Allergy Clin. Immunol. 1984, 74, 808–811. [Google Scholar] [CrossRef]
Arboviruses | ISV | Strategy | Titers In Vitro | Animal Challenge | Reference (Year) |
---|---|---|---|---|---|
Chikungunya (CHIKV) | Eilat virus (EILV) | Development of a chimeric virus with EILV cDNA clone and the CHIKV structural proteins: E1, E2 and C | 1010 PFU/mL | C57BL/6 mouse, A129 IFNα/βR−/− mice, nonhuman primates (NHPs) (cynomolgus macaques) | 2017 |
Eastern equine encephalitis virus (EEEV), Venezuelan equine encephalitis virus (VEEV) | Eilat virus (EILV) | Development of a chimeric virus with EILV cDNA clone and the EEEV and VEEV structural proteins: E1, E2 and C | 106 to 108 PFU/mL | CD-1 mice | 2018 |
Dengue (DENV), Yellow Fever (YFV), Zika (ZIKV), West Nile (WNV), Japanese Encephalitis (JEV) | Binjari virus (BINJV) | Development of a chimeric virus using BINJV as backbone for structural protein genes (prME) of DENV, YFV, ZIKV, WNV and JEV | Up to 109.5 cell culture infectious dose/ml | Murine IFNAR−/− mouse models | 2019 |
Search Strategy | (Insect Specific Viruses Vaccine) and (Insect Specific Viruses, Vaccines, Arboviruses) | (Insect Specific Viruses, Vaccines) and (Insect Specific Viruses), Vaccines) | “Insect-Specific Viruses” “Vaccine” Not Review | “Insect-Specific Viruses” “Vaccine” “Arbovirus” Not Review |
---|---|---|---|---|
Source | Pubmed.gov | Pubmed.gov | Google Scholar | Google Scholar |
Time Frame | 1971–2020 | 1971–2020 | 1970–2021 | 1970–2021 |
Citation Number | 64 | 824 | 207 | 154 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvalho, V.L.; Long, M.T. Perspectives on New Vaccines against Arboviruses Using Insect-Specific Viruses as Platforms. Vaccines 2021, 9, 263. https://doi.org/10.3390/vaccines9030263
Carvalho VL, Long MT. Perspectives on New Vaccines against Arboviruses Using Insect-Specific Viruses as Platforms. Vaccines. 2021; 9(3):263. https://doi.org/10.3390/vaccines9030263
Chicago/Turabian StyleCarvalho, Valéria L., and Maureen T. Long. 2021. "Perspectives on New Vaccines against Arboviruses Using Insect-Specific Viruses as Platforms" Vaccines 9, no. 3: 263. https://doi.org/10.3390/vaccines9030263
APA StyleCarvalho, V. L., & Long, M. T. (2021). Perspectives on New Vaccines against Arboviruses Using Insect-Specific Viruses as Platforms. Vaccines, 9(3), 263. https://doi.org/10.3390/vaccines9030263