Simultaneous Partial Nitrification and Denitrification Maintained in Membrane Bioreactor for Nitrogen Removal and Hydrogen Autotrophic Denitrification for Further Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Influent
2.2. Reactor Configuration
2.3. Samping and Analytical Methods
3. Results and Discussion
3.1. Start-Up and Experimental Strategy of MBR
3.2. Start-Up and Experimental Strategy of MBfR
3.3. Effects of the MBR-MBfR on Nitrogen Compound Removal at C/N = 1.5–2.5
3.4. Experimental Study on Treatment of Low C/N Wastewater by MBR-MBfR Reactor
3.5. Microbial Community Analysis in Different Phases of MBR-MBfR
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; Kim, M.G.; Nakhla, G.; Andalib, M.; Yuan, F. Partial nitrification-reactor configurations, and operational conditions: Performance analysis. J. Environ. Chem. Eng. 2020, 8, 103984. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Z.; Wang, X.; Zheng, L.; Gu, X. Partial nitrification performance and mechanism of zeolite biological aerated filter for ammonium wastewater treatment. Bioresour. Technol. 2017, 241, 473–481. [Google Scholar] [CrossRef]
- Wang, Y.; Li, B.; Xue, F.; Wang, W.; Wang, Z. Partial nitrification coupled with denitrification and anammox to treat landfill leachate in a tower biofilter reactor (TBFR). J. Water Process Eng. 2021, 42, 102155. [Google Scholar] [CrossRef]
- Xiao, H.; Peng, Y.; Zhang, Q.; Liu, Y. Pre-anaerobic treatment enhanced partial nitrification start-up coupled with anammox for advanced nitrogen removal from low C/N domestic wastewater. Bioresour. Technol. 2021, 337, 125434. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, S.; Ji, B.; Liu, Y. Towards mainstream deammonification of municipal wastewater: Partial nitrification-anammox versus partial denitrification-anammox. Sci. Total Environ. 2019, 692, 393–401. [Google Scholar] [CrossRef]
- Ge, S.; Wang, S.; Yang, X.; Qiu, S.; Li, B.; Peng, Y. Detection of nitrifiers and evaluation of partial nitrification for wastewater treatment: A review. Chemosphere 2015, 140, 85–98. [Google Scholar] [CrossRef]
- Li, J.; Du, Q.; Peng, H.; Zhang, Y.; Liu, T. Optimization of biochemical oxygen demand to total nitrogen ratio for treating landfill leachate in a single-stage partial nitrification-denitrification system. J. Clean. Prod. 2020, 266, 121809. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, X.; Yang, Y.Y.; Mirino, M.W.; Yuan, Y. Partial nitrification and denitrification of mature landfill leachate using a pilot-scale continuous activated sludge process at low dissolved oxygen. Bioresour. Technol. 2016, 218, 580–588. [Google Scholar] [CrossRef]
- Dong, H.; Zhang, K.; Han, X.; Du, B.; Wei, Q.; Wei, D. Achievement, performance and characteristics of microbial products in a partial nitrification sequencing batch reactor as a pretreatment for anaerobic ammonium oxidation. Chemosphere 2017, 183, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lu, M.Y.; Huang, Y.; Yuan, Y.; Yuan, Y. Influence of seasonal temperature change on autotrophic nitrogen removal for mature landfill leachate treatment with high-ammonia by partial nitrification-Anammox process. J. Environ. Sci. 2021, 102, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Liu, Y.; Zhang, M.; Li, Y.; Zhu, W.; Hao, M.; Ma, S. Start-up and operational performance of the partial nitrification process in a sequencing batch reactor (SBR) coupled with a micro-aeration system. Bioresour. Technol. 2020, 296, 123321. [Google Scholar] [CrossRef]
- Soliman, M.; Eldyasti, A. Development of partial nitrification as a first step of nitrite shunt process in a Sequential Batch Reactor (SBR) using Ammonium Oxidizing Bacteria (AOB) controlled by mixing regime. Bioresour. Technol. 2016, 221, 85–95. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Q.; Li, X.; Peng, Y. Rapid start-up and stable maintenance of domestic wastewater nitritation through short-term hydroxylamine addition. Bioresour. Technol. 2019, 278, 468–472. [Google Scholar] [CrossRef]
- Nerenberg, R. The membrane-biofilm reactor (MBfR) as a counter-diffusional biofilm process. Curr. Opin. Biotechnol. 2016, 38, 131–136. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Yin, Y.; Wang, J. Hydrogen-based membrane biofilm reactors for nitrate removal from water and wastewater. Int. J. Hydrogen Energy 2018, 43, 1–15. [Google Scholar] [CrossRef]
- Jiang, M.; Zheng, J.; Perez-Calleja, P.; Picioreanu, C.; Lin, H.; Zhang, X.; Zhang, Y.; Li, H.; Nerenberg, R. New insight into CO2-mediated denitrification process in H2-based membrane biofilm reactor: An experimental and modeling study. Water Res. 2020, 184, 116177. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Zhang, Y.; Yuan, Y.; Chen, Y.; Lin, H.; Zheng, J.; Li, H.; Zhang, X. Nitrate Removal and Dynamics of Microbial Community of A Hydrogen-Based Membrane Biofilm Reactor at Diverse Nitrate Loadings and Distances from Hydrogen Supply End. Water 2020, 12, 3196. [Google Scholar] [CrossRef]
- Park, J.H.; Choi, O.; Lee, T.H.; Kim, H.; Sang, B.I. Pyrosequencing analysis of microbial communities in hollow fiber-membrane biofilm reactors system for treating high-strength nitrogen wastewater. Chemosphere 2016, 163, 192–201. [Google Scholar] [CrossRef]
- Chi, Y.; Zhang, X.; Shi, X.; Ren, T.; Jin, P. Quick start-up of partial nitrification in a novel anaerobic/ pulse washout (APW) process for treating municipal wastewater. J. Clean. Prod. 2020, 124850. [Google Scholar] [CrossRef]
- Xia, S.; Zhong, F.; Zhang, Y.; Li, H.; Yang, X. Bio-reduction of nitrate from groundwater using a hydrogen-based membrane biofilm reactor. J. Environ. Sci. 2010, 22, 257–262. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, Z.; Zhang, X.; Liu, Y. A novel single-stage process integrating simultaneous COD oxidation, partial nitritation-denitritation and anammox (SCONDA) for treating ammonia-rich organic wastewater. Bioresour. Technol. 2018, 254, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Peng, Y.; Yuan, C.; Zhang, Q. Enhanced nutrient removal and facilitating granulation via intermittent aeration in simultaneous partial nitrification endogenous denitrification and phosphorus removal (SPNEDpr) process. Chemosphere 2021, 285, 131443. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Hao, S.; Ma, B.; Zhang, S.; Li, J. In-situ fermentation coupling with partial-denitrification/anammox process for enhanced nitrogen removal in an integrated three-stage anoxic/oxic (A/O) biofilm reactor treating low COD/N real wastewater. Bioresour. Technol. 2021, 126267. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.; Nerenberg, R.; Rittmann, B.E. Bio-reduction of soluble chromate using a hydrogen-based membrane biofilm reactor. Water Res. 2006, 40, 1634–1642. [Google Scholar] [CrossRef]
- Lee, K.C.; Rittmann, B.E. Applying a novel autohydrogenotrophic hollow-fiber membrane biofilm reactor for denitrification of drinking water. Water Res. 2002, 36, 2040–2052. [Google Scholar] [CrossRef]
- Xia, S.; Zhang, Z.; Zhong, F.; Zhang, J. High efficiency removal of 2-chlorophenol from drinking water by a hydrogen-based polyvinyl chloride membrane biofilm reactor. J. Hazard. Mater. 2011, 186, 1367–1373. [Google Scholar] [CrossRef]
- Vo, T.-K.-Q.; Dang, B.-T.; Ngo, H.H.; Nguyen, T.-T.; Nguyen, V.-T.; Vo, T.-D.-H.; Ngo, T.-T.-M.; Nguyen, T.-B.; Lin, C.; Lin, K.-Y.A.; et al. Low flux sponge membrane bioreactor treating tannery wastewater. Environ. Technol. Innov. 2021, 24, 101989. [Google Scholar] [CrossRef]
- Hu, X.; Xie, L.; Shim, H.; Zhang, S.; Yang, D. Biological Nutrient Removal in a Full Scale Anoxic/Anaerobic/Aerobic/Pre-anoxic-MBR Plant for Low C/N Ratio Municipal Wastewater Treatment. Chin. J. Chem. Eng. 2014, 22, 447–454. [Google Scholar] [CrossRef]
- Gao, Y.X.; Li, X.; Zhao, J.R.; Zhang, Z.X.; Fan, X.Y. Response of microbial communities based on full-scale classification and antibiotic resistance genes to azithromycin and copper combined pollution in activated sludge nitrification laboratory mesocosms at low temperature. Bioresour. Technol. 2021, 341, 125859. [Google Scholar] [CrossRef]
- Dong, L.; Luo, Y.; Cai, Y.; Zeng, H.; Jie, Z. Bacterial composition and nutrient removal with a novel PIA-A2/O sewage treatment. Water Sci. Technol. 2016, 73, 2722–2730. [Google Scholar] [CrossRef] [Green Version]
- Ge, G.; Zhao, J.; Chen, A.; Hu, B.; Ding, X. Nitrogen Removal and Nitrous Oxide Emission in an Anaerobic/Oxic/Anoxic Sequencing Biofilm Batch Reactor. Environ. Eng. Sci. 2017, 35, 19–26. [Google Scholar] [CrossRef]
- Tao, X.A.; Hong, L.B.; Peng, W.A.; Dga, B. Insights into two stable mainstream deammonification process and different microbial community dynamics at ambient temperature—ScienceDirect. Bioresour. Technol. 2021, 331, 125058. [Google Scholar]
- Sedlacek, C.J.; McGowan, B.; Suwa, Y.; Sayavedra-Soto, L.; Laanbroek, H.J.; Stein, L.Y.; Norton, J.M.; Klotz, M.G.; Bollmann, A. A Physiological and Genomic Comparison of Nitrosomonas Cluster 6a and 7 Ammonia-Oxidizing Bacteria. Microb. Ecol. 2019, 78, 985–994. [Google Scholar] [CrossRef]
- Sui, Q.; Liu, C.; Zhang, J.; Dong, H.; Zhu, Z.; Wang, Y. Response of nitrite accumulation and microbial community to free ammonia and dissolved oxygen treatment of high ammonium wastewater. Appl. Microbiol. Biotechnol. 2016, 100, 4177–4187. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Lai, C.Y.; Shi, L.D.; Wang, K.D.; Dai, Y.J.; Liu, Y.W.; Ma, F.; Rittmann, B.E.; Zheng, P.; Zhao, H.P. Nitrate effects on chromate reduction in a methane-based biofilm. Water Res. 2017, 115, 130–137. [Google Scholar] [CrossRef]
- Lai, C.Y.; Lv, P.L.; Dong, Q.Y.; Yeo, S.L.; Rittmann, B.E.; Zhao, H.P. Bromate and Nitrate Bioreduction Coupled with Poly-beta-hydroxybutyrate Production in a Methane-Based Membrane Biofilm Reactor. Environ. Sci. Technol. 2018, 52, 7024–7031. [Google Scholar] [CrossRef]
- Wang, H.; Sun, Y.; Zhang, L.; Wang, W.; Guan, Y. Enhanced nitrogen removal and mitigation of nitrous oxide emission potential in a lab-scale rain garden with internal water storage—ScienceDirect. J. Water Process Eng. 2021, 42, 102147. [Google Scholar] [CrossRef]
- Wang, H.; Chen, N.; Feng, C.; Deng, Y.; Gao, Y. Research on efficient denitrification system based on banana peel waste in sequencing batch reactors: Performance, microbial behavior and dissolved organic matter evolution. Chemosphere 2020, 253, 126693. [Google Scholar] [CrossRef]
- Patel, R.J.; Patel, U.D.; Nerurkar, A.S. Moving bed biofilm reactor developed with special microbial seed for denitrification of high nitrate containing wastewater. World J. Microbiol. Biotechnol. 2021, 37, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Park, H.I.; Choi, Y.J.; Pak, D. Autohydrogenotrophic Denitrifying Microbial Community in a Glass Beads Biofilm Reactor. Biotechnol. Lett. 2005, 27, 949–953. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.P.; Ginkel, S.V.; Tang, Y.; Kang, D.W.; Rittmann, B.; Krajmalnik-Brown, R. Interactions between Perchlorate and Nitrate Reductions in the Biofilm of a Hydrogen-Based Membrane Biofilm Reactor. Environ. Sci. Technol. 2011, 45, 10155–10162. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Xu, X.; Xia, S. Effects of sulfate on simultaneous nitrate and selenate removal in a hydrogen-based membrane biofilm reactor for groundwater treatment: Performance and biofilm microbial ecology. Chemosphere 2018, 211, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Xu, X.; Zhou, L. Insights into selenate removal mechanism of hydrogen-based membrane biofilm reactor for nitrate-polluted groundwater treatment based on anaerobic biofilm analysis. Ecotoxicol. Environ. Saf. 2019, 178, 123–129. [Google Scholar] [CrossRef] [PubMed]
Reactor | Parameter | Units | Value |
---|---|---|---|
MBR | MBR height | cm | 30 |
Number of HFM | 80 | ||
HFM inner diameter | mm | 1.2 | |
HFM outer diameter | mm | 2.2 | |
HFM pore size | μm | 0.1 | |
Active surface area | m2 | 0.06 | |
Active volume | L | 4.32 | |
MBfR | MBfR height | cm | 64 |
Number of HFM | 65 | ||
HFM inner diameter | mm | 1.0 | |
HFM outer diameter | mm | 1.66 | |
HFM pore size | μm | 0.02 | |
Active surface area | m2 | 0.28 | |
Active volume | L | 1.8 |
Phase | Time (days) | -N (mg/L) | -N (mg/L) | HRT (h) |
---|---|---|---|---|
I | 1–7 | 50.11 | 10.90 | 16 |
II | 8–15 | 61.66 | 10.10 | 14 |
III | 16–23 | 71.43 | 9.41 | 12 |
IV | 24–30 | 80.74 | 9.90 | 10 |
Phase | Time (Days) | C/N | COD (mg/L) | -N (mg/L) | HRT (h) |
---|---|---|---|---|---|
I | 31–38 | 0.5 | 40 | 80 | 10 |
II | 39–46 | 1 | 80 | ||
III | 47–54 | 2 | 160 | ||
IV | 55–62 | 3 | 240 |
Phase | C/N | COD (mg/L) | -N (mg/L) | HRT (h) |
---|---|---|---|---|
I | 1.5 | 120 | 80 | 15 |
II | 2.0 | 160 | ||
III | 2.5 | 200 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, K.; Feng, X.; Wang, W.; Chen, Y.; Hu, W.; Li, H.; Wang, D. Simultaneous Partial Nitrification and Denitrification Maintained in Membrane Bioreactor for Nitrogen Removal and Hydrogen Autotrophic Denitrification for Further Treatment. Membranes 2021, 11, 911. https://doi.org/10.3390/membranes11120911
Dong K, Feng X, Wang W, Chen Y, Hu W, Li H, Wang D. Simultaneous Partial Nitrification and Denitrification Maintained in Membrane Bioreactor for Nitrogen Removal and Hydrogen Autotrophic Denitrification for Further Treatment. Membranes. 2021; 11(12):911. https://doi.org/10.3390/membranes11120911
Chicago/Turabian StyleDong, Kun, Xinghui Feng, Wubin Wang, Yuchao Chen, Wei Hu, Haixiang Li, and Dunqiu Wang. 2021. "Simultaneous Partial Nitrification and Denitrification Maintained in Membrane Bioreactor for Nitrogen Removal and Hydrogen Autotrophic Denitrification for Further Treatment" Membranes 11, no. 12: 911. https://doi.org/10.3390/membranes11120911
APA StyleDong, K., Feng, X., Wang, W., Chen, Y., Hu, W., Li, H., & Wang, D. (2021). Simultaneous Partial Nitrification and Denitrification Maintained in Membrane Bioreactor for Nitrogen Removal and Hydrogen Autotrophic Denitrification for Further Treatment. Membranes, 11(12), 911. https://doi.org/10.3390/membranes11120911