Cellular Immunotherapy and the Lung
Abstract
:1. Introduction
2. Application in the Lung
3. Respiratory Diseases
3.1. ARDs
3.2. RSV
3.3. SARS-CoV-2
3.4. Additional Respiratory Viruses
4. Cellular Immunotherapies
4.1. Monoclonal Antibodies against COVID-19
4.2. NK Cell Therapy against COVID-19
4.3. Immune Checkpoint Inhibitors against COVID-19
4.4. Adoptive T Cell Therapy against COVID-19
4.5. Adoptive T Cell Therapy against Other Respiratory Viruses
4.6. CAR T/CAR-NK Cell Therapy
4.7. DC Vaccines against COVID-19
4.8. Potential of Vaccines and CIs against Viral Shedding
5. Routes of Administration
5.1. Novel Delivery Routes
5.2. Intravenous Route
5.3. Intratracheal Instillation
5.4. Inhalation
5.5. Inhaled Monoclonal Antibodies
6. Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Paucek, R.D.; Baltimore, D.; Li, G. The Cellular Immunotherapy Revolution: Arming the Immune System for Precision Therapy. Trends Immunol. 2019, 40, 292–309. [Google Scholar] [CrossRef] [PubMed]
- Hayes, C. Cellular Immunotherapies for Cancer. Ir. J. Med. Sci. 2021, 190, 41–57. [Google Scholar] [CrossRef] [PubMed]
- Weber, E.W.; Maus, M.V.; Mackall, C.L. The Emerging Landscape of Immune Cell Therapies. Cell 2020, 181, 46–62. [Google Scholar] [CrossRef] [PubMed]
- Saadeldin, M.K.; Abdel-Aziz, A.K.; Abdellatif, A. Dendritic Cell Vaccine Immunotherapy; the Beginning of the End of Cancer and COVID-19. A Hypothesis. Med. Hypotheses 2021, 146, 110365. [Google Scholar] [CrossRef] [PubMed]
- Su, F.; Patel, G.B.; Hu, S.; Chen, W. Induction of Mucosal Immunity through Systemic Immunization: Phantom or Reality? Hum. Vaccines Immunother. 2016, 12, 1070–1079. [Google Scholar] [CrossRef] [Green Version]
- McCright, J.C.; Maisel, K. Engineering Drug Delivery Systems to Overcome Mucosal Barriers for Immunotherapy and Vaccination. Tissue Barriers 2020, 8, 1695476. [Google Scholar] [CrossRef]
- Kyd, J.M.; Foxwell, A.R.; Cripps, A.W. Mucosal Immunity in the Lung and Upper Airway. In Proceedings of the Vaccine; Elsevier: Amsterdam, The Netherlands, 2001; Volume 19, pp. 2527–2533. [Google Scholar]
- Wirsdörfer, F.; de Leve, S.; Jendrossek, V. Combining Radiotherapy and Immunotherapy in Lung Cancer: Can We Expect Limitations Due to Altered Normal Tissue Toxicity? Int. J. Mol. Sci. 2019, 20, 24. [Google Scholar] [CrossRef] [Green Version]
- Fukuyama, Y.; Tokuhara, D.; Kataoka, K.; Gilbert, R.S.; McGhee, J.R.; Yuki, Y.; Kiyono, H.; Fujihashi, K. Novel Vaccine Development Strategies for Inducing Mucosal Immunity. Expert Rev. Vaccines 2012, 11, 367–379. [Google Scholar] [CrossRef] [Green Version]
- Porcu, M.; de Silva, P.; Solinas, C.; Battaglia, A.; Schena, M.; Scartozzi, M.; Bron, D.; Suri, J.S.; Willard-Gallo, K.; Sangiolo, D.; et al. Immunotherapy Associated Pulmonary Toxicity: Biology behind Clinical and Radiological Features. Cancers 2019, 11, 305. [Google Scholar] [CrossRef] [Green Version]
- Eigentler, T.K.; Hassel, J.C.; Berking, C.; Aberle, J.; Bachmann, O.; Grünwald, V.; Kähler, K.C.; Loquai, C.; Reinmuth, N.; Steins, M.; et al. Diagnosis, Monitoring and Management of Immune-Related Adverse Drug Reactions of Anti-PD-1 Antibody Therapy. Cancer Treat. Rev. 2016, 45, 7–18. [Google Scholar] [CrossRef]
- Galluzzi, L.; Vacchelli, E.; Bravo-San Pedro, J.M.; Buqué, A.; Senovilla, L.; Baracco, E.E.; Bloy, N.; Castoldi, F.; Abastado, J.P.; Agostinis, P.; et al. Classification of Current Anticancer Immunotherapies. Oncotarget 2014, 5, 12472–12508. [Google Scholar] [CrossRef] [Green Version]
- Schlake, T.; Thess, A.; Thran, M.; Jordan, I. MRNA as Novel Technology for Passive Immunotherapy. Cell. Mol. Life Sci. 2019, 76, 301–328. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, S.A.; Restifo, N.P. Adoptive Cell Transfer as Personalized Immunotherapy for Human Cancer. Science 2015, 348, 62–68. [Google Scholar] [CrossRef] [Green Version]
- Heslop, H.E.; Leen, A.M. T-Cell Therapy for Viral Infections. Hematology / the Education Program of the American Society of Hematology. American Society of Hematology. Educ. Program 2013, 2013, 342–347. [Google Scholar]
- Dalgleish, A.G. Vaccines versus Immunotherapy: Overview of Approaches in Deciding between Options. Hum. Vaccines Immunother. 2014, 10, 3369–3374. [Google Scholar] [CrossRef] [Green Version]
- Alard, E.; Butnariu, A.B.; Grillo, M.; Kirkham, C.; Zinovkin, D.A.; Newnham, L.; Macciochi, J.; Pranjol, M.Z.I. Advances in Anti-Cancer Immunotherapy: Car-t Cell, Checkpoint Inhibitors, Dendritic Cell Vaccines, and Oncolytic Viruses, and Emerging Cellular and Molecular Targets. Cancers 2020, 12, 1826. [Google Scholar] [CrossRef]
- Afrough, B.; Dowall, S.; Hewson, R. Emerging Viruses and Current Strategies for Vaccine Intervention. Clin. Exp. Immunol. 2019, 196, 157–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, J.S. Therapeutic Applications: Natural Killer Cells in the Clinic. Hematology / the Education Program of the American Society of Hematology. American Society of Hematology. Educ. Program 2013, 2013, 247–253. [Google Scholar]
- van Erp, E.A.; van Kampen, M.R.; van Kasteren, P.B.; de Wit, J. Viral Infection of Human Natural Killer Cells. Viruses 2019, 11, 243. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Sun, H.Y.; Xiao, W.H.; Zhang, C.; Tian, Z.G. Natural Killer Cell Dysfunction in Hepatocellular Carcinoma and NK Cell-Based Immunotherapy. Acta Pharmacol. Sin. 2015, 36, 1191–1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Market, M.; Angka, L.; Martel, A.B.; Bastin, D.; Olanubi, O.; Tennakoon, G.; Boucher, D.M.; Ng, J.; Ardolino, M.; Auer, R.C. Flattening the COVID-19 Curve With Natural Killer Cell Based Immunotherapies. Front. Immunol. 2020, 11, 1512. [Google Scholar] [CrossRef] [PubMed]
- Riley, R.S.; June, C.H.; Langer, R.; Mitchell, M.J. Delivery Technologies for Cancer Immunotherapy. Nat. Rev. Drug Discov. 2019, 18, 175–196. [Google Scholar] [CrossRef]
- Li, Q.; Yuan, D.; Ma, C.; Liu, Y.; Ma, L.; Lv, T.; Song, Y. A New Hope: The Immunotherapy in Small Cell Lung Cancer. Neoplasma 2016, 63, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Kikkert, M. Innate Immune Evasion by Human Respiratory RNA Viruses. J. Innate Immun. 2020, 12, 4–20. [Google Scholar] [CrossRef] [PubMed]
- de Santis, M.M.; Bölükbas, D.A.; Lindstedt, S.; Wagner, D.E. How to Build a Lung: Latest Advances and Emerging Themes in Lung Bioengineering. Eur. Respir. J. 2018, 52, 1601355. [Google Scholar] [CrossRef]
- Geethakumari, P.R.; Ramasamy, D.P.; Dholaria, B.; Berdeja, J.; Kansagra, A. Balancing Quality, Cost, and Access During Delivery of Newer Cellular and Immunotherapy Treatments. Curr. Hematol. Malig. Rep. 2021, 345–356. [Google Scholar] [CrossRef]
- Huppert, L.A.; Matthay, M.A.; Ware, L.B. Pathogenesis of Acute Respiratory Distress Syndrome. Semin. Respir. Crit. Care Med. 2019, 40, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Torres Acosta, M.A.; Singer, B.D. Pathogenesis of COVID-19-Induced ARDS: Implications for an Ageing Population. Eur. Respir. J. 2020, 56, 2002049. [Google Scholar] [CrossRef]
- Guan, W.; Ni, Z.; Hu, Y.; Liang, W.; Ou, C.; He, J.; Liu, L.; Shan, H.; Lei, C.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; Barnaby, D.P.; Becker, L.B.; Chelico, J.D.; Cohen, S.L.; et al. Presenting Characteristics, Comorbidities, and Outcomes among 5700 Patients Hospitalized with COVID-19 in the New York City Area. JAMA—J. Am. Med. Assoc. 2020, 323, 2052–2059. [Google Scholar] [CrossRef]
- van Doorn, H.R.; Yu, H. Viral Respiratory Infections. In Hunter’s Tropical Medicine and Emerging Infectious Diseases; Elsevier Inc.: Amsterdam, The Netherlands, 2013; pp. 269–274. [Google Scholar]
- Shi, T.; Mcallister, D.A.; O’brien, K.L.; Simoes, E.A.F.; Madhi, S.A.; Gessner, B.D.; Polack, F.P.; Balsells, E.; Acacio, S.; Aguayo, C.; et al. Articles Global, Regional, and National Disease Burden Estimates of Acute Lower Respiratory Infections Due to Respiratory Syncytial Virus in Young Children in 2015: A Systematic Review and Modelling Study. Lancet 2017, 390, 946–958. Available online: www.thelancet.com (accessed on 7 July 2021). [CrossRef] [Green Version]
- Stein, R.T.; Bont, L.J.; Zar, H.; Polack, F.P.; Park, C.; Claxton, A.; Borok, G.; Butylkova, Y.; Wegzyn, C. Respiratory Syncytial Virus Hospitalization and Mortality: Systematic Review and Meta-analysis. Pediatric Pulmonol. 2017, 52, 556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battles, M.B.; McLellan, J.S. Respiratory Syncytial Virus Entry and How to Block It. Nat. Rev. Microbiol. 2019, 17, 233–245. [Google Scholar] [CrossRef]
- Simões, E.A.F.; Bont, L.; Manzoni, P.; Fauroux, B.; Paes, B.; Figueras-Aloy, J.; Checchia, P.A.; Carbonell-Estrany, X. Past, Present and Future Approaches to the Prevention and Treatment of Respiratory Syncytial Virus Infection in Children. Infect. Dis. Ther. 2018, 7, 87–120. [Google Scholar] [CrossRef] [Green Version]
- Bont, L.; Versteegh, J.; Swelsen, W.T.N.; Heijnen, C.J.; Kavelaars, A.; Brus, F.; Draaisma, J.M.T.; Pekelharing-Berghuis, M.; van Diemen-Steenvoorde, R.A.A.M.; Kimpen, J.L.L. Natural Reinfection with Respiratory Syncytial Virus Does Not Boost Virus-Specific T-Cell Immunity. Pediatric Res 2002, 52, 363–367. [Google Scholar] [CrossRef]
- Bonam, S.R.; Kaveri, S.V.; Sakuntabhai, A.; Gilardin, L.; Bayry, J. Adjunct Immunotherapies for the Management of Severely Ill COVID-19 Patients. Cell Rep. Med. 2020, 1, 100016. [Google Scholar] [CrossRef] [PubMed]
- Sohrabi, C.; Alsafi, Z.; O’Neill, N.; Khan, M.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, R. World Health Organization Declares Global Emergency: A Review of the 2019 Novel Coronavirus (COVID-19). Int. J. Surg. 2020, 76, 71–76. [Google Scholar] [CrossRef]
- Lie, S.A.; Wong, S.W.; Wong, L.T.; Wong, T.G.L.; Chong, S.Y. Practical Considerations for Performing Regional Anesthesia: Lessons Learned from the COVID-19 Pandemic. Can. J. Anesth. 2020, 67, 885–892. [Google Scholar] [CrossRef] [Green Version]
- Yuki, K.; Fujiogi, M.; Koutsogiannaki, S. COVID-19 Pathophysiology: A Review. Clin. Immunol. 2020, 215, 108427. [Google Scholar] [CrossRef]
- Calabrese, F.; Pezzuto, F.; Fortarezza, F.; Hofman, P.; Kern, I.; Panizo, A.; von der Thüsen, J.; Timofeev, S.; Gorkiewicz, G.; Lunardi, F. Pulmonary Pathology and COVID-19: Lessons from Autopsy. The Experience of European Pulmonary Pathologists. Virchows Arch. 2020, 477, 359–372. [Google Scholar] [CrossRef]
- Boncristiani, H.F.; Criado, M.F.; Arruda, E. Respiratory Viruses. In Encyclopedia of Microbiology; Elsevier Inc.: Amsterdam, The Netherlands, 2009; pp. 500–518. [Google Scholar]
- Burrel, S.; Hausfater, P.; Dres, M.; Pourcher, V.; Luyt, C.E.; Teyssou, E.; Soulié, C.; Calvez, V.; Marcelin, A.G.; Boutolleau, D. Co-Infection of SARS-CoV-2 with Other Respiratory Viruses and Performance of Lower Respiratory Tract Samples for the Diagnosis of COVID-19. Int. J. Infect. Dis. 2021, 102, 10–13. [Google Scholar] [CrossRef]
- Hooker, K.L.; Ganusov, V.V. Impact of Oseltamivir Treatment on Influenza A and B Virus Dynamics in Human Volunteers. Front. Microbiol. 2021, 12, 223. [Google Scholar] [CrossRef]
- Olchanski, N.; Hansen, R.N.; Pope, E.; D’Cruz, B.; Fergie, J.; Goldstein, M.; Krilov, L.R.; McLaurin, K.K.; Nabrit-Stephens, B.; Oster, G.; et al. Palivizumab Prophylaxis for Respiratory Syncytial Virus: Examining the Evidence Around Value. Open Forum Infect. Dis. 2018, 5, ofy031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, S.K.; Tripathi, T. One Year Update on the COVID-19 Pandemic: Where Are We Now? Acta Trop. 2021, 214, 105778. [Google Scholar] [CrossRef]
- Adalja, A.; Inglesby, T. Broad-Spectrum Antiviral Agents: A Crucial Pandemic Tool. Expert Rev. Anti-Infect. Ther. 2019, 17, 467. [Google Scholar] [CrossRef] [Green Version]
- Tripp, R.A.; Stambas, J. Intervention Strategies for Seasonal and Emerging Respiratory Viruses with Drugs and Vaccines Targeting Viral Surface Glycoproteins. Viruses 2021, 13, 625. [Google Scholar] [CrossRef] [PubMed]
- Shanmugaraj, B.; Siriwattananon, K.; Wangkanont, K.; Phoolcharoen, W. Allergy and Immunology Perspectives on Monoclonal Antibody Therapy as Potential Therapeutic Intervention for Coronavirus Disease-19 (COVID-19). Asian Pac. J. Allergy Immunol. 2020, 38, 10–18. [Google Scholar]
- Nelson, P.N.; Reynolds, G.M.; Waldron, E.E.; Ward, E.; Giannopoulos, K.; Murray, P.G. Demystified: Monoclonal Antibodies. J. Clin. Pathol.—Mol. Pathol. 2000, 53, 111–117. [Google Scholar] [CrossRef]
- Li, F.; Vijayasankaran, N.; Shen, A.; Kiss, R.; Amanullah, A. Cell Culture Processes for Monoclonal Antibody Production. mAbs 2010, 2, 466. [Google Scholar] [CrossRef] [Green Version]
- Todryk, S.; Jozwik, A.; de Havilland, J.; Hester, J. Emerging Cellular Therapies: T Cells and Beyond. Cells 2019, 8, 284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pawitan, J.A. Prospect of Stem Cell Conditioned Medium in Regenerative Medicine. BioMed Res. Int. 2014, 2014, 965849. [Google Scholar] [CrossRef] [Green Version]
- Jahanshahlu, L.; Rezaei, N. Monoclonal Antibody as a Potential Anti-COVID-19. Biomed. Pharmacother. 2020, 129, 110337. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, B.; Hashimoto, K. Current Status of Potential Therapeutic Candidates for the COVID-19 Crisis. Brain Behav. Immun. 2020, 87, 59–73. [Google Scholar] [CrossRef]
- Thickett, D.R.; Armstrong, L.; Christie, S.J.; Millar, A.B. Vascular Endothelial Growth Factor May Contribute to Increased Vascular Permeability in Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 2001, 164, 1601–1605. [Google Scholar] [CrossRef] [PubMed]
- Nieto, G.V.; Jara, R.; Watterson, D.; Modhiran, N.; Amarilla, A.A.; Himelreichs, J.; Khromykh, A.A.; Salinas-Rebolledo, C.; Pinto, T.; Cheuquemilla, Y.; et al. Potent Neutralization of Clinical Isolates of SARS-CoV-2 D614 and G614 Variants by a Monomeric, Sub-Nanomolar Affinity Nanobody. Sci. Rep. 2021, 11, 1–14. [Google Scholar]
- ClinicalTrials.gov Natural Killer Cell (CYNK-001) Infusions in Adults With COVID-19—Full Text View—ClinicalTrials.Gov. Available online: https://www.clinicaltrials.gov/ct2/show/NCT04365101?cond=CYNK-001&draw=2&rank=1 (accessed on 1 September 2021).
- Liao, M.; Liu, Y.; Yuan, J.; Wen, Y.; Xu, G.; Zhao, J.; Cheng, L.; Li, J.; Wang, X.; Wang, F.; et al. Single-Cell Landscape of Bronchoalveolar Immune Cells in Patients with COVID-19. Nat. Med. 2020, 26, 842–844. [Google Scholar] [CrossRef]
- Zheng, M.; Gao, Y.; Wang, G.; Song, G.; Liu, S.; Sun, D.; Xu, Y.; Tian, Z. Functional Exhaustion of Antiviral Lymphocytes in COVID-19 Patients. Cell. Mol. Immunol. 2020, 17, 533–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, L.; Gupta, M.; Sahasranaman, S. Immune Checkpoint Inhibitors: An Introduction to the next-Generation Cancer Immunotherapy. J. Clin. Pharmacol. 2016, 56, 157–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gatto, L.; Franceschi, E.; di Nunno, V.; Brandes, A.A. Potential Protective and Therapeutic Role of Immune Checkpoint Inhibitors against Viral Infections and COVID-19. Immunotherapy 2020, 12, 1111–1114. [Google Scholar] [CrossRef]
- Pezeshki, P.S.; Rezaei, N. Immune Checkpoint Inhibition in COVID-19: Risks and Benefits. Expert Opin. Biol. Ther. 2021, 1, 1–7. [Google Scholar] [CrossRef]
- André, P.; Denis, C.; Soulas, C.; Bourbon-Caillet, C.; Lopez, J.; Arnoux, T.; Bléry, M.; Bonnafous, C.; Gauthier, L.; Morel, A.; et al. Anti-NKG2A MAb Is a Checkpoint Inhibitor That Promotes Anti-Tumor Immunity by Unleashing Both T and NK Cells. Cell 2018, 175, 1731–1743.e13. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, H.; He, Y.W. The Complement Receptors C3aR and C5aR Are a New Class of Immune Checkpoint Receptor in Cancer Immunotherapy. Front. Immunol. 2019, 10, 1574. [Google Scholar] [CrossRef] [Green Version]
- Leen, A.M.; Myers, G.D.; Sili, U.; Huls, M.H.; Weiss, H.; Leung, K.S.; Carrum, G.; Krance, R.A.; Chang, C.C.; Molldrem, J.J.; et al. Monoculture-Derived T Lymphocytes Specific for Multiple Viruses Expand and Produce Clinically Relevant Effects in Immunocompromised Individuals. Nat. Med. 2006, 12, 1160–1166. [Google Scholar] [CrossRef]
- Toor, S.M.; Saleh, R.; Sasidharan Nair, V.; Taha, R.Z.; Elkord, E. T-Cell Responses and Therapies against SARS-CoV-2 Infection. Immunology 2021, 162, 30–43. [Google Scholar] [CrossRef] [PubMed]
- Ferreras, C.; Pascual-Miguel, B.; Mestre-Durán, C.; Navarro-Zapata, A.; Clares-Villa, L.; Martín-Cortázar, C.; de Paz, R.; Marcos, A.; Vicario, J.L.; Balas, A.; et al. SARS-CoV-2-Specific Memory T Lymphocytes From COVID-19 Convalescent Donors: Identification, Biobanking, and Large-Scale Production for Adoptive Cell Therapy. Front. Cell Dev. Biol. 2021, 9, 620730. [Google Scholar] [CrossRef] [PubMed]
- Bollard, C.M.; Heslop, H.E. T Cells for Viral Infections after Allogeneic Hematopoietic Stem Cell Transplant. Blood 2016, 127, 3331–3340. [Google Scholar] [CrossRef] [Green Version]
- Bollard, C.M.; Kuehnle, I.; Leen, A.; Rooney, C.M.; Heslop, H.E. Adoptive Immunotherapy for Posttransplantation Viral Infections. Biol. Blood Marrow Transplant. 2004, 10, 143–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kishi, Y.; Kami, M.; Oki, Y.; Kazuyama, Y.; Kawabata, M.; Miyakoshi, S.; Morinaga, S.; Suzuki, R.; Mori, S.; Muto, Y. Donor Lymphocyte Infusion for Treatment of Life-Threatening Respiratory Syncytial Virus Infection Following Bone Marrow Transplantation. Bone Marrow Transplant. 2000, 26, 573–576. [Google Scholar] [CrossRef] [PubMed]
- Keller, M.D.; Bollard, C.M. Virus-Specific T-Cell Therapies for Patients with Primary Immune Deficiency. Blood 2020, 135, 620–628. [Google Scholar] [CrossRef]
- Bonilla, F.A.; Khan, D.A.; Ballas, Z.K.; Chinen, J.; Frank, M.M.; Hsu, J.T.; Keller, M.; Kobrynski, L.J.; Komarow, H.D.; Mazer, B.; et al. Practice Parameter for the Diagnosis and Management of Primary Immunodeficiency. J. Allergy Clin. Immunol. 2014, 136, 1186–1205.e78. [Google Scholar] [CrossRef] [Green Version]
- Bousfiha, A.; Jeddane, L.; Picard, C.; Ailal, F.; Bobby Gaspar, H.; Al-Herz, W.; Chatila, T.; Crow, Y.J.; Cunningham-Rundles, C.; Etzioni, A.; et al. The 2017 IUIS Phenotypic Classification for Primary Immunodeficiencies. J. Clin. Immunol. 2018, 38, 129–143. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulou, A.; Gerdemann, U.; Katari, U.L.; Tzannou, I.; Liu, H.; Martinez, C.; Leung, K.; Carrum, G.; Gee, A.P.; Vera, J.F.; et al. Activity of Broad-Spectrum T Cells as Treatment for AdV, EBV, CMV, BKV, and HHV6 Infections after HSCT. Sci. Transl. Med. 2014, 6, 242ra83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanley, P.J.; Cruz, C.R.Y.; Savoldo, B.; Leen, A.M.; Stanojevic, M.; Khalil, M.; Decker, W.; Molldrem, J.J.; Liu, H.; Gee, A.P.; et al. Functionally Active Virus-Specific T Cells That Target CMV, Adenovirus, and EBV Can Be Expanded from Naive T-Cell Populations in Cord Blood and Will Target a Range of Viral Epitopes. Blood 2009, 114, 1958–1967. [Google Scholar] [CrossRef] [PubMed]
- Feucht, J.; Opherk, K.; Lang, P.; Kayser, S.; Hartl, L.; Bethge, W.; Matthes-Martin, S.; Bader, P.; Albert, M.H.; Maecker-Kolhoff, B.; et al. Adoptive T-Cell Therapy with Hexon-Specific Th1 Cells as a Treatment of Refractory Adenovirus Infection after HSCT. Blood 2015, 125, 1986–1994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uhlin, M.; Gertow, J.; Uzunel, M.; Okas, M.; Berglund, S.; Watz, E.; Brune, M.; Ljungman, P.; Maeurer, M.; Mattsson, J. Rapid Salvage Treatment with Virus-Specific T Cells for Therapy-Resistant Disease. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2012, 55, 1064–1073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerdemann, U.; Keirnan, J.M.; Katari, U.L.; Yanagisawa, R.; Christin, A.S.; Huye, L.E.; Perna, S.K.; Ennamuri, S.; Gottschalk, S.; Brenner, M.K.; et al. Rapidly Generated Multivirus-Specific Cytotoxic T Lymphocytes for the Prophylaxis and Treatment of Viral Infections. Mol. Ther. 2012, 20, 1622. [Google Scholar] [CrossRef] [Green Version]
- Vasileiou, S.; Turney, A.M.; Kuvalekar, M.; Mukhi, S.S.; Watanabe, A.; Lulla, P.; Ramos, C.A.; Naik, S.; Vera, J.F.; Tzannou, I.; et al. Rapid Generation of Multivirus-Specific T Lymphocytes for the Prevention and Treatment of Respiratory Viral Infections. Haematologica 2020, 105, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Titov, A.; Zmievskaya, E.; Ganeeva, I.; Valiullina, A.; Petukhov, A.; Rakhmatullina, A.; Miftakhova, R.; Fainshtein, M.; Rizvanov, A.; Bulatov, E. Adoptive Immunotherapy beyond CAR T-Cells. Cancers 2021, 13, 743. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Z.; Liu, Y.; Han, W. New Development in CAR-T Cell Therapy. J. Hematol. Oncol. 2017, 10, 53. [Google Scholar] [CrossRef] [Green Version]
- Benmebarek, M.-R.; Karches, C.H.; Cadilha, B.L.; Lesch, S.; Endres, S.; Kobold, S. Killing Mechanisms of Chimeric Antigen Receptor (CAR) T Cells. Int. J. Mol. Sci. 2019, 20, 1283. [Google Scholar] [CrossRef] [Green Version]
- Klichinsky, M.; Ruella, M.; Shestova, O.; Lu, X.M.; Best, A.; Zeeman, M.; Schmierer, M.; Gabrusiewicz, K.; Anderson, N.R.; Petty, N.E.; et al. Human Chimeric Antigen Receptor Macrophages for Cancer Immunotherapy. Nat. Biotechnol. 2020, 38, 947. [Google Scholar] [CrossRef]
- Fu, W.; Lei, C.; Ma, Z.; Qian, K.; Li, T.; Zhao, J.; Hu, S. CAR Macrophages for SARS-CoV-2 Immunotherapy. Front. Immunol. 2021, 12, 669103. [Google Scholar] [CrossRef]
- Ma, M.T.; Badeti, S.; Chen, C.-H.; Kim, J.; Choudhary, A.; Honnen, B.; Reichman, C.; Calianese, D.; Pinter, A.; Jiang, Q.; et al. CAR-NK Cells Effectively Target SARS-CoV-2-Spike-Expressing Cell Lines In Vitro. Front. Immunol. 2021, 12, 652223. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, W.; Xia, B.; Jing, S.; Du, Y.; Zou, F.; Li, R.; Lu, L.; Chen, S.; Li, Y.; et al. Broadly Neutralizing Antibody-Derived CAR-T Cells Reduce Viral Reservoir in HIV-1-Infected Individuals. J. Clin. Investig. 2021, 10, 150211. [Google Scholar]
- Holstein, S.A.; Lunning, M.A. CAR T-Cell Therapy in Hematologic Malignancies: A Voyage in Progress. Clin. Pharmacol. Ther. 2020, 107, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Brufsky, A.; Lotze, M.T. DC/L-SIGNs of Hope in the COVID-19 Pandemic. J. Med. Virol. 2020, 92, 1396–1398. [Google Scholar] [CrossRef]
- Marzi, A.; Gramberg, T.; Simmons, G.; Möller, P.; Rennekamp, A.J.; Krumbiegel, M.; Geier, M.; Eisemann, J.; Turza, N.; Saunier, B.; et al. DC-SIGN and DC-SIGNR Interact with the Glycoprotein of Marburg Virus and the S Protein of Severe Acute Respiratory Syndrome Coronavirus. J. Virol. 2004, 78, 12090–12095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cevik, M.; Bamford, C.G.G.; Ho, A. COVID-19 Pandemic—A Focused Review for Clinicians. Clin. Microbiol. Infect. 2020, 26, 842. [Google Scholar] [CrossRef]
- Karia, R.; Nagraj, S. A Review of Viral Shedding in Resolved and Convalescent COVID-19 Patients. SN Compr. Clin. Med. 2020, 2, 2086–2095. [Google Scholar] [CrossRef]
- Widders, A.; Broom, A.; Broom, J. SARS-CoV-2: The Viral Shedding vs Infectivity Dilemma. Infect. Dis. Health 2020, 25, 210. [Google Scholar] [CrossRef]
- Zhou, B.; She, J.; Wang, Y.; Ma, X. The Duration of Viral Shedding of Discharged Patients with Severe COVID-19. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2020, 71, 2240–2242. [Google Scholar] [CrossRef]
- van Doremalen, N.; Purushotham, J.N.; Schulz, J.E.; Holbrook, M.G.; Bushmaker, T.; Carmody, A.; Port, J.R.; Yinda, C.K.; Okumura, A.; Saturday, G.; et al. Intranasal ChAdOx1 NCoV-19/AZD1222 Vaccination Reduces Viral Shedding after SARS-CoV-2 D614G Challenge in Preclinical Models. Sci. Transl. Med. 2021, 13, eabh0755. [Google Scholar] [CrossRef] [PubMed]
- Goyal, A.; Cardozo-Ojeda, E.F.; Schiffer, J.T. Potency and Timing of Antiviral Therapy as Determinants of Duration of SARS-CoV-2 Shedding and Intensity of Inflammatory Response. Sci. Adv. 2020, 6, eabc7112. [Google Scholar] [CrossRef]
- Wang, C.; Ye, Y.; Hu, Q.; Bellotti, A.; Gu, Z. Tailoring Biomaterials for Cancer Immunotherapy: Emerging Trends and Future Outlook. Adv. Mater. 2017, 29, 1606036. [Google Scholar] [CrossRef]
- Fernández, E.F.; Santos-Carballal, B.; de Santi, C.; Ramsey, J.M.; MacLoughlin, R.; Cryan, S.-A.; Greene, C.M. Biopolymer-Based Nanoparticles for Cystic Fibrosis Lung Gene Therapy Studies. Materials 2018, 11, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hibbitts, A.; O’Mahony, A.M.; Forde, E.; Nolan, L.; Ogier, J.; Desgranges, S.; Darcy, R.; MacLoughlin, R.; O’Driscoll, C.M.; Cryan, S.A. Early-Stage Development of Novel Cyclodextrin-SiRNA Nanocomplexes Allows for Successful Postnebulization Transfection of Bronchial Epithelial Cells. J. Aerosol Med. Pulm. Drug Deliv. 2014, 27, 466–477. Available online: https://home.liebertpub.com/jamp (accessed on 20 July 2021). [CrossRef] [PubMed] [Green Version]
- Vencken, S.; Foged, C.; Ramsey, J.M.; Sweeney, L.; Cryan, S.-A.; MacLoughlin, R.J.; Greene, C.M. Nebulised Lipid–Polymer Hybrid Nanoparticles for the Delivery of a Therapeutic Anti-Inflammatory MicroRNA to Bronchial Epithelial Cells. ERJ Open Res. 2019, 5, 00161–02018. [Google Scholar] [CrossRef]
- de Santi, C.; Fernández Fernández, E.; Gaul, R.; Vencken, S.; Glasgow, A.; Oglesby, I.K.; Hurley, K.; Hawkins, F.; Mitash, N.; Mu, F.; et al. Precise Targeting of MiRNA Sites Restores CFTR Activity in CF Bronchial Epithelial Cells. Mol. Ther. 2020, 28, 1190–1199. [Google Scholar] [CrossRef] [PubMed]
- Babu, A.; Templeton, A.K.; Munshi, A.; Ramesh, R. Nanoparticle-Based Drug Delivery for Therapy of Lung Cancer: Progress and Challenges. J. Nanomater. 2013, 2013, 863951. [Google Scholar] [CrossRef] [Green Version]
- Doroudian, M.; MacLoughlin, R.; Poynton, F.; Prina-Mello, A.; Donnelly, S.C. Nanotechnology Based Therapeutics for Lung Disease. Thorax 2019, 74, 965–976. [Google Scholar] [CrossRef]
- Verma, N.K.; Crosbie-Staunton, K.; Satti, A.; Gallagher, S.; Ryan, K.B.; Doody, T.; McAtamney, C.; MacLoughlin, R.; Galvin, P.; Burke, C.S.; et al. Magnetic Core-Shell Nanoparticles for Drug Delivery by Nebulization. J. Nanobiotechnology 2013, 11, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galvin, P.; Thompson, D.; Ryan, K.B.; McCarthy, A.; Moore, A.C.; Burke, C.S.; Dyson, M.; MacCraith, B.D.; Gun’ko, Y.K.; Byrne, M.T.; et al. Nanoparticle-Based Drug Delivery: Case Studies for Cancer and Cardiovascular Applications. Cell. Mol. Life Sci. 2011, 69, 389–404. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Luo, Y.; Li, B.; Xia, Y.; Wang, H.; Fu, C. Implantable and Injectable Biomaterial Scaffolds for Cancer Immunotherapy. Front. Bioeng. Biotechnol. 2020, 8, 612950. [Google Scholar] [CrossRef]
- Lemon, G.; Lim, M.L.; Ajalloueian, F.; Macchiarini, P. The Development of the Bioartificial Lung. Br. Med. Bull. 2014, 110, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Perez, C.R.; de Palma, M. Engineering Dendritic Cell Vaccines to Improve Cancer Immunotherapy. Nat. Commun. 2019, 10, 1–10. [Google Scholar] [CrossRef]
- Brave, H.; Macloughlin, R. State of the Art Review of Cell Therapy in the Treatment of Lung Disease, and the Potential for Aerosol Delivery. Int. J. Mol. Sci. 2020, 21, 6435. [Google Scholar] [CrossRef]
- Siddiqui, R.; Khan, N.A. Proposed Intranasal Route for Drug Administration in the Management of Central Nervous System Manifestations of COVID-19. ACS Chem. Neurosci. 2020, 11, 1523–1524. [Google Scholar] [CrossRef]
- Jones, H.M.; Rowland-Yeo, K. Basic Concepts in Physiologically Based Pharmacokinetic Modeling in Drug Discovery and Development. CPT Pharmacomet. Syst. Pharmacol. 2013, 2, 1–12. [Google Scholar] [CrossRef]
- Borghardt, J.M.; Kloft, C.; Sharma, A. Inhaled Therapy in Respiratory Disease: The Complex Interplay of Pulmonary Kinetic Processes. Can. Respir. J. 2018, 2018, 2732017. [Google Scholar] [CrossRef] [Green Version]
- Ortiz-Muñoz, G.; Looney, M.R.; Author, B.P. Non-Invasive Intratracheal Instillation in Mice HHS Public Access Author Manuscript; NIH Public Access: Bethesda, MD, USA, 2015; Volume 5. [Google Scholar]
- Driscoll, K.E.; Costa, D.L.; Hatch, G.; Henderson, R.; Oberdorster, G.; Salem, H.; Schlesinger, R.B. Intratracheal Instillation as an Exposure Technique for the Evaluation of Respiratory Tract Toxicity: Uses and Limitations. Toxicol. Sci. 2000, 55, 24–35. [Google Scholar] [CrossRef] [Green Version]
- MacLoughlin, R.J.; Higgins, B.D.; Laffey, J.G.; O’Brien, T. Optimized Aerosol Delivery to a Mechanically Ventilated Rodent. J. Aerosol Med. Pulm. Drug Deliv. 2009, 22, 323–332. Available online: https://home.liebertpub.com/jamp (accessed on 20 July 2021). [CrossRef] [Green Version]
- Tibboel, J.; Keijzer, R.; Reiss, I.; de Jongste, J.C.; Post, M. Intravenous and Intratracheal Mesenchymal Stromal Cell Injection in a Mouse Model of Pulmonary Emphysema. COPD J. Chronic Obstr. Pulm. Dis. 2014, 11, 310–318. [Google Scholar] [CrossRef] [Green Version]
- Cortez-Jugo, C.; Qi, A.; Rajapaksa, A.; Friend, J.R.; Yeo, L.Y. Pulmonary Monoclonal Antibody Delivery via a Portable Microfluidic Nebulization Platform. Biomicrofluidics 2015, 9, 052603. [Google Scholar] [CrossRef] [Green Version]
- Lavorini, F.; Buttini, F.; Usmani, O.S. 100 years of drug delivery to the lungs. In Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2019; Volume 260, pp. 143–159. [Google Scholar]
- Sorino, C.; Negri, S.; Spanevello, A.; Visca, D.; Scichilone, N. Inhalation Therapy Devices for the Treatment of Obstructive Lung Diseases: The History of Inhalers towards the Ideal Inhaler. Eur. J. Intern. Med. 2020, 75, 15–18. [Google Scholar] [CrossRef]
- Rogliani, P.; Calzetta, L.; Coppola, A.; Cavalli, F.; Ora, J.; Puxeddu, E.; Matera, M.G.; Cazzola, M. Optimizing Drug Delivery in COPD: The Role of Inhaler Devices. Respir. Med. 2017, 124, 6–14. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, J.N.; Hatley, R.H.; Denyer, J.; von Hollen, D. Mesh Nebulizers Have Become the First Choice for New Nebulized Pharmaceutical Drug Developments. Therapeutic. Delivery. 2018, 9, 121–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pleasants, R.A.; Hess, D.R. Aerosol Delivery Devices for Obstructive Lung Diseases. Respir. Care 2018, 63, 708–733. [Google Scholar] [CrossRef] [PubMed]
- Dolovich, M.B.; Dhand, R. Aerosol Drug Delivery: Developments in Device Design and Clinical Use. Lancet 2011, 377, 1032–1045. [Google Scholar] [CrossRef]
- Ehrmann, S.; Roche-Campo, F.; Papa, G.F.S.; Isabey, D.; Brochard, L.; Apiou-Sbirlea, G. Aerosol Therapy during Mechanical Ventilation: An International Survey. Intensive Care Med. 2013, 39, 1048–1056. [Google Scholar] [CrossRef]
- Fink, J.; Dunne, P.; MacLoughlin, R.; O’Sullivan, G. Can High Efficiency Aerosol Delivery Continue after Extubation? Crit. Care 2005, 9, 1-1. [Google Scholar] [CrossRef]
- Pritchard, J.N. The Climate Is Changing for Metered-Dose Inhalers and Action Is Needed. Drug Des. Dev. Ther. 2020, 14, 3043. [Google Scholar] [CrossRef] [PubMed]
- Eain, M.M.G.; Joyce, M.; MacLoughlin, R. An in Vitro Visual Study of Fugitive Aerosols Released during Aerosol Therapy to an Invasively Ventilated Simulated Patient. Drug Delivery. 2021, 28, 1496–1500. [Google Scholar] [CrossRef]
- O’Toole, C.; Joyce, M.; McGrath, J.A.; O’Sullivan, A.; Byrne, M.A.; MacLoughlin, R. Fugitive Aerosols in the Intensive Care Unit: A Narrative Review. Ann. Transl. Med. 2021, 9, 592. [Google Scholar] [CrossRef] [PubMed]
- Longest, W.; Spence, B.; Hindle, M. Devices for Improved Delivery of Nebulized Pharmaceutical Aerosols to the Lungs. J. Aerosol Med. Pulm. Drug Deliv. 2019, 32, 317–339. [Google Scholar] [CrossRef] [PubMed]
- Respaud, R.; Vecellio, L.; Diot, P.; Heuzé-Vourc’h, N. Nebulization as a Delivery Method for MAbs in Respiratory Diseases. Expert Opin. Drug Deliv. 2015, 12, 1027–1039. [Google Scholar] [CrossRef] [PubMed]
- Olszewski, O.Z.; Macloughlin, R.; Blake, A.; O’Neill, M.; Mathewson, A.; Jackson, N. A Silicon-Based MEMS Vibrating Mesh Nebulizer for Inhaled Drug Delivery. Procedia Eng. 2016, 168, 1521–1524. [Google Scholar] [CrossRef]
- Maillet, A.; Congy-Jolivet, N.; le Guellec, S.; Vecellio, L.; Hamard, S.; Courty, Y.; Courtois, A.; Gauthier, F.; Diot, P.; Thibault, G.; et al. Aerodynamical, Immunological and Pharmacological Properties of the Anticancer Antibody Cetuximab Following Nebulization. Pharm. Res. 2008, 25, 1318–1326. [Google Scholar] [CrossRef]
- Guillon, A.; Pardessus, J.; Lhommet, P.; Parent, C.; Respaud, R.; Marchand, D.; Montharu, J.; de Monte, M.; Janiak, P.; Boixel, C.; et al. Exploring the Fate of Inhaled Monoclonal Antibody in the Lung Parenchyma by Microdialysis. mAbs 2019, 11, 297–304. [Google Scholar] [CrossRef] [Green Version]
- Guilleminault, L.; Azzopardi, N.; Arnoult, C.; Sobilo, J.; Hervé, V.; Montharu, J.; Guillon, A.; Andres, C.; Herault, O.; le Pape, A.; et al. Fate of Inhaled Monoclonal Antibodies after the Deposition of Aerosolized Particles in the Respiratory System. J. Control. Release 2014, 196, 344–354. [Google Scholar] [CrossRef]
- Burgess, G.; Boyce, M.; Jones, M.; Larsson, L.; Main, M.J.; Morgan, F.; Phillips, P.; Scrimgeour, A.; Strimenopoulou, F.; Vajjah, P.; et al. Randomized Study of the Safety and Pharmacodynamics of Inhaled Interleukin-13 Monoclonal Antibody Fragment VR942. EBioMedicine 2018, 35, 67–75. [Google Scholar] [CrossRef]
- ClinicalTrials.Gov SARS-CoV-2-Neutralizing Monoclonal COVID-19 Antibody DZIF-10c by Inhalation - Full Text View - ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT04631705 (accessed on 9 October 2021).
- Satia, I.; Cusack, R.; Greene, J.M.; O’Byrne, P.M.; Killian, K.J.; Johnston, N. Prevalence and Contribution of Respiratory Viruses in the Community to Rates of Emergency Department Visits and Hospitalizations with Respiratory Tract Infections, Chronic Obstructive Pulmonary Disease and Asthma. PLoS ONE 2020, 15, e0228544. [Google Scholar] [CrossRef]
- Rawat, K.; Kumari, P.; Saha, L. COVID-19 Vaccine: A Recent Update in Pipeline Vaccines, Their Design and Development Strategies. Eur. J. Pharmacol. 2021, 892, 173751. [Google Scholar] [CrossRef]
- Jang, J.G.; Ahn, J.H.; Jin, H.J. Incidence and Prognostic Factors of Respiratory Viral Infections in Severe Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Int. J. COPD 2021, 16, 1265–1273. [Google Scholar] [CrossRef]
- Weigt, S.S.; Gregson, A.L.; Deng, J.C.; Lynch, J.P.; Belperio, J.A. Respiratory Viral Infections in Hematopoietic Stem Cell and Solid Organ Transplant Recipients. Semin. Respir. Crit. Care Med. 2011, 32, 471–493. [Google Scholar] [CrossRef] [Green Version]
- Esmaeilzadeh, A.; Elahi, R. Immunobiology and Immunotherapy of COVID-19: A Clinically Updated Overview. J. Cell. Physiol. 2021, 236, 2519–2543. [Google Scholar] [CrossRef] [PubMed]
- Acosta, P.L.; Caballero, M.T.; Polack, F.P. Brief History and Characterization of Enhanced Respiratory Syncytial Virus Disease. Clin. Vaccine Immunol. 2016, 23, 189–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azoulay, E.; Russell, L.; van de Louw, A.; Metaxa, V.; Bauer, P.; Povoa, P.; Montero, J.G.; Loeches, I.M.; Mehta, S.; Puxty, K.; et al. Diagnosis of Severe Respiratory Infections in Immunocompromised Patients. Intensive Care Med. 2020, 46, 298–314. [Google Scholar] [CrossRef] [Green Version]
- Grasselli, G.; Greco, M.; Zanella, A.; Albano, G.; Antonelli, M.; Bellani, G.; Bonanomi, E.; Cabrini, L.; Carlesso, E.; Castelli, G.; et al. Risk Factors Associated with Mortality among Patients with COVID-19 in Intensive Care Units in Lombardy, Italy. JAMA Intern. Med. 2020, 180, 1345–1355. [Google Scholar] [CrossRef]
- Abdellatif, A.A.H.; Tawfeek, H.M.; Abdelfattah, A.; El-Saber Batiha, G.; Hetta, H.F. Recent Updates in COVID-19 with Emphasis on Inhalation Therapeutics: Nanostructured and Targeting Systems. J. Drug Deliv. Sci. Technol. 2021, 63, 102435. [Google Scholar] [CrossRef] [PubMed]
- Rajput, M.K.S.; Kesharwani, S.S.; Kumar, S.; Muley, P.; Narisetty, S.; Tummala, H. Dendritic Cell-Targeted Nanovaccine Delivery System Prepared with an Immune-Active Polymer. ACS Appl. Mater. Interfaces 2018, 10, 27589–27602. [Google Scholar] [CrossRef]
- Deng, H.; Zhang, Z. The Application of Nanotechnology in Immune Checkpoint Blockade for Cancer Treatment. J. Control. Release 2018, 290, 28–45. [Google Scholar] [PubMed]
- Gao, L.; Han, L.; Ding, X.; Xu, J.; Wang, J.; Zhu, J.; Lu, W.; Sun, J.; Yu, L.; Yan, Z.; et al. An Effective Intracellular Delivery System of Monoclonal Antibody for Treatment of Tumors: Erythrocyte Membrane-Coated Self-Associated Antibody Nanoparticles. Nanotechnology 2017, 28, 335101. [Google Scholar] [CrossRef] [PubMed]
NCT No | Title | Status | Company Name | Disease/Condition | Route of Administration | Intervention/Mechanism Target | Results | Phase |
---|---|---|---|---|---|---|---|---|
NCT04280224 | NK cells treatment for COVID-19 | Recruiting | Xinxiang medical university | Novel Coronavirus Pneumonia | Intravenous | 0.1–0.2 × 107 cells/kg body weight | N/A | 1 |
NCT04365101 | Natural Killer Cell (CYNK-001) Infusions in Adults With COVID-19 (CYNKCOVID) | Active, not recruiting | Celularity Incorporated | COVID-19 | Intravenous | CYNK-001 infusions | N/A | 1/2 |
NCT04457726 | Part Two of Novel Adoptive Cellular Therapy With SARS-CoV-2 Specific T Cells in Patients with Severe COVID-19 | Recruiting | KK Women’s and Children’s Hospital | COVID-19 | Intravenous | Single infusion of SARS-CoV-2 specific T cells | N/A | 1/2 |
NCT04386252 | Phase I-II Trial of Dendritic Cell Vaccine to Prevent COVID-19 in Adults | Not yet recruiting | Aivita Biomedical, Inc | COVID-19 | Intravenous | Autologous dendritic cells previously loaded ex vivo with SARS-CoV-2 spike protein | N/A | 1/2 |
NCT04840459 | Use of Monoclonal Antibodies for the Treatment of Mild to Moderate COVID-19 in Non-Hospitalised Setting | Recruiting | Sohail Rao | COVID-19 | Intravenous | Single IV infusion of 700 mg bamlanivimab 10 mL of casirivimab and 10 mL of imdevimab | N/A | 2 |
NCT04413838 | Efficiency and Security of NIVOLUMAB Therapy in Obese Individuals With COVID-19 (COrona VIrus Disease) Infection (NIVISCO) | Not yet recruiting | Hospices Civils de Lyon | Obesity, COVID-19 Infection | Intravenous | IV injection within 30 min of 24 mL file containing NIVOLUMAB BMS 10 mg/mL (immune check point inhibitor targeting PD-1) on top of routine standard of care for COVID-19 infection | N/A | 2 |
NCT04484935 | Evaluate the Safety and Tolerability, for Nirsevimab in Immunocompromised Children | Recruiting | AstraZeneca | RSV infection | Intramuscular | Single fixed IM dose of nirsevimab 50 mg if body weight < 5 kg or 100 mg if body weight ≥ 5 kg, and subjects entering their second RSV season will receive a single fixed IM dose of nirsevimab 200 mg | N/A | 2 |
NCT02325791 | Study to Evaluate the Efficacy and Safety of Suptavumab (REGN2222) for Infection in Preterm infants | Completed | Regeneron Pharmaceuticals | Respiratory Syncytial Virus Infections | IM administration | Single dose of suptavumab 30 milligram per kilogram (mg/kg) | Results posted | 3 |
NCT04268537 | Immunoregulatory Therapy for 2019-nCoV | Not yet recruiting | Jianfeng Xie, Southeast University, China | COVID-19 | IV administration | Anti-PD-1 antibody, 200 mg, IV, one time Thymosin, 1.6 mg sc qd, last for 5 days | N/A | 2 |
NCT03378102 | Antigen Specific Adoptive T Cell Therapy for Adenovirus Infection After Hematopoietic Stem Cell Transplantation | Recruiting | Mari Dallas, Case Comprehensive Cancer Center | Adenovirus infections occurring after allogeneic Hematopoietic Stem Cell Transplantation (HSCT). | IV administration | Subjects will receive virus-specific, antigen selected T cells within a targeted range of 1 × 103–2 ×105 per kg of recipient weight. | N/A | Early phase 1 |
NCT No | Title | Status | Company | Disease/Conditions | Route of Administration | Formulation/Device Type | Intervention/Mechanism Target | Results | Phase |
---|---|---|---|---|---|---|---|---|---|
NCT04631705 | SARS-CoV-2-Neutralizing Monoclonal COVID-19 Antibody DZIF-10c by Inhalation | Recruiting | Florian Klein, University of Cologne | SARS-CoV-2 Infection | Inhalation | Not stated | Single dose of DZIF-10c by inhalation | N/A | 1/2 |
NCT04822701 | A Study to Test BI 767551 in People with Mild to Moderate Symptoms of COVID-19 | Recruiting | Boehringer Ingelheim | COVID-19 | Inhalation | Inhaler | IV injection of BI 767551 Inhalation of BI 767551 | N/A | 1/2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daly, S.; O’Sullivan, A.; MacLoughlin, R. Cellular Immunotherapy and the Lung. Vaccines 2021, 9, 1018. https://doi.org/10.3390/vaccines9091018
Daly S, O’Sullivan A, MacLoughlin R. Cellular Immunotherapy and the Lung. Vaccines. 2021; 9(9):1018. https://doi.org/10.3390/vaccines9091018
Chicago/Turabian StyleDaly, Sorcha, Andrew O’Sullivan, and Ronan MacLoughlin. 2021. "Cellular Immunotherapy and the Lung" Vaccines 9, no. 9: 1018. https://doi.org/10.3390/vaccines9091018
APA StyleDaly, S., O’Sullivan, A., & MacLoughlin, R. (2021). Cellular Immunotherapy and the Lung. Vaccines, 9(9), 1018. https://doi.org/10.3390/vaccines9091018