A Dedicated Veno-Venous Extracorporeal Membrane Oxygenation Unit during a Respiratory Pandemic: Lessons Learned from COVID-19 Part II: Clinical Management
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. ECMO Consultation Process and Indications for Support
- Establishing consensus criteria for COVID-19 ECMO support based on institutional and/or state-level discussion.
- The use of a multidisciplinary ECMO team is beneficial, particularly when considering variations from criteria on a case-by-case basis.
- Considering the impact of exceptions to criteria on resources during a pandemic.
- The safety of the ECMO team is paramount during cannulations for COVID-19.
- Continuing to revise VV-ECMO criteria for COVID-19 patients, as outcome data accumulate.
3.2. ECMO Initiation
- An established institutional practice with a dedicated team for ECMO initiation in patients with CARDS should be continued, whether in the operating room or with fluoroscopy; however, if unable to transport patients, bedside percutaneous cannulation can be safely performed.
- For bedside cannulation, a consistent, well-defined team of people to manage varying aspects of patient care is essential for patient safety, particularly while in an airlock.
- Our experience rarely required VA-ECMO support for CARDS: This may be different for other centers, and a multidisciplinary approach to patient selection and initiation should be utilized in these cases.
3.3. Right Ventricular Strain
- Consider the empiric use of inhaled pulmonary vasodilators and inotropic support for RV strain in the setting of ECMO-dependent respiratory failure, with subsequent weaning.
- Patients on VV-ECMO in an airlock unit require vigilant monitoring. Bedside sonography can be very helpful for the re-evaluation of cardiac function; specifically, in a setting with limited PPE.
- The use of inhaled vasodilators may have logistic disadvantages that limit their use.
3.4. Ventilator and ECMO Circuit Management
- CARDS has distinct pathophysiologic differences to ARDS, and the previous standard ARDS approaches may not be entirely applicable.
- Once lung-protective settings are achieved, consider adjustments to ECMO settings prior to increasing the ventilator support, due to the dangers of VILI.
- It is important for intensivists to have a high level of experience with ECMO in the management of ventilated patients on VV-ECMO support during a respiratory viral pandemic such as COVID-19.
- Though the optimal strategy for the management of these patients is unclear, a standardized algorithmic approach to ventilator and ECMO circuit management in CARDS patients may increase safety.
3.5. Pneumothoraces
- Experienced providers should place chest tube and pleural catheters, as complications may not be tolerated in patients with CARDS on VV-ECMO.
- Routine chest tube care may be sufficient to prevent radiographic recurrence of pneumothoraces.
- The pleural space may be complex, and it is important to be mindful of lung adhesions/tethering, despite the acute nature of presentation, when deciding the entry point for chest tube placement (CT imaging, if safe to perform, is preferable).
- A persistent pneumothorax on imaging, despite multiple interventions, may be indicative of a trapped lung, and further intervention is likely not warranted until the underlying lung function improves for patients with COVID-19.
3.6. Tracheostomy
- The optimal timing for tracheostomy in COVID-19 patients on VV-ECMO has yet to be determined; however, consider waiting until patients have proven to have an extended period of hemodynamic and respiratory stability, and absence of a significant coagulopathy.
- Vigilance to routine tracheostomy care may prevent, or decrease, the incidence of bleeding complications in patients with CARDS.
3.7. Anticoagulation
- Consider a higher baseline anticoagulation therapeutic goal than that traditionally used in VV-ECMO, given the pro-thrombotic state seen in COVID-19.
- Be aware of the potential for the development of coagulopathy on VV-ECMO in CARDS, and the importance of an algorithmic approach for anticoagulation.
3.8. Sedation
- Team nursing may have the consequent risk of an increased use of sedation for feasibility and safety for patients.
- Co-administration of multiple medications can ease the strain on pharmacy and nursing, but this must be counterbalanced with hemodynamic considerations.
- Availability of multiple pharmacologic regimens is important when faced with drug shortages.
3.9. Indication for Decannulation
- With a surge of patients who may require ECMO support, patients may need to be decannulated from ECMO at higher than traditionally accepted levels of ventilatory support.
- Consider the feasibility and logistical challenges of re-cannulation in this setting when determining the length of the no-sweep trial prior to decannulation.
- In patients with persistent, refractory coagulopathy, decannulation may need to be performed earlier with concurrent increases in ventilatory support, if feasible.
3.10. Trial Therapies
- It is important to keep up to date with the changing landscape of literature for various trial therapies and to consider implementation with caution.
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Máca, J.; Jor, O.; Holub, M.; Sklienka, P.; Burša, F.; Burda, M.; Janout, V.; Ševčík, P. Past and present ARDS mortality rates: A systematic review. Respir. Care 2017, 62, 113–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peek, G.J.; Clemens, F.; Elbourne, D.; Firmin, R.; Hardy, P.; Hibbert, C.; Killer, H.; Mugford, M.; Thalanany, M.; Tiruvoipati, R.; et al. CESAR: Conventional ventilatory support vs extracorporeal membrane oxygenation for severe adult respiratory failure. BMC Health Serv. Res. 2006, 6, 163. [Google Scholar] [CrossRef] [PubMed]
- Combes, A.; Hajage, D.; Capellier, G.; Demoule, A.; Lavoué, S.; Guervilly, C.; Da Silva, D.; Zafrani, L.; Tirot, P.; Veber, B.; et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N. Engl. J. Med. 2018, 378, 1965–1975. [Google Scholar] [CrossRef]
- Checchi, K.D.; Calvo, R.Y.; Badiee, J.; Rooney, A.S.; Sise, C.B.; Sise, M.J.; Bansal, V.; Martin, M.J. Association of trauma center level and patient volume with outcomes for penetrating thoracic trauma. J. Surg. Res. 2020, 255, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Brower, R.G.; Ware, L.B.; Berthiaume, Y.; Matthay, M.A. Treatment of ARDS. Chest 2001, 120, 1347–1367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guérin, C.; Beuret, P.; Constantin, J.M.; Bellani, G.; Garcia-Olivares, P.; Roca, O.; Meertens, J.H.; Maia, P.A.; Becher, T.; Peterson, J.; et al. A prospective international observational prevalence study on prone positioning of ARDS patients: The APRONET (ARDS Prone Position Network) study. Intensive Care Med. 2018, 44, 22–37. [Google Scholar] [CrossRef] [PubMed]
- Papazian, L.; Forel, J.M.; Gacouin, A.; Penot-Ragon, C.; Perrin, G.; Loundou, A.; Jaber, S.; Arnal, J.M.; Perez, D.; Seghboyan, J.M.; et al. ACURASYS study investigators. neuromuscular blockers in early acute respiratory distress syndrome. N. Engl. J. Med. 2010, 363, 1107–1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menaker, J.; Dolly, K.; Rector, R.; Kufera, J.; Lee, E.E.; Tabatabai, A.; Rabinowitz, R.P.; Kon, Z.N.; Sanchez, P.; Pham, S.; et al. The lung rescue unit-Does a dedicated intensive care unit for venovenous extracorporeal membrane oxygenation improve survival to discharge? J. Trauma Acute Care Surg. 2017, 83, 438–442. [Google Scholar] [CrossRef]
- Marini, J.J.; Gattinoni, L. Management of COVID-19 respiratory distress. JAMA 2020, 323, 2329–2330. [Google Scholar] [CrossRef]
- Menter, T.; Haslbauer, J.D.; Nienhold, R.; Savic, S.; Hopfer, H.; Deigendesch, N.; Frank, S.; Turek, D.; Willi, N.; Pargger, H.; et al. Postmortem examination of COVID-19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings in lungs and other organs suggesting vascular dysfunction. Histopathology 2020, 77, 198–209. [Google Scholar] [CrossRef]
- Ciceri, F.; Beretta, L.; Scandroglio, A.M.; Colombo, S.; Landoni, G.; Ruggeri, A.; Peccatori, J.; D’Angelo, A.; De Cobelli, F.; Rovere-Querini, P.; et al. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): An atypical acute respiratory distress syndrome working hypothesis. Crit. Care Resusc. 2020, 22, 95–97. [Google Scholar]
- Grasselli, G.; Zangrillo, A.; Zanella, A.; Antonelli, M.; Cabrini, L.; Castelli, A.; Cereda, D.; Coluccello, A.; Foti, G.; Fumagalli, R.; et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA 2020, 323, 1574–1581. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Xia, J.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study [published correction appears in Lancet Respir Med. 2020 Apr;8, e26]. Lancet Respir. Med. 2020, 8, 475–481. [Google Scholar] [CrossRef] [Green Version]
- Bhatraju, P.K.; Ghassemieh, B.J.; Nichols, M.; Kim, R.; Jerome, K.R.; Nalla, A.K.; Greninger, A.L.; Pipavath, S.; Wurfel, M.M.; Evans, L.; et al. Covid-19 in critically ill patients in the Seattle region—Case series. N. Engl. J. Med. 2020, 382, 2012–2022. [Google Scholar] [CrossRef]
- Bartlett, R.H.; Ogino, M.T.; Brodie, D.; McMullan, D.M.; Lorusso, R.; MacLaren, G.; Stead, C.M.; Rycus, P.; Fraser, J.F.; Belohlavek, J.; et al. Initial ELSO Guidance Document: ECMO for COVID-19 Patients with Severe Cardiopulmonary Failure [published correction appears in ASAIO J. 2020 Aug;66, e113]. ASAIO J. 2020, 66, 472–474. [Google Scholar] [CrossRef]
- MacLaren, G.; Fisher, D.; Brodie, D. Preparing for the most critically Ill Patients with COVID-19: The Membrane potential role of extracorporeal oxygenation [published online ahead of print, 2020 Feb 19]. JAMA 2020. [Google Scholar] [CrossRef]
- Dave, S.; Shah, A.; Galvagno, S.; George, K.; Menne, A.R.; Haase, D.J.; McCormick, B.; Rector, R.; Dahi, S.; Madathil, R.J.; et al. A Dedicated Veno-Venous Extracorporeal Membrane Oxygenation Unit during a Respiratory Pandemic: Lessons Learned from COVID-19 Part I: System Planning and Care Teams. Membranes 2021, 11, 258. [Google Scholar] [CrossRef]
- Scalea, T.M.; Rubinson, L.; Tran, Q.; Jones, K.M.; Rea, J.H.; Stein, D.M.; Bartlett, S.T.; O’Connor, J.V. Critical Care Resuscitation Unit: An Innovative Solution to Expedite Transfer of Patients with Time-Sensitive Critical Illness. J. Am Coll. Surg. 2016, 222, 614–621. [Google Scholar] [CrossRef]
- CDC COVID-19 Response Team. Severe Outcomes Among Patients with Coronavirus Disease 2019 (COVID-19)—United States, February 12-March 16, 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 343–346. [Google Scholar] [CrossRef]
- Onder, G.; Rezza, G.; Brusaferro, S. Case-Fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA 2020, 323, 1775–1776. [Google Scholar] [CrossRef]
- Kon, Z.N.; Dahi, S.; Evans, C.F.; Byrnes, K.A.; Bittle, G.J.; Wehman, B.; Rector, R.P.; McCormick, B.M.; Herr, D.L.; Sanchez, P.G.; et al. Class III obesity is not a contraindication to venovenous extracorporeal membrane oxygenation support. Ann. Thorac. Surg. 2015, 100, 1855–1860. [Google Scholar] [CrossRef] [PubMed]
- Galvagno, S.M.; Pelekhaty, S.; Cornachione, C.R.; Deatrick, K.B.; Mazzeffi, M.A.; Scalea, T.M.; Menaker, J. Does weight matter? Outcomes in adult patients on venovenous extracorporeal membrane oxygenation when stratified by obesity class. Anesth. Analg. 2020, 131, 754–761. [Google Scholar] [CrossRef] [PubMed]
- Caussy, C.; Wallet, F.; Laville, M.; Disse, E. Obesity is associated with severe forms of COVID-19. Obesity 2020, 28, 1175. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Mahawar, K.; Xia, Z.; Yang, W.; El-Hasani, S. Obesity and mortality of COVID-19. Meta-analysis. Obes. Res. Clin. Pract. 2020, 14, 295–300. [Google Scholar] [CrossRef]
- Jones, K.M.; DiChiacchio, L.; Deatrick, K.B.; Dolly, K.; Rea, J.; Galvagno, S.; Herr, D.; O’Connor, J.; Scalea, T.; Menaker, J. Cardiac arrest prior to initiation of veno-venous extracorporeal membrane oxygenation is not associated with increased in-hospital mortality. ASAIO J. 2020, 66, e79–e81. [Google Scholar] [CrossRef]
- Wengenmayer, T.; Rombach, S.; Ramshorn, F.; Biever, P.; Bode, C.; Duerschmied, D.; Staudacher, D.L. Influence of low-flow time on survival after extracorporeal cardiopulmonary resuscitation (eCPR). Crit Care. 2017, 21, 157. [Google Scholar] [CrossRef]
- Nwozuzu, A.; Fontes, M.L.; Schonberger, R.B. Mobile extracorporeal membrane oxygenation teams: The north american versus the European experience. J. Cardiothorac. Vasc. Anesth. 2016, 30, 1441–1448. [Google Scholar] [CrossRef] [Green Version]
- Banfi, C.; Pozzi, M.; Siegenthaler, N.; Brunner, M.E.; Tassaux, D.; Obadia, J.F.; Bendjelid, K.; Giraud, R. Veno-venous extracorporeal membrane oxygenation: Cannulation techniques. J. Thorac. Dis. 2016, 8, 3762–3773. [Google Scholar] [CrossRef] [Green Version]
- Inciardi, R.M.; Lupi, L.; Zaccone, G.; Italia, L.; Raffo, M.; Tomasoni, D.; Cani, D.S.; Cerini, M.; Farina, D.; Gavazzi, E.; et al. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020, 5, 819–824. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Wu, D.; Chen, H.; Yan, W.; Yang, D.; Chen, G.; Ma, K.; Xu, D.; Yu, H.; Wang, H.; et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: Retrospective study [published correction appears in BMJ. 2020 Mar 31;368:m1295]. BMJ 2020, 368, m1091. [Google Scholar]
- Wu, R.; Wang, L.; Kuo, H.D.; Shannar, A.; Peter, R.; Chou, P.J.; Li, S.; Hudlikar, R.; Liu, X.; Liu, Z.; et al. An update on current therapeutic drugs treating COVID-19 [published online ahead of print, 2020 May 11]. Curr. Pharm. Rep 2020, 11, 1–15. [Google Scholar]
- Kobayashi, J.; Murata, I. Nitric oxide inhalation as an interventional rescue therapy for COVID-19-induced acute respiratory distress syndrome. Ann. Intensive Care. 2020, 10, 61. [Google Scholar] [CrossRef]
- Chen, L.; Liu, P.; Gao, H.; Sun, B.; Chao, D.; Wang, F.; Zhu, Y.; Hedenstierna, G.; Wang, C.G. Inhalation of nitric oxide in the treatment of severe acute respiratory syndrome: A rescue trial in Beijing. Clin. Infect. Dis. 2004, 39, 1531–1535. [Google Scholar] [CrossRef] [Green Version]
- Lei, C.; Su, B.; Dong, H.; Bellavia, A.; Di Fenza, R.; Safaee Fakhr, B.; Gianni, S.; Grassi, L.G.; Kacmarek, R.; Araujo Morais, C.C.; et al. Protocol of a randomized controlled trial testing inhaled Nitric Oxide in mechanically ventilated patients with severe acute respiratory syndrome in COVID-19 (SARS-CoV-2). Preprint. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Sahay, S.; Farber, H.W. Management of hospitalized patients with pulmonary arterial hypertension and COVID-19 infection. Pulm. Circ. 2020, 10. [Google Scholar] [CrossRef]
- Gattinoni, L.; Marini, J.J.; Pesenti, A.; Quintel, M.; Mancebo, J.; Brochard, L. The “baby lung” became an adult. Intensive Care Med. 2016, 42, 663–673. [Google Scholar] [CrossRef]
- Slutsky, A.S.; Ranieri, V.M. Mechanical ventilation: Lessons from the ARDSNet trial. Respir. Res. 2000, 1, 73–77. [Google Scholar] [CrossRef] [Green Version]
- Grasso, S.; Stripoli, T.; De Michele, M.; Bruno, F.; Moschetta, M.; Angelelli, G.; Munno, I.; Ruggiero, V.; Anaclerio, R.; Cafarelli, A.; et al. ARDSnet ventilatory protocol and alveolar hyperinflation: Role of positive end-expiratory pressure. Am. J. Respir. Crit. Care. Med. 2007, 176, 761–767. [Google Scholar] [CrossRef] [Green Version]
- Acute Respiratory Distress Syndrome Network; Brower, R.G.; Matthay, M.A.; Morris, A.; Schoenfeld, D.; Thompson, B.T.; Wheeler, A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N. Engl. J. Med. 2000, 342, 1301–1308. [Google Scholar]
- Brochard, L.; Slutsky, A.; Pesenti, A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am. J. Respir. Crit. Care. Med. 2017, 195, 438–442. [Google Scholar]
- Sutherasan, Y.; Vargas, M.; Pelosi, P. Protective mechanical ventilation in the non-injured lung: Review and meta-analysis. Crit. Care. 2014, 18, 211. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M.; Pellegrino, V.; Combes, A.; Scheinkestel, C.; Cooper, D.J.; Hodgson, C. Mechanical ventilation during extracorporeal membrane oxygenation. Crit. Care. 2014, 18, 203. [Google Scholar] [CrossRef] [Green Version]
- Lewandowski, K. Extracorporeal membrane oxygenation for severe acute respiratory failure. Crit Care 2000, 4, 156–168. [Google Scholar] [CrossRef] [Green Version]
- Tabatabai, A.; Rabin, J.; Menaker, J.; Madathil, R.; Galvagno, S.; Menne, A.; Chow, J.H.; Grazioli, A.; Herr, D.; Tanaka, K.; et al. Factor VIII and functional protein c activity in critically ill patients with coronavirus disease 2019: A case series. A&A Pract. 2020, 14, e01236. [Google Scholar]
- Madathil, R.J.; Tabatabai, A.; Rabin, J.; Menne, A.R.; Henderson, R.; Mazzeffi, M.; Scalea, T.M.; Tanaka, K. Thromboelastometry and D-Dimer Elevation in Coronavirus-2019. J. Cardiothorac. Vasc. Anesth. 2020, 34, 3495–3496. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study [published correction appears in Lancet. 2020 Mar 28;395, 1038]. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Gattinoni, L.; Chiumello, D.; Caironi, P.; Busana, M.; Romitti, F.; Brazzi, L.; Camporota, L. COVID-19 pneumonia: Different respiratory treatments for different phenotypes? Intensive Care Med. 2020, 46, 1099–1102. [Google Scholar] [CrossRef]
- Arentz, M.; Yim, E.; Klaff, L.; Lokhandwala, S.; Riedo, F.X.; Chong, M.; Lee, M. Characteristics and Outcomes of 21 Critically Ill Patients With COVID-19 in Washington State. JAMA 2020, 323, 1612–1614. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.V.; Kollisch-Singule, M.; Sadowitz, B.; Dombert, L.; Satalin, J.; Andrews, P.; Gatto, L.A.; Nieman, G.F.; Habashi, N.M. The 30-year evolution of airway pressure release ventilation (APRV). Intensive Care Med. Exp. 2016, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- Habashi, N.M. Other approaches to open-lung ventilation: Airway pressure release ventilation. Crit. Care Med. 2005, 33, S228–S240. [Google Scholar] [CrossRef]
- Amato, M.B.; Meade, M.O.; Slutsky, A.S.; Brochard, L.; Costa, E.L.; Schoenfeld, D.A.; Stewart, T.E.; Briel, M.; Talmor, D.; Mercat, A.; et al. Driving pressure and survival in the acute respiratory distress syndrome. N. Engl. J. Med. 2015, 372, 747–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavayas, Y.A.; Munshi, L.; Del Sorbo, L.; Fan, E. The Early Change in PaCO2 after Extracorporeal Membrane Oxygenation Initiation Is Associated with Neurological Complications. Am. J. Respir. Crit. Care Med. 2020, 201, 1525–1535. [Google Scholar] [CrossRef] [PubMed]
- Diehl, A.; Burrell, A.; Udy, A.A.; Alexander, P.; Rycus, P.T.; Barbaro, R.P.; Pellegrino, V.A.; Pilcher, D.V. Association between arterial carbon dioxide tension and clinical outcomes in venoarterial extracorporeal membrane oxygenation. Crit. Care Med. 2020, 48, 977–984. [Google Scholar] [PubMed]
- Ziehr, D.R.; Alladina, J.; Petri, C.R.; Maley, J.H.; Moskowitz, A.; Medoff, B.D.; Hibbert, K.A.; Thompson, B.T.; Hardin, C.C. Respiratory Pathophysiology of Mechanically Ventilated Patients with COVID-19: A Cohort Study. Am. J. Respir. Crit. Care. Med. 2020, 201, 1560–1564. [Google Scholar] [CrossRef]
- Guarracino, F.; Zangrillo, A.; Ruggeri, L.; Pieri, M.; Calabrò, M.G.; Landoni, G.; Stefani, M.; Doroni, L.; Pappalardo, F. β-Blockers to optimize peripheral oxygenation during extracorporeal membrane oxygenation: A case series. J. Cardiothorac. Vasc. Anesth. 2012, 26, 58–63. [Google Scholar] [CrossRef]
- Ventetuolo, C.E.; Muratore, C.S. Extracorporeal life support in critically ill adults. Am. J. Respir. Crit. Care. Med. 2014, 190, 497–508. [Google Scholar] [CrossRef] [Green Version]
- Guervilly, C.; Hraiech, S.; Gariboldi, V.; Xeridat, F.; Dizier, S.; Toesca, R.; Forel, J.M.; Adda, M.; Grisoli, D.; Collart, F.; et al. Prone positioning during veno-venous extracorporeal membrane oxygenation for severe acute respiratory distress syndrome in adults. Minerva Anestesiol. 2014, 80, 307–313. [Google Scholar]
- Montisci, A.; Maj, G.; Zangrillo, A.; Winterton, D.; Pappalardo, F. Management of refractory hypoxemia during venovenous extracorporeal membrane oxygenation for ARDS. ASAIO J. 2015, 61, 227–236. [Google Scholar] [CrossRef]
- Terzi, E.; Zarogoulidis, K.; Kougioumtzi, I.; Dryllis, G.; Kioumis, I.; Pitsiou, G.; Machairiotis, N.; Katsikogiannis, N.; Lampaki, S.; Papaiwannou, A.; et al. Acute respiratory distress syndrome and pneumothorax. J. Thorac. Dis. 2014, 6, S435–S442. [Google Scholar]
- Yang, F.; Shi, S.; Zhu, J.; Shi, J.; Dai, K.; Chen, X. Analysis of 92 deceased patients with COVID-19. J. Med. Virol. 2020, 92, 2511–2515. [Google Scholar] [CrossRef] [Green Version]
- Salehi, S.; Abedi, A.; Balakrishnan, S.; Gholamrezanezhad, A. Coronavirus Disease 2019 (COVID-19): A Systematic Review of Imaging Findings in 919 Patients. AJR Am. J. Roentgenol. 2020, 215, 87–93. [Google Scholar] [CrossRef]
- López Vega, J.M.; Parra Gordo, M.L.; Diez Tascón, A.; Ossaba Vélez, S. Pneumomediastinum and spontaneous pneumothorax as an extrapulmonary complication of COVID-19 disease. Emerg. Radiol. 2020, 27, 727–730. [Google Scholar] [CrossRef]
- Chang, S.H.; Kang, Y.N.; Chiu, H.Y.; Chiu, Y.H. A systematic review and meta-analysis comparing pigtail catheter and chest tube as the initial treatment for pneumothorax. Chest 2018, 153, 1201–1212. [Google Scholar] [CrossRef]
- Deneuville, M. Morbidity of percutaneous tube thoracostomy in trauma patients. Eur. J. Cardiothorac. Surg. 2002, 22, 673–678. [Google Scholar] [CrossRef] [Green Version]
- Kantar, Y.; Durukan, P.; Hasdıraz, L.; Baykan, N.; Yakar, Ş.; Kaymaz, N.D. An analysis of patients who underwent tube thoracostomy in the emergency department: A single center study. Turk. Thorac. J. 2019, 20, 25–29. [Google Scholar] [CrossRef]
- McGrath, B.A.; Brenner, M.J.; Warrillow, S.J.; Pandian, V.; Arora, A.; Cameron, T.S.; Añon, J.M.; Hernández Martínez, G.; Truog, R.D.; Block, S.D.; et al. Tracheostomy in the COVID-19 era: Global and multidisciplinary guidance. Lancet. Respir. Med. 2020, 8, 717–725. [Google Scholar] [CrossRef]
- Shiba, T.; Ghazizadeh, S.; Chhetri, D.; St John, M.; Long, J. Tracheostomy Considerations during the COVID-19 Pandemic. OTO Open. 2020, 4. [Google Scholar] [CrossRef]
- DiChiacchio, L.; Boulos, F.M.; Brigante, F.; Raithel, M.; Shah, A.; Pasrija, C.; Mackowick, K.; Menaker, J.; Mazzeffi, M.; Herr, D.; et al. Early tracheostomy after initiation of venovenous extracorporeal membrane oxygenation is associated with decreased duration of extracorporeal membrane oxygenation support. Perfusion 2020, 35, 509–514. [Google Scholar] [CrossRef]
- Mustafa, A.K.; Alexander, P.J.; Joshi, D.J.; Tabachnick, D.R.; Cross, C.A.; Pappas, P.S.; Tatooles, A.J. Extracorporeal membrane oxygenation for patients with COVID-19 in severe respiratory failure. JAMA Surg. 2020, 155, 990–992. [Google Scholar] [CrossRef]
- Connors, J.M.; Levy, J.H. COVID-19 and its implications for thrombosis and anticoagulation. Blood 2020, 135, 2033–2040. [Google Scholar] [CrossRef]
- Beyls, C.; Huette, P.; Abou-Arab, O.; Berna, P.; Mahjoub, Y. Extracorporeal membrane oxygenation for COVID-19-associated severe acute respiratory distress syndrome and risk of thrombosis. Br. J. Anaesth. 2020, 125, e260–e262. [Google Scholar] [CrossRef] [PubMed]
- Malfertheiner, M.V.; Pimenta, L.P.; Bahr, V.V.; Millar, J.E.; Obonyo, N.G.; Suen, J.Y.; Pellegrino, V.; Fraser, J.F. Acquired von Willebrand syndrome in respiratory extracorporeal life support: A systematic review of the literature. Crit. Care. Resusc. 2017, 19, 45–52. [Google Scholar] [PubMed]
- Mazzeffi, M.; Hasan, S.; Abuelkasem, E.; Meyer, M.; Deatrick, K.; Taylor, B.; Kon, Z.; Herr, D.; Tanaka, K. Von willebrand Factor-GP1bα interactions in venoarterial extracorporeal membrane oxygenation patients. J. Cardiothorac. Vasc. Anesth. 2019, 33, 2125–2132. [Google Scholar] [CrossRef] [PubMed]
- Iba, T.; Levy, J.H.; Connors, J.M.; Warkentin, T.E.; Thachil, J.; Levi, M. The unique characteristics of COVID-19 coagulopathy. Crit. Care 2020, 24, 360. [Google Scholar] [CrossRef]
- Al-Samkari, H.; Karp Leaf, R.S.; Dzik, W.H.; Carlson, J.; Fogerty, A.E.; Waheed, A.; Goodarzi, K.; Bendapudi, P.K.; Bornikova, L.; Gupta, S.; et al. COVID and coagulation: Bleeding and thrombotic manifestations of SARS-CoV2 infection. Blood 2020, 136, 489–500. [Google Scholar] [CrossRef]
- Kurihara, C.; Walter, J.M.; Karim, A.; Thakkar, S.; Saine, M.; Odell, D.D.; Kim, S.; Tomic, R.; Wunderink, R.G.; Budinger, G.; et al. Feasibility of Venovenous Extracorporeal Membrane Oxygenation Without Systemic Anticoagulation. Ann. Thorac. Surg. 2020, 110, 1209–1215. [Google Scholar] [CrossRef]
- Ng Kee Kwong, K.C.; Mehta, P.R.; Shukla, G.; Mehta, A.R. COVID-19, SARS and MERS: A neurological perspective. J. Clin. Neurosci. 2020, 77, 13–16. [Google Scholar] [CrossRef]
- Baig, A.M.; Khaleeq, A.; Ali, U.; Syeda, H. Evidence of the COVID-19 virus targeting the CNS: Tissue distribution, host-virus Interaction, and proposed neurotropic mechanisms. ACS Chem. Neurosci. 2020, 11, 995–998. [Google Scholar] [CrossRef] [Green Version]
- Hanidziar, D.; Bittner, E. Sedation of mechanically ventilated COVID-19 patients: Challenges and special considerations. Anesth. Analg. 2020, 131, e40–e41. [Google Scholar] [CrossRef]
- Farrell, N.M.; Hayes, B.D.; Linden, J.A. Critical medication shortages further dwindling hospital resources during COVID-19. Am. J. Emerg. Med. 2020, 40, 202–203. [Google Scholar] [CrossRef]
- Mazzeffi, M.; Greenwood, J.; Tanaka, K.; Menaker, J.; Rector, R.; Herr, D.; Kon, Z.; Lee, J.; Griffith, B.; Rajagopal, K.; et al. Bleeding, Transfusion, and Mortality on Extracorporeal Life Support: ECLS Working Group on Thrombosis and Hemostasis. Ann. Thorac. Surg. 2016, 101, 682–689. [Google Scholar] [CrossRef] [Green Version]
- Abrams, D.; Baldwin, M.R.; Champion, M.; Agerstrand, C.; Eisenberger, A.; Bacchetta, M.; Brodie, D. Thrombocytopenia and extracorporeal membrane oxygenation in adults with acute respiratory failure: A cohort study. Intensive. Care Med. 2016, 42, 844–852. [Google Scholar] [CrossRef] [Green Version]
- Heilmann, C.; Geisen, U.; Beyersdorf, F.; Nakamura, L.; Benk, C.; Trummer, G.; Berchtold-Herz, M.; Schlensak, C.; Zieger, B. Acquired von Willebrand syndrome in patients with extracorporeal life support (ECLS). Intensive. Care Med. 2012, 38, 62–68. [Google Scholar] [CrossRef]
- McVeen, R.V.; Lorch, V.; Carroll, R.C.; Goldberg, L.; Keszler, M.; Podlasek, S.; Stewart, D.L. Changes in fibrinolytic factors in newborns during extracorporeal membrane oxygenation (ECMO). Am. J. Hematol. 1991, 38, 254–255. [Google Scholar] [CrossRef]
- Gul, M.H.; Htun, Z.M.; Shaukat, N.; Imran, M.; Khan, A. Potential specific therapies in COVID-19. Ther. Adv. Respir. Dis. 2020, 14. [Google Scholar] [CrossRef]
- Esposito, S.; Noviello, S.; Pagliano, P. Update on treatment of COVID-19: Ongoing studies between promising and disappointing results. Infez. Med. 2020, 28, 198–211. [Google Scholar]
- Geleris, J.; Sun, Y.; Platt, J.; Zucker, J.; Baldwin, M.; Hripcsak, G.; Labella, A.; Manson, D.K.; Kubin, C.; Barr, R.G.; et al. Observational study of hydroxychloroquine in hospitalized patients with Covid-19. N. Engl. J. Med. 2020, 382, 2411–2418. [Google Scholar] [CrossRef]
- Ferner, R.E.; Aronson, J.K. Chloroquine and hydroxychloroquine in covid-19. BMJ 2020, 369, m1432. [Google Scholar] [CrossRef] [Green Version]
- Annane, D.; Sébille, V.; Charpentier, C.; Bollaert, P.E.; François, B.; Korach, J.M.; Capellier, G.; Cohen, Y.; Azoulay, E.; Troché, G.; et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock [published correction appears in JAMA. 2008 Oct 8;300, 1652. Chaumet-Riffaut, Philippe [corrected to Chaumet-Riffaud, Philippe]]. JAMA 2002, 288, 862–871. [Google Scholar] [CrossRef] [Green Version]
- Sprung, C.L.; Annane, D.; Keh, D.; Moreno, R.; Singer, M.; Freivogel, K.; Weiss, Y.G.; Benbenishty, J.; Kalenka, A.; Forst, H.; et al. Hydrocortisone therapy for patients with septic shock. N. Engl. J. Med. 2008, 358, 111–124. [Google Scholar] [CrossRef] [Green Version]
- Keh, D.; Trips, E.; Marx, G.; Wirtz, S.P.; Abduljawwad, E.; Bercker, S.; Bogatsch, H.; Briegel, J.; Engel, C.; Gerlach, H.; et al. Effect of hydrocortisone on development of shock among patients with severe sepsis: The hypress randomized clinical trial. JAMA 2016, 316, 1775–1785. [Google Scholar] [CrossRef]
- Venkatesh, B.; Finfer, S.; Cohen, J.; Rajbhandari, D.; Arabi, Y.; Bellomo, R.; Billot, L.; Correa, M.; Glass, P.; Harward, M.; et al. Adjunctive glucocorticoid therapy in patients with septic shock. N. Engl. J. Med. 2018, 378, 797–808. [Google Scholar] [CrossRef]
- Annane, D.; Renault, A.; Brun-Buisson, C.; Megarbane, B.; Quenot, J.P.; Siami, S.; Cariou, A.; Forceville, X.; Schwebel, C.; Martin, C.; et al. Hydrocortisone plus fludrocortisone for adults with septic shock. N. Engl. J. Med. 2018, 378, 809–818. [Google Scholar] [CrossRef]
- Villar, J.; Belda, J.; Añón, J.M.; Blanco, J.; Pérez-Méndez, L.; Ferrando, C.; Martínez, D.; Soler, J.A.; Ambrós, A.; Muñoz, T.; et al. Evaluating the efficacy of dexamethasone in the treatment of patients with persistent acute respiratory distress syndrome: Study protocol for a randomized controlled trial. Trials 2016, 17, 342. [Google Scholar] [CrossRef] [Green Version]
- Meduri, G.U.; Golden, E.; Freire, A.X.; Taylor, E.; Zaman, M.; Carson, S.J.; Gibson, M.; Umberger, R. Methylprednisolone infusion in early severe ARDS: Results of a randomized controlled trial. Chest 2007, 131, 954–963. [Google Scholar] [CrossRef] [Green Version]
- Tabatabai, A.; Menaker, J.; Stene, E.; Kufera, J.A.; Rabinowitz, R.P.; Kon, Z.; Herr, D.L.; Scalea, T.M. Methylprednisolone may be associated with improved lung compliance in acute respiratory distress syndrome patients on veno-venous extracorporeal membrane oxygenation. Perfusion 2020, 35, 515–520. [Google Scholar] [CrossRef]
Criteria for Consideration * | Contraindications * |
|
|
|
|
|
|
|
|
|
Variables | Overall (n = 40) |
---|---|
Age (years) | 43 (36, 50) |
Sex (male) | 33 (82.5) |
MI (kg/m2) | 34 (27, 40) |
Preexisting comorbidities | |
Asthma/COPD | 3 (7.5) |
Diabetes | 12 (30) |
Pre-ECMO | |
Ventilator days | 3 (1, 4) |
pH | 7.28 (7.19, 7.32) |
CO2 (mm Hg) | 62 (51.5, 76) |
P/F ratio | 69 (55, 78) |
PIP (cm H2O) | 38 (34, 42) |
Mean airway pressure (cm H2O) | 25 (23, 27) |
Creatinine (mg/dL) | 0.85 (0.65, 1.54) |
Lactate (mmol/L) | 2.2 (1.8, 3.0) |
Bilirubin (mg/dL) | 0.9 (0.6, 1.4) |
CRRT/iHD pre | 2 (5) |
Cardiac arrest with ROSC | 4 (10) |
Glascow Coma Score | 11 (11, 11) |
RESP score | 4 (2, 5) |
Pneumothorax | 19 (47.5) |
Survival | 21 (52.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, A.; Dave, S.; Galvagno, S.; George, K.; Menne, A.R.; Haase, D.J.; McCormick, B.; Rector, R.; Dahi, S.; Madathil, R.J.; et al. A Dedicated Veno-Venous Extracorporeal Membrane Oxygenation Unit during a Respiratory Pandemic: Lessons Learned from COVID-19 Part II: Clinical Management. Membranes 2021, 11, 306. https://doi.org/10.3390/membranes11050306
Shah A, Dave S, Galvagno S, George K, Menne AR, Haase DJ, McCormick B, Rector R, Dahi S, Madathil RJ, et al. A Dedicated Veno-Venous Extracorporeal Membrane Oxygenation Unit during a Respiratory Pandemic: Lessons Learned from COVID-19 Part II: Clinical Management. Membranes. 2021; 11(5):306. https://doi.org/10.3390/membranes11050306
Chicago/Turabian StyleShah, Aakash, Sagar Dave, Samuel Galvagno, Kristen George, Ashley R. Menne, Daniel J. Haase, Brian McCormick, Raymond Rector, Siamak Dahi, Ronson J. Madathil, and et al. 2021. "A Dedicated Veno-Venous Extracorporeal Membrane Oxygenation Unit during a Respiratory Pandemic: Lessons Learned from COVID-19 Part II: Clinical Management" Membranes 11, no. 5: 306. https://doi.org/10.3390/membranes11050306
APA StyleShah, A., Dave, S., Galvagno, S., George, K., Menne, A. R., Haase, D. J., McCormick, B., Rector, R., Dahi, S., Madathil, R. J., Deatrick, K. B., Ghoreishi, M., Gammie, J. S., Kaczorowski, D. J., Scalea, T. M., Menaker, J., Herr, D., Tabatabai, A., & Krause, E. (2021). A Dedicated Veno-Venous Extracorporeal Membrane Oxygenation Unit during a Respiratory Pandemic: Lessons Learned from COVID-19 Part II: Clinical Management. Membranes, 11(5), 306. https://doi.org/10.3390/membranes11050306