Murine Dendritic Cells Grown in Serum-Free Culture Show Potent Therapeutic Activity when Loaded with Novel Th Epitopes in an Orthotopic Model of HER2pos Breast Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mice
2.2. Culture Media
2.3. Cell Lines
2.4. DC Culture Methods
2.5. Synthetic Peptides and Identification of Immunogenic Peptides
2.6. ELISA for Antibody Detection (Peptide Library)
2.7. Alamar Blue Assay to Determine Tumor Viability in Response to Secreted DC Products
2.8. Photomicroscopy
2.9. Flow Cytometry
2.10. Detection of Secreted Cytokines
2.11. Enumeration of Cytokine-Secreting Cells (Elispot)
2.12. Implantation of Tumors
2.13. Preparation and Administration of Vaccines
2.14. Winn Assay
2.15. Depletion of CD4pos and CD8pos Populations from Splenocytes
2.16. Statistical Analysis
3. Results
3.1. Serum-Free Dendritic Cell Culture Achieves Yields and Phenotype Comparable to Serum-Replete Culture
3.2. Dendritic Cells Cultured in Serum-Free Medium Sensitize against Either MHC Class I or MHC Class II-Restricted Antigens In Vivo
3.3. rErbB2/HER2 CTL Peptide-Pulsed DCs Cultured under Both Serum-Free and Serum-Replete Conditions Display Therapeutic Activity in a Mouse Model of HER2pos Breast Cancer
3.4. Dendritic Cells Cultured in Serum-Free Medium Exhibit Modest Killer Function on TUBO Breast Carcinoma Cells
3.5. Identification of Novel Helper T Cell Epitopes That Display Strong Therapeutic Activity in Mouse Breast Cancer Model When Used as a Component of a Th1-Polarizing Dendritic Cell Vaccine
3.6. Mice Vaccinated with DCs Loaded with Putative Th Epitope-Containing Peptides Display Recall Responses Characterized by Th1 Cytokines from CD4pos but Not CD8pos T Cell Populations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Inaba, K.; Metlay, J.P.; Crowley, M.T.; Steinman, R.M. Dendritic cells pulsed with protein antigens in vitro can prime antigen-specific, MHC-restricted T cells in situ. J. Exp. Med. 1990, 172, 631–640. [Google Scholar] [CrossRef]
- Sallusto, F.; Lanzavecchia, A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J. Exp. Med. 1994, 179, 1109–1118. [Google Scholar] [CrossRef] [Green Version]
- Czerniecki, B.J.; Carter, C.; Rivoltini, L.; Koski, G.K.; Kim, H.I.; Weng, D.E.; Roros, J.G.; Hijazi, Y.M.; Xu, S.; Rosenberg, S.A.; et al. Calcium ionophore-treated peripheral blood monocytes and dendritic cells rapidly display characteristics of activated dendritic cells. J. Immunol. 1997, 159, 3823–3837. [Google Scholar]
- Dauer, M.; Obermaier, B.; Herten, J.; Haerle, C.; Pohl, K.; Rothenfusser, S.; Schnurr, M.; Endres, S.; Eigler, A. Mature Dendritic Cells Derived from Human Monocytes Within 48 Hours: A Novel Strategy for Dendritic Cell Differentiation from Blood Precursors. J. Immunol. 2003, 170, 4069–4076. [Google Scholar] [CrossRef] [Green Version]
- Koski, G.K.; Lyakh, L.A.; Rice, N.R. Rapid lipopolysaccharide-induced differentiation of CD14(+) monocytes into CD83(+) dendritic cells is modulated under serum-free conditions by exogenously added IFN-gamma and endogenously produced IL-10. Eur. J. Immunol. 2001, 31, 3773–3781. [Google Scholar]
- Snijders, A.; Kalinski, P.; Hilkens, C.; Kapsenberg, M.L. High-level IL-12 production by human dendritic cells requires two signals. Int. Immunol. 1998, 10, 1593–1598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaisho, T.; Akira, S. Regulation of dendritic cell function through toll-like receptors. Curr. Mol. Med. 2003, 3, 759–771. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Hsieh, M.; Oriss, T.B.; Morel, P.; E Starzl, T.; Rao, A.S.; Thomson, A.W. Generation of DC from mouse spleen cell cultures in response to GM-CSF: Immunophenotypic and functional analyses. Immunology 1995, 84, 127–134. [Google Scholar]
- Inaba, K.; Inaba, M.; Romani, N.; Aya, H.; Deguchi, M.; Ikehara, S.; Muramatsu, S.; Steinman, R.M. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 1992, 176, 1693–1702. [Google Scholar] [CrossRef]
- Lutz, M.B.; Kukutsch, N.; Ogilvie, A.L.; Rößner, S.; Koch, F.; Romani, N.; Schuler, G. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J. Immunol. Methods 1999, 223, 77–92. [Google Scholar] [CrossRef]
- Menges, M.; Baumeister, T.; Rössner, S.; Stoitzner, P.; Romani, N.; Gessner, A.; Lutz, M.B. IL-4 supports the generation of a dendritic cell subset from murine bone marrow with altered endocytosis capacity. J. Leukoc. Biol. 2004, 77, 535–543. [Google Scholar] [CrossRef] [Green Version]
- Cohen, P.A.; Koski, G.K.; Czerniecki, B.J.; Bunting, K.D.; Fu, X.-Y.; Wang, Z.; Zhang, W.-J.; Carter, C.S.; Awad, M.; Distel, C.A.; et al. STAT3- and STAT5-dependent pathways competitively regulate the pan-differentiation of CD34pos cells into tumor-competent dendritic cells. Blood 2008, 112, 1832–1843. [Google Scholar] [CrossRef] [PubMed]
- Mackensen, A.; Dräger, R.; Schlesier, M.; Mertelsmann, R.; Lindemann, A. Presence of IgE antibodies to bovine serum albumin in a patient developing anaphylaxis after vaccination with human peptide-pulsed dendritic cells. Cancer Immunol. Immunother. 2000, 49, 152–156. [Google Scholar] [CrossRef]
- Kadri, N.; Potiron, N.; Ouary, M.; Jegou, D.; Gouin, E.; Bach, J.; Lieubeau, B. Fetal calf serum-primed dendritic cells induce a strong anti-fetal calf serum immune response and diabetes protection in the non-obese diabetic mouse. Immunol. Lett. 2007, 108, 129–136. [Google Scholar] [CrossRef]
- Warncke, M.; Dodero, A.; Dierbach, H.; Follo, M.; Veelken, H. Murine dendritic cells generated under serum-free conditions have a mature phenotype and efficiently induce primary immune responses. J. Immunol. Methods 2006, 310, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ostler, T.; Ehl, S. A cautionary note on experimental artefacts induced by fetal calf serum in a viral model of pulmonary eosinophilia. J. Immunol. Methods 2002, 268, 211–218. [Google Scholar] [CrossRef]
- Toldbod, H.E.; Agger, R.; Bolund, L.; Hokland, M. Potent influence of bovine serum proteins in experimental dendritic cell-based vaccination protocols. Scand. J. Immunol. 2003, 58, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Jonuleit, H.; Giesecke, A.; Kandemir, A.; Paragnik, L.; Knop, J.; Enk, A.H. Induction of tumor peptide-specific cytotoxic T cells under serum-free conditions by mature human dendritic cells. Arch. Dermatol. Res. 2000, 292, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Jonuleit, H.; Kühn, U.; Müller, G.; Steinbrink, K.; Paragnik, L.; Schmitt, E.; Knop, J.; Enk, A.H. Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur. J. Immunol. 1997, 27, 3135–3142. [Google Scholar] [CrossRef]
- Czerniecki, B.J.; Koski, G.K.; Koldovsky, U.; Xu, S.; Cohen, P.A.; Mick, R.; Nisenbaum, H.; Pasha, T.; Xu, M.; Fox, K.R.; et al. Targeting HER-2/neu in Early Breast Cancer Development Using Dendritic Cells with Staged Interleukin-12 Burst Secretion. Cancer Res. 2007, 67, 1842–1852. [Google Scholar] [CrossRef] [Green Version]
- Showalter, L.; Czerniecki, B.J.; Koski, G.K. Th1 cytokines in conjunction with pharmacological Akt inhibition potentiate apoptosis of breast cancer cells in vitro and suppress tumor growth in vivo. Oncotarget 2020, 11, 2873–2888. [Google Scholar] [CrossRef]
- Ghimirey, N.; Steele, C.; Czerniecki, B.J.; Koski, G.K.; Showalter, L.E. Sunitinib Combined with Th1 Cytokines Potentiates Apoptosis in Human Breast Cancer Cells and Suppresses Tumor Growth in a Murine Model of HER-2pos Breast Cancer. Int. J. Breast Cancer 2021, 2021, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Rovero, S.; Amici, A.; Carlo, E.D.; Bei, R.; Nanni, P.; Quaglino, E.; Porcedda, P.; Boggio, K.; Smorlesi, A.; Lollini, P.L.; et al. DNA vaccination against rat her-2/Neu p185 more effectively inhibits carcinogenesis than transplantable carcinomas in transgenic BALB/c mice. J. Immunol. 2000, 165, 5133–5142. [Google Scholar]
- Nava-Parada, P.; Forni, G.; Knutson, K.L.; Pease, L.R.; Celis, E. Peptide Vaccine Given with a Toll-Like Receptor Agonist Is Effective for the Treatment and Prevention of Spontaneous Breast Tumors. Cancer Res. 2007, 67, 1326–1334. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, C.; Macatonia, S.; Tripp, C.; Wolf, S.; O’Garra, A.; Murphy, K. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 1993, 260, 547–549. [Google Scholar] [CrossRef]
- Shimonkevitz, R.; Colon, S.; Kappler, J.W.; Marrack, P.; Grey, H.M. Antigen recognition by H-2-restricted T cells. II. A tryptic ovalbumin peptide that substitutes for processed antigen. J. Immunol. 1984, 133, 2067–2074. [Google Scholar] [PubMed]
- Boggio, K.; Nicoletti, G.; DI Carlo, E.; Cavallo, F.; Landuzzi, L.; Melani, C.; Giovarelli, M.; Rossi, I.; Nanni, P.; De Giovanni, C.; et al. Interleukin 12–mediated Prevention of Spontaneous Mammary Adenocarcinomas in Two Lines of Her-2/neu Transgenic Mice. J. Exp. Med. 1998, 188, 589–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wesa, A.K.; Storkus, W. Killer dendritic cells: Mechanisms of action and therapeutic implications for cancer. Cell Death Differ. 2007, 15, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Larmonier, N.; Fraszczak, J.; Lakomy, D.; Bonnotte, B.; Katsanis, E. Killer dendritic cells and their potential for cancer immunotherapy. Cancer Immunol. Immunother. 2009, 59, 1–11. [Google Scholar] [CrossRef]
- Borst, J.; Ahrends, T.; Bąbała, N.; Melief, C.J.M.; Kastenmüller, W. CD4+ T cell help in cancer immunology and immunotherapy. Nat. Rev. Immunol. 2018, 18, 635–647. [Google Scholar] [CrossRef]
- Saxena, M.; Bhardwaj, N. Re-Emergence of Dendritic Cell Vaccines for Cancer Treatment. Trends Cancer 2018, 4, 119–137. [Google Scholar] [CrossRef]
- Sadeghzadeh, M.; Bornehdeli, S.; Mohahammadrezakhani, H.; Abolghasemi, M.; Poursaei, E.; Asadi, M.; Zafari, V.; Aghebati-Maleki, L.; Shanehbandi, D. Dendritic cell therapy in cancer treatment; the state-of-the-art. Life Sci. 2020, 254, 117580. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Diamond, B. Generation and maturation of bone marrow-derived DCs under serum-free conditions. J. Immunol. Methods 2007, 323, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Weigle, W.O.; McConahey, P.J. The serological cross-reaction between bovine serum albumin and anti-ovalbumin. J. Immunol. 1962, 88, 121–127. [Google Scholar] [PubMed]
- Stary, G.; Bangert, C.; Tauber, M.; Strohal, R.; Kopp, T.; Stingl, G. Tumoricidal activity of TLR7/8-activated inflammatory dendritic cells. J. Exp. Med. 2007, 204, 1441–1451. [Google Scholar] [CrossRef]
- Nicolas, A.; Cathelin, D.; Larmonier, N.; Fraszczak, J.; Puig, P.-E.; Bouchot, A.; Bateman, A.; Solary, E.; Bonnotte, B. Dendritic Cells Trigger Tumor Cell Death by a Nitric Oxide-Dependent Mechanism. J. Immunol. 2007, 179, 812–818. [Google Scholar] [CrossRef]
- Sharma, A.; Koldovsky, U.; Xu, S.; Ms, R.M.; Roses, R.; Bs, E.F.; Weinstein, S.; Nisenbaum, H.; Levine, B.L.; Fox, K.; et al. HER-2 pulsed dendritic cell vaccine can eliminate HER-2 expression and impact ductal carcinoma in situ. Cancer 2012, 118, 4354–4362. [Google Scholar] [CrossRef] [Green Version]
- Lowenfeld, L.; Zaheer, S.; Oechsle, C.; Fracol, M.; Datta, J.; Xu, S.; Fitzpatrick, E.; Roses, R.E.; Fisher, C.S.; McDonald, E.; et al. Addition of anti-estrogen therapy to anti-HER2 dendritic cell vaccination improves regional nodal immune response and pathologic complete response rate in patients with ERpos/HER2pos early breast cancer. Oncoimmunology 2017, 6, e1207032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowenfeld, L.; Mick, R.; Datta, J.; Xu, S.; Fitzpatrick, E.; Fisher, C.S.; Fox, K.R.; DeMichele, A.; Zhang, P.J.; Weinstein, S.P.; et al. Dendritic Cell Vaccination Enhances Immune Responses and Induces Regression of HER2pos DCIS Independent of Route: Results of Randomized Selection Design Trial. Clin. Cancer Res. 2017, 23, 2961–2971. [Google Scholar] [CrossRef] [Green Version]
- Disis, M.L.; Grabstein, K.H.; Sleath, P.R.; Cheever, M.A. Generation of immunity to the HER-2/neu oncogenic protein in patients with breast and ovarian cancer using a peptide-based vaccine. Clin. Cancer Res. 1999, 5, 1289–1297. [Google Scholar]
- Lehmann, P.V.; Ametani, A.; Benichou, G.; Miller, A.; Moudgil, K. Dominance and crypticity of T cell antigenic determinants. Annu. Rev. Immunol. 1993, 11, 729–766. [Google Scholar]
- Bjorkman, P.J.; Saper, M.A.; Samraoui, B.; Bennett, W.S.; Strominger, J.L.; Wiley, D.C. Structure of the human class I histocompatibility antigen, HLA-A2. Nat. Cell Biol. 1987, 329, 506–512. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Showalter, L.E.; Czerniecki, B.J.; Kodumudi, K.; Koski, G.K. Murine Dendritic Cells Grown in Serum-Free Culture Show Potent Therapeutic Activity when Loaded with Novel Th Epitopes in an Orthotopic Model of HER2pos Breast Cancer. Vaccines 2021, 9, 1037. https://doi.org/10.3390/vaccines9091037
Showalter LE, Czerniecki BJ, Kodumudi K, Koski GK. Murine Dendritic Cells Grown in Serum-Free Culture Show Potent Therapeutic Activity when Loaded with Novel Th Epitopes in an Orthotopic Model of HER2pos Breast Cancer. Vaccines. 2021; 9(9):1037. https://doi.org/10.3390/vaccines9091037
Chicago/Turabian StyleShowalter, Loral E., Brian J. Czerniecki, Krithika Kodumudi, and Gary K. Koski. 2021. "Murine Dendritic Cells Grown in Serum-Free Culture Show Potent Therapeutic Activity when Loaded with Novel Th Epitopes in an Orthotopic Model of HER2pos Breast Cancer" Vaccines 9, no. 9: 1037. https://doi.org/10.3390/vaccines9091037