Sex Disparities in Efficacy in COVID-19 Vaccines: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Systematic Review
2.2. Statistical Method
3. Results
3.1. Studies Selection
3.2. Summary of Efficacy
3.3. Meta-Analysis
3.4. Summary of the Safety
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peckham, H.; de Gruijter, N.M.; Raine, C.; Radziszewska, A.; Ciurtin, C.; Wedderburn, L.R.; Rosser, E.C.; Webb, K.; Deakin, C.T. Male Sex Identified by Global COVID-19 Meta-Analysis as a Risk Factor for Death and ITU Admission. Nat. Commun. 2020, 11, 6317. [Google Scholar] [CrossRef]
- Flanagan, K.L.; Fink, A.L.; Plebanski, M.; Klein, S.L. Sex and Gender Differences in the Outcomes of Vaccination over the Life Course. Annu. Rev. Cell Dev. Biol. 2017, 33, 577–599. [Google Scholar] [CrossRef]
- Klein, S.L.; Marriott, I.; Fish, E.N. Sex-Based Differences in Immune Function and Responses to Vaccination. Trans. R. Soc. Trop. Med. Hyg. 2015, 109, 9–15. [Google Scholar] [CrossRef] [Green Version]
- McCartney, P.R. Sex-Based Vaccine Response in the Context of COVID-19. J. Obstet. Gynecol. Neonatal Nurs. 2020, 49, 405–408. [Google Scholar] [CrossRef]
- McNeil, M.M.; Weintraub, E.S.; Duffy, J.; Sukumaran, L.; Jacobsen, S.J.; Klein, N.P.; Hambidge, S.J.; Lee, G.M.; Jackson, L.A.; Irving, S.A.; et al. Risk of Anaphylaxis after Vaccination in Children and Adults. J. Allergy Clin. Immunol. 2016, 137, 868–878. [Google Scholar] [CrossRef] [Green Version]
- Fink, A.L.; Klein, S.L. Sex and Gender Impact Immune Responses to Vaccines Among the Elderly. Physiology 2015, 30, 408–416. [Google Scholar] [CrossRef]
- Vijayasingham, L.; Bischof, E.; Wolfe, J. Sex-Disaggregated Data in COVID-19 Vaccine Trials. Lancet 2021, 397, 966–967. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Healthcare Interventions: Explanation and Elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [Green Version]
- Röver, C.; Knapp, G.; Friede, T. Hartung-Knapp-Sidik-Jonkman Approach and Its Modification for Random-Effects Meta-Analysis with Few Studies. BMC Med. Res. Methodol. 2015, 15, 99. [Google Scholar] [CrossRef] [Green Version]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 MRNA COVID-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Baden, L.R.; Sahly, H.M.E.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the MRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef]
- Sadoff, J.; Gray, G.; Vandebosch, A.; Cárdenas, V.; Shukarev, G.; Grinsztejn, B.; Goepfert, P.A.; Truyers, C.; Fennema, H.; Spiessens, B.; et al. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against Covid-19. N. Engl. J. Med. 2021, 384, 2187–2201. [Google Scholar] [CrossRef]
- Logunov, D.Y.; Dolzhikova, I.V.; Shcheblyakov, D.V.; Tukhvatulin, A.I.; Zubkova, O.V.; Dzharullaeva, A.S.; Kovyrshina, A.V.; Lubenets, N.L.; Grousova, D.M.; Erokhova, A.S.; et al. Safety and Efficacy of an RAd26 and RAd5 Vector-Based Heterologous Prime-Boost COVID-19 Vaccine: An Interim Analysis of a Randomised Controlled Phase 3 Trial in Russia. Lancet Lond. Engl. 2021, 397, 671–681. [Google Scholar] [CrossRef]
- FDA Briefing Document Vaccines and Related Biological Products Advisory Committee Meeting February 26, 2021—Janssen Ad26.COV2.S Vaccine for the Prevention of COVID-19; Food and Drug Administration: Silver Spring, MD, USA, 2021; p. 62.
- FDA Briefing Document Vaccines and Related Biological Products Advisory Committee Meeting December 17, 2020—Moderna COVID-19 Vaccine; Food and Drug Administration: Silver Spring, MD, USA, 2020; p. 54.
- Klein, S.L.; Flanagan, K.L. Sex Differences in Immune Responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef]
- Scully, E.P.; Haverfield, J.; Ursin, R.L.; Tannenbaum, C.; Klein, S.L. Considering How Biological Sex Impacts Immune Responses and COVID-19 Outcomes. Nat. Rev. Immunol. 2020. [Google Scholar] [CrossRef]
- Mauvais-Jarvis, F.; Merz, N.B.; Barnes, P.J.; Brinton, R.D.; Carrero, J.-J.; DeMeo, D.L.; Vries, G.J.D.; Epperson, C.N.; Govindan, R.; Klein, S.L.; et al. Sex and Gender: Modifiers of Health, Disease, and Medicine. Lancet 2020, 396, 565–582. [Google Scholar] [CrossRef]
- Chang, W.-H. A Review of Vaccine Effects on Women in Light of the COVID-19 Pandemic. Taiwan. J. Obstet. Gynecol. 2020, 59, 812–820. [Google Scholar] [CrossRef]
- Kyrle, P.A.; Minar, E.; Bialonczyk, C.; Hirschl, M.; Weltermann, A.; Eichinger, S. The Risk of Recurrent Venous Thromboembolism in Men and Women. N. Engl. J. Med. 2004, 350, 2558–2563. [Google Scholar] [CrossRef]
- McRae, S.; Tran, H.; Schulman, S.; Ginsberg, J.; Kearon, C. Effect of Patient’s Sex on Risk of Recurrent Venous Thromboembolism: A Meta-Analysis. Lancet Lond. Engl. 2006, 368, 371–378. [Google Scholar] [CrossRef]
- Honig, P.K. Real-World Evidence and the Regulation of Medicines. Clin. Pharmacol. Ther. 2021, 109, 1169–1172. [Google Scholar] [CrossRef]
- European Database of Suspected Adverse Drug Reaction Reports. Available online: http://www.adrreports.eu/en/search_subst.html# (accessed on 10 May 2021).
- Zekarias, A.; Watson, S.; Vidlin, S.H.; Grundmark, B. Sex Differences in Reported Adverse Drug Reactions to COVID-19 Drugs in a Global Database of Individual Case Safety Reports. Drug Saf. 2020, 43, 1309–1314. [Google Scholar] [CrossRef]
- Watson, S.; Caster, O.; Rochon, P.A.; Ruijter, H. den Reported Adverse Drug Reactions in Women and Men: Aggregated Evidence from Globally Collected Individual Case Reports during Half a Century. EClinicalMedicine 2019, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greinacher, A.; Thiele, T.; Warkentin, T.E.; Weisser, K.; Kyrle, P.A.; Eichinger, S. Thrombotic Thrombocytopenia after ChAdOx1 NCov-19 Vaccination. N. Engl. J. Med. 2021, 384, 2092–2101. [Google Scholar] [CrossRef] [PubMed]
- See, I.; Su, J.R.; Lale, A.; Woo, E.J.; Guh, A.Y.; Shimabukuro, T.T.; Streiff, M.B.; Rao, A.K.; Wheeler, A.P.; Beavers, S.F.; et al. US Case Reports of Cerebral Venous Sinus Thrombosis with Thrombocytopenia after Ad26.COV2.S Vaccination, March 2 to April 21, 2021. JAMA 2021. [Google Scholar] [CrossRef] [PubMed]
Sponsor | Approval Date | NCT | Phase | Study Design | Schedule (d) | Population N (%) | Efficacy | Ref | ||
---|---|---|---|---|---|---|---|---|---|---|
Placebo-Control n/N (%) | Vaccine n/N (%) | % (95% CI) | ||||||||
Pfizer/BioNTech | FDA 11/12/2020 | NCT04368728 | II/III | RCT | 2 IM doses | All: 37706 | All: 162/18846 (0.86) | All: 8/18860 (0.04) | All: 95.0 (90.0–97.9) | [10] |
EMA 21/12/2020 | 1:1 | (0, 21) | M: 19,075 (50.6) | M: 81/9436 (0.86) | M: 3/9639 (0.03) | M: 96.4% (88.9–99.3) | ||||
blinded | F: 18,631 (49.4) | F: 81/9410 (0.86) | F: 5/9221 (0.05) | F: 93.7% (84.7–98.0) | ||||||
Moderna | FDA 18/12/2020 | NCT04470427 | III | RCT | 2 IM doses | All: 30351 | All: 185/14073 (1.31) | All: 11/14134 (0.1) | All: 94.1% (89.3–96.8) | [11] |
EMA 06/01/2021 | 1:1 | (0, 28) | M: 15,985 (52.7) | M: 87/7462 (1.17) | M: 4/7366 (0.1) | M: 95.4% (87.4–98.3) | ||||
blinded | F: 14,366 (47.3) | F: 98/6611 (1.48) | F: 7/6768 (0.1) | F: 93.1% (85.2–96.8) | ||||||
Gamaleja | Russia 11/08/2020 | NCT04530396 | III | RCT | 2 IM doses | All: 19866 | All: 62/4902 (1.26) | All: 16/14964 (0.1) | All: 91.6% (85.6–95.2) | [13] |
Rolling review EMA 04/03/2021 | 3:1 | (0, 21) | M: 12,158 (61.2) | M: 39/3015 (1.29) | M: 7/9143 (0.1) | M: 94.2% (87.2–97.4) | ||||
double-blinded | F: 7708 (38.8) | F: 23/1887 (1.22) | F: 9/5821 (0.2) | F: 87.5% (73.4–94.2) | ||||||
Johnson & Johnson (Janssen) | FDA 27/02/2021 | NCT04505722 | III | RCT | 1 IM dose | All: 39321 | All: 193/19178 § (1.01) | All: 66/19306 § (0.3) | All: 66.1% (55.0–74.8) | [12] |
EMA 11/03/2021 | 1:1 | M: 21,834 (55.5) | M: 176/10649 (1.65) | M: 54/10764 (0.5) | M: 69.8% (58.9–78.2) | |||||
double-blinded | F: 17,479 (44.5) | F: 148/8525 (1.74) | F: 59/8538 (0.7) | F: 60.3% (46.0–71.2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bignucolo, A.; Scarabel, L.; Mezzalira, S.; Polesel, J.; Cecchin, E.; Toffoli, G. Sex Disparities in Efficacy in COVID-19 Vaccines: A Systematic Review and Meta-Analysis. Vaccines 2021, 9, 825. https://doi.org/10.3390/vaccines9080825
Bignucolo A, Scarabel L, Mezzalira S, Polesel J, Cecchin E, Toffoli G. Sex Disparities in Efficacy in COVID-19 Vaccines: A Systematic Review and Meta-Analysis. Vaccines. 2021; 9(8):825. https://doi.org/10.3390/vaccines9080825
Chicago/Turabian StyleBignucolo, Alessia, Lucia Scarabel, Silvia Mezzalira, Jerry Polesel, Erika Cecchin, and Giuseppe Toffoli. 2021. "Sex Disparities in Efficacy in COVID-19 Vaccines: A Systematic Review and Meta-Analysis" Vaccines 9, no. 8: 825. https://doi.org/10.3390/vaccines9080825
APA StyleBignucolo, A., Scarabel, L., Mezzalira, S., Polesel, J., Cecchin, E., & Toffoli, G. (2021). Sex Disparities in Efficacy in COVID-19 Vaccines: A Systematic Review and Meta-Analysis. Vaccines, 9(8), 825. https://doi.org/10.3390/vaccines9080825