Novel Surrogates for Membrane Fouling and the Application of Support Vector Machine in Analyzing Fouling Mechanism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Materials and Preparation of Solution
2.2. Extraction of EPS and Determination of EPS Concentrations
2.3. Filtration Tests
2.4. Measurements of Adsorption Forces between Polysaccharides
2.5. The Autopsy of Fouled Membranes
2.6. The Application of SVM in Fouling Analysis
3. Results and Discussion
3.1. Gel Layer Formation: A Crucial Fouling Mechanism during Membrane Filtration Process
3.2. Membrane Filtration Tests with the EPS and Surrogate Polysaccharides
3.3. The Implications for Analysis of EPS Fouling
3.4. Application of SVM to Predict the Type of Membrane Fouling
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ding, A.; Zhao, Y.; Yan, Z.; Bai, L.; Yang, H.; Liang, H.; Li, G.; Ren, N. Co-application of energy uncoupling and ultrafiltration in sludge treatment: Evaluations of sludge reduction, supernatant recovery and membrane fouling control. Front. Environ. Sci. Eng. 2020, 14, 1–10. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, H.; Zhang, Y.; Sun, W.; Ao, X. Comparative genotoxicity of water processed by three drinking water treatment plants with different water treatment procedures. Front. Environ. Sci. Eng. 2020, 14, 39. [Google Scholar] [CrossRef]
- Yu, D.; Wang, J.; Zheng, L.; Sui, Q.; Zhong, H.; Cheng, M.; Wei, Y. Effects of hydraulic retention time on net present value and performance in a membrane bioreactor treating antibiotic production wastewater. Front. Environ. Sci. Eng. 2020, 14, 101. [Google Scholar] [CrossRef]
- Ding, A.; Zhao, Y.; Ngo, H.H.; Bai, L.; Li, G.; Liang, H.; Ren, N.; Nan, J. Metabolic uncoupler, 3, 3′, 4′, 5-tetrachlorosalicylanilide addition for sludge reduction and fouling control in a gravity-driven membrane bioreactor. Front. Environ. Sci. Eng. 2020, 14, 1–12. [Google Scholar] [CrossRef]
- Yu, J.; Xiao, K.; Xue, W.; Shen, Y.-X.; Tan, J.; Liang, S.; Wang, Y.; Huang, X. Excitation-emission matrix (EEM) fluorescence spectroscopy for characterization of organic matter in membrane bioreactors: Principles, methods and applications. Front. Environ. Sci. Eng. 2020, 14, 31. [Google Scholar] [CrossRef]
- Meng, S.; Winters, H.; Liu, Y. Ultrafiltration behaviors of alginate blocks at various calcium concentrations. Water Res. 2015, 83, 248–257. [Google Scholar] [CrossRef]
- Meng, S.; Liu, Y. New insights into transparent exopolymer particles (TEP) formation from precursor materials at various Na+/Ca2+ ratios. Sci. Rep. 2016, 6, 1–9. [Google Scholar]
- Meng, X.; Luosang, D.; Meng, S.; Wang, R.; Fan, W.; Liang, D.; Li, X.; Zhao, Q.; Yang, L. The structural and functional properties of polysaccharide foulants in membrane fouling. Chemosphere 2021, 268, 129364. [Google Scholar] [CrossRef]
- Zhang, J.-X.; Huang, B.-C.; Xu, Q.-S.; Li, Y.-S.; Tian, T.; Yu, H.-Q. Unexpected alleviation of transparent exopolymer particles-associated membrane fouling through interaction with typical organic foulants. J. Membr. Sci. 2021, 636, 119554. [Google Scholar] [CrossRef]
- Meng, S.; Wang, R.; Meng, X.; Wang, Y.; Fan, W.; Liang, D.; Zhang, M.; Liao, Y.; Tang, C. Reaction heterogeneity in the bridging effect of divalent cations on polysaccharide fouling. J. Membr. Sci. 2022, 641, 119933. [Google Scholar] [CrossRef]
- Jiang, J.-K.; Mu, Y.; Yu, H.-Q. Differences in the colloid properties of sodium alginate and polysaccharides in extracellular polymeric substances with regard to membrane fouling. J. Colloid Interface Sci. 2019, 535, 318–324. [Google Scholar] [CrossRef]
- Kim, H.-C.; Dempsey, B.A. Membrane fouling due to alginate, SMP, EfOM, humic acid, and NOM. J. Membr. Sci. 2013, 428, 190–197. [Google Scholar] [CrossRef]
- Meng, S.; Wang, R.; Zhang, K.; Meng, X.; Xue, W.; Liu, H.; Liang, D.; Zhao, Q.; Liu, Y. Transparent exopolymer particles (TEPs)-associated protobiofilm: A neglected contributor to biofouling during membrane filtration. Front. Environ. Sci. Eng. 2021, 15, 1–10. [Google Scholar] [CrossRef]
- Lo, Y.-M.; Yang, S.-T.; Min, D.B. Ultrafiltration of xanthan gum fermentation broth: Process and economic analyses. J. Food Eng. 1997, 31, 219–236. [Google Scholar] [CrossRef]
- Meng, X.; Meng, S.; Liu, Y. The Limitations in Current Studies of Organic Fouling and Future Prospects. Membranes 2021, 11, 922. [Google Scholar] [CrossRef]
- Hamedi, H.; Ehteshami, M.; Mirbagheri, S.A.; Zendehboudi, S. New deterministic tools to systematically investigate fouling occurrence in membrane bioreactors. Chem. Eng. Res. Des. 2019, 144, 334–353. [Google Scholar] [CrossRef]
- Liu, H.; Fang, H.H. Extraction of extracellular polymeric substances (EPS) of sludges. J. Biotechnol. 2002, 95, 249–256. [Google Scholar] [CrossRef]
- Nataraj, S.; Schomäcker, R.; Kraume, M.; Mishra, I.; Drews, A. Analyses of polysaccharide fouling mechanisms during crossflow membrane filtration. J. Membr. Sci. 2008, 308, 152–161. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.t.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Fr, B.; Griebe, T.; Nielsen, P. Enzymatic activity in the activated-sludge floc matrix. Appl. Microbiol. Biotechnol. 1995, 43, 755–761. [Google Scholar]
- Sweity, A.; Oren, Y.; Ronen, Z.; Herzberg, M. The influence of antiscalants on biofouling of RO membranes in seawater desalination. Water Res. 2013, 47, 3389–3398. [Google Scholar] [CrossRef]
- Motsa, M.M.; Mamba, B.B.; Verliefde, A.R. Combined colloidal and organic fouling of FO membranes: The influence of foulant–foulant interactions and ionic strength. J. Membr. Sci. 2015, 493, 539–548. [Google Scholar] [CrossRef]
- Höök, F.; Rodahl, M.; Kasemo, B.; Brzezinski, P. Structural changes in hemoglobin during adsorption to solid surfaces: Effects of pH, ionic strength, and ligand binding. Proc. Natl. Acad. Sci. USA 1998, 95, 12271–12276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quej, V.H.; Almorox, J.; Arnaldo, J.A.; Saito, L. ANFIS, SVM and ANN soft-computing techniques to estimate daily global solar radiation in a warm sub-humid environment. J. Atmos. Sol. -Terr. Phys. 2017, 155, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-C.; Lin, C.-J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2011, 2, 1–27. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Galar, M.; Fernández, A.; Barrenechea, E.; Bustince, H.; Herrera, F. An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes. Pattern Recognit. 2011, 44, 1761–1776. [Google Scholar] [CrossRef]
- You, X.; Teng, J.; Chen, Y.; Long, Y.; Yu, G.; Shen, L.; Lin, H. New insights into membrane fouling by alginate: Impacts of ionic strength in presence of calcium ions. Chemosphere 2020, 246, 125801. [Google Scholar] [CrossRef]
- Ma, L.; Barbosa-Canovas, G. Viscoelastic properties of xanthan gels interacting with cations. J. Food Sci. 1997, 62, 1124–1128. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Cao, X.; Xue, J.; Zhang, Q.; Tian, J.; Li, X.; Qiu, X.; Pan, B.; Gu, A.Z. Effect of carboxyl and hydroxyl groups on adsorptive polysaccharide fouling: A comparative study based on PVDF and graphene oxide (GO) modified PVDF surfaces. J. Membr. Sci. 2020, 595, 117514. [Google Scholar] [CrossRef]
- Braccini, I.; Grasso, R.P.; Pérez, S. Conformational and configurational features of acidic polysaccharides and their interactions with calcium ions: A molecular modeling investigation. Carbohydr. Res. 1999, 317, 119–130. [Google Scholar] [CrossRef]
- Toeda, K.; Kurane, R. Microbial flocculant from Alcaligenes cupidus KT201. Agric. Biol. Chem. 1991, 55, 2793–2799. [Google Scholar] [CrossRef] [Green Version]
- Salbu, L.; Bauer-Brandl, A.; Tho, I. Direct compression behavior of low-and high-methoxylated pectins. AAPS PharmSciTech 2010, 11, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Jie, X.; Yang, Y.; Zixing, W.; Fenglin, Y. Mechanism of calcium mitigating membrane fouling in submerged membrane bioreactors. J. Environ. Sci. 2009, 21, 1066–1073. [Google Scholar] [CrossRef]
- Tansel, B.; Sager, J.; Garland, J.; Xu, S.; Levine, L.; Bisbee, P. Deposition of extracellular polymeric substances (EPS) and microtopographical changes on membrane surfaces during intermittent filtration conditions. J. Membr. Sci. 2006, 285, 225–231. [Google Scholar] [CrossRef]
- Cai, O.; Xiong, Y.; Yang, H.; Liu, J.; Wang, H. Phosphorus transformation under the influence of aluminum, organic carbon, and dissolved oxygen at the water-sediment interface: A simulative study. Front. Environ. Sci. Eng. 2020, 14, 50. [Google Scholar] [CrossRef]
Polysaccharides (mg/L) | Ca2+ (mM) | Mg2+ (mM) | |
---|---|---|---|
A | Alginate (50 mg/L) | 0 | 0, 1 |
1 | 0, 1, 4 | ||
Xanthan gum (50 mg/L) | 0 | 0, 1 | |
1 | 0, 1, 4 | ||
B | Alginate and xanthan gum (25 mg/L, respectively) | 0 | 0, 1 |
1 | 0 | ||
2 | 0 | ||
Alginate and xanthan gum | 0 | 0 | |
C | Alginate (50 mg/L) | 0, 1, 2, 6, 10 | 0 |
Pectin (10, 50 mg/L) | 0, 1, 2, 6, 10 | 0 |
Polysaccharide | Without Cations (ng) | Mg2+ (ng) | Ca2+ (ng) |
---|---|---|---|
Alginate | 0.4754 ± 0.0292 | 5.8891 ± 0.0652 | 5.9683 ± 0.0597 |
Xanthan gum | 0.2066 ± 0.0330 | 2.0566 ± 0.0764 | 2.2125 ± 1.4847 |
Number | Model | Polysaccharide |
---|---|---|
1 | Standard blocking | Agarose (AG) |
2 | Gel | Alginate (ALG) |
3 | Complete blocking | Starch (S) |
4 | Intermediate blocking | Xanthan gum (XG) |
5 | Gel-like | Pectin (P) |
Correct Class | Predicted Class | |||||
---|---|---|---|---|---|---|
AG (1) | ALG (2) | S (3) | XG (4) | P (5) | Total | |
AG (1) | ||||||
ALG (2) | ||||||
S (3) | ||||||
XG (4) | ||||||
P (5) | ||||||
Total |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, X.; Wang, F.; Meng, S.; Wang, R.; Mao, Z.; Li, Y.; Yu, M.; Wang, X.; Zhao, Q.; Yang, L. Novel Surrogates for Membrane Fouling and the Application of Support Vector Machine in Analyzing Fouling Mechanism. Membranes 2021, 11, 990. https://doi.org/10.3390/membranes11120990
Meng X, Wang F, Meng S, Wang R, Mao Z, Li Y, Yu M, Wang X, Zhao Q, Yang L. Novel Surrogates for Membrane Fouling and the Application of Support Vector Machine in Analyzing Fouling Mechanism. Membranes. 2021; 11(12):990. https://doi.org/10.3390/membranes11120990
Chicago/Turabian StyleMeng, Xianghao, Fukuan Wang, Shujuan Meng, Rui Wang, Zhongyuan Mao, Yue Li, Meifeng Yu, Xuye Wang, Qian Zhao, and Linyan Yang. 2021. "Novel Surrogates for Membrane Fouling and the Application of Support Vector Machine in Analyzing Fouling Mechanism" Membranes 11, no. 12: 990. https://doi.org/10.3390/membranes11120990
APA StyleMeng, X., Wang, F., Meng, S., Wang, R., Mao, Z., Li, Y., Yu, M., Wang, X., Zhao, Q., & Yang, L. (2021). Novel Surrogates for Membrane Fouling and the Application of Support Vector Machine in Analyzing Fouling Mechanism. Membranes, 11(12), 990. https://doi.org/10.3390/membranes11120990