Expanding COVID-19 Vaccine Availability: Role for Combined Orthogonal Serology Testing (COST)
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burgos, R.M.; Badowski, M.E.; Drwiega, E.; Ghassemi, S.; Griffith, N.; Herald, F.; Johnson, M.; Smith, R.O.; Michienzi, S.M. The race to a COVID-19 vaccine: Opportunities and challenges in development and distribution. Drugs Context 2021, 10, 2020-12-2. [Google Scholar] [CrossRef]
- Mlcochova, P.; Collier, D.; Ritchie, A.; Assennato, S.M.; Hosmillo, M.; Goel, N.; Meng, B.; Chatterjee, K.; Mendoza, V.; Temperton, N.; et al. Combined point-of-care nucleic acid and antibody testing for SARS-CoV-2 following emergence of d614g spike variant. Cell Rep. Med. 2020, 1, 100099. [Google Scholar] [CrossRef]
- Fiore, B.D.; Paola, L.; Eugenio, M.; Gaetano, B.; Anna, V.; Antonella, L.; Annalisa, S.; Laura, M. Anti-spike S1 receptor-binding domain antibodies against SARS-CoV-2 persist several months after infection regardless of disease severity. J. Med. Virol. 2021, 93, 3158–3164. [Google Scholar] [CrossRef]
- Ripperger, T.J.; Uhrlaub, J.L.; Watanabe, M.; Wong, R.; Castaneda, Y.; Pizzato, H.A.; Thompson, M.R.; Bradshaw, C.; Weinkauf, C.C.; Bime, C.; et al. Orthogonal SARS-CoV-2 serological assays enable surveillance of low-prevalence communities and reveal durable humoral immunity. Immunity 2020, 53, 925–933.e4. [Google Scholar] [CrossRef] [PubMed]
- Narasimhan, M.; Mahimainathan, L.; Raj, E.; Clark, A.E.; Markantonis, J.; Green, A.; Xu, J.; SoRelle, J.A.; Alexis, C.; Fankhauser, K.; et al. Clinical evaluation of the Abbott Alinity SARS-CoV-2 spike-specific quantitative IgG and IgM assays in infected, recovered, and vaccinated groups. J. Clin. Microbiol. 2021. [Google Scholar] [CrossRef]
- Mazzoni, A.; Di Lauria, N.; Maggi, L.; Salvati, L.; Vanni, A.; Capone, M.; Lamacchia, G.; Mantengoli, E.; Spinicci, M.; Zammarchi, L.; et al. First dose mRNA vaccination is sufficient to reactivate immunological memory to SARS-CoV-2 in ex COVID-19 subjects. MedRxiv 2021. [Google Scholar] [CrossRef]
- Phipps, W.S.; SoRelle, J.A.; Li, Q.Z.; Mahimainathan, L.; Araj, E.; Markantonis, J.; Lacelle, C.; Balani, J.; Parikh, H.; Solow, E.B.; et al. SARS-CoV-2 antibody responses do not predict COVID-19 disease severity. Am. J. Clin. Pathol. 2020, 154, 459–465. [Google Scholar] [CrossRef]
- Wang, W.L.; Xu, Y.L.; Gao, R.Q.; Lu, R.J.; Han, K.; Wu, G.Z.; Tan, W.J. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA 2020, 323, 1843–1844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, X.F.; Chen, J.; Hu, J.L.; Long, Q.X.; Deng, H.J.; Liu, P.; Fan, K.; Liao, P.; Liu, B.Z.; Wu, G.C.; et al. A peptide-based magnetic chemiluminescence enzyme immunoassay for serological diagnosis of coronavirus disease 2019 (COVID-19). J. Infect. Dis. 2020, 222, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Chew, K.; Tan, S.; Saw, S.; Pajarillaga, A.; Zaine, S.; Khoo, C.; Wang, W.; Tambyah, P.; Jureen, R.; Sethi, S. Clinical evaluation of serological IgG antibody response on the Abbott Architect for established SARS-CoV-2 infection. Clin. Microbiol. Infect. 2020, 26, 1256.e9–1256.e116. [Google Scholar] [CrossRef] [PubMed]
- Eyre, D.W.; Lumley, S.F.; O’Donnell, D.; Stoesser, N.E.; Matthews, P.C.; Howarth, A.; Hatch, S.B.; Marsden, B.D.; Cox, S.; James, T.; et al. Stringent thresholds in SARS-CoV-2 IgG assays lead to under-detection of mild infections. BMC Infect. Dis. 2021, 21, 187. [Google Scholar] [CrossRef] [PubMed]
- CDC. Interim Guidelines for Covid-19 Antibody Testing. 2020. Available online: https://www.cdc.gov/coronavirus/2019-ncov/lab/resources/antibody-tests-guidelines.html (accessed on 22 March 2021).
- Bubar, K.M.; Reinholt, K.; Kissler, S.M.; Lipsitch, M.; Cobey, S.; Grad, Y.H.; Larremore, D.B. Model-informed COVID-19 vaccine prioritization strategies by age and serostatus. Science 2021, 371, 916–921. [Google Scholar] [CrossRef] [PubMed]
- Peeling, R.W.; Wedderburn, C.J.; Garcia, P.J.; Boeras, D.; Fongwen, N.; Nkengasong, J.; Sall, A.; Tanuri, A.; Heymann, D.L. Serology testing in the COVID-19 pandemic response. Lancet Infect. Dis. 2020, 20, e245–e249. [Google Scholar] [CrossRef]
Information | n (%) |
---|---|
Total UTSW PCR orders | 108,505 |
COVID-19 PCR+ | 6871/108,505 (6.3) |
COVID-19 PCR– | 101,634/108,505 (93.6) |
Total UTSW IgGNC orders | 2533 |
IgGNC+ | 986/2533 (38.9) |
IgGNC– | 1547/2533 (61.1) |
IgGNC orders against total PCR orders | 2533/108,505 (2.3) |
PCR Status | Information/Explanations | n (%) |
---|---|---|
Total patients tested | 21,388 | |
Excluded: Confirmed vaccinated, no paired PCR or IgGNC results) | 287/21,388 (1.3) | |
PCR+ | 646/21,101 (3.1) | |
PCR- | 20,455/21,101 (96.9) | |
PCR+ and PCR– | Manufacturer-recommended IgGNC+ (≥1.4) | 1500/21,101 (7.1) |
PCR+ | Manufacturer-recommended IgGNC+ (≥1.4) | 250/21,101 (1.2) |
PCR– | Manufacturer-recommended IgGNC+ (≥1.4) | 1250/20,455 (6.1) |
Manufacturer-recommended grey-zone IgGNC+ threshold approved in Europe (≥0.5) 1 | 1789/20,455 (8.7) | |
UTSW IgGNC+ threshold that accounts for exCOVID-19 cases (≥0.2 to <1.4) 2 | 2475/20,455 (12.1) |
PCR Status | Information | n (%) |
---|---|---|
Total patients tested | 684 | |
Excluded: confirmed vaccinated and no information for any one of the antibody assays | 70 (10.2) | |
PCR+ | 30/614 (4.9) | |
PCR- | 584/614 (95.1) | |
PCR+ and PCR– | IgGNC+ (≥1.4) | 97/614 (15.8) |
IgMSP+ (≥1.0) | 107/614 (17.4) | |
IgGSP+ (≥50.0) | 155/614 (25.2) | |
PCR– | IgGNC+ (≥1.4) | 78/584 (13.4) |
Grey-zone IgGNC+ (≥0.5) | 100/584 (17.1) | |
≥UTSW IgGNC+ (≥0.2) | 130/584 (22.3) | |
Either IgGNC+ or IgMSP+ | 105/584 (18.0) | |
Either IgGNC+ or IgGSP+ | 137/584 (23.5) | |
Either IgMSP+ or IgGSP+ | 139/584 (23.8) | |
Either IgGNC+ or IgMSP+ or IgGSP+ | 141/584 (24.1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narasimhan, M.; Mahimainathan, L.; Araj, E.; Clark, A.E.; Wilkinson, K.; Yekkaluri, S.; Tiro, J.; Lee, F.M.; Balani, J.; Sarode, R.; et al. Expanding COVID-19 Vaccine Availability: Role for Combined Orthogonal Serology Testing (COST). Vaccines 2021, 9, 376. https://doi.org/10.3390/vaccines9040376
Narasimhan M, Mahimainathan L, Araj E, Clark AE, Wilkinson K, Yekkaluri S, Tiro J, Lee FM, Balani J, Sarode R, et al. Expanding COVID-19 Vaccine Availability: Role for Combined Orthogonal Serology Testing (COST). Vaccines. 2021; 9(4):376. https://doi.org/10.3390/vaccines9040376
Chicago/Turabian StyleNarasimhan, Madhusudhanan, Lenin Mahimainathan, Ellen Araj, Andrew E Clark, Kathleen Wilkinson, Sruthi Yekkaluri, Jasmin Tiro, Francesca M Lee, Jyoti Balani, Ravi Sarode, and et al. 2021. "Expanding COVID-19 Vaccine Availability: Role for Combined Orthogonal Serology Testing (COST)" Vaccines 9, no. 4: 376. https://doi.org/10.3390/vaccines9040376
APA StyleNarasimhan, M., Mahimainathan, L., Araj, E., Clark, A. E., Wilkinson, K., Yekkaluri, S., Tiro, J., Lee, F. M., Balani, J., Sarode, R., Singal, A. G., & Muthukumar, A. (2021). Expanding COVID-19 Vaccine Availability: Role for Combined Orthogonal Serology Testing (COST). Vaccines, 9(4), 376. https://doi.org/10.3390/vaccines9040376