Recent Advances on Membranes for Water Purification Based on Carbon Nanomaterials
Abstract
:1. Introduction
2. Materials for Membrane Purification
3. Carbon Nanofibers
4. Activated Carbon
4.1. Adsorption Mechanism of Activated Carbon
4.2. Improving the Properties of Activated Carbon as a Membrane Component by Its Modification
4.3. Activated Carbon Modified Membranes
5. MXene
6. Carbon Nanotubes
7. Graphene and Graphene Oxide
8. Challenges and Opportunities
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, R.; Zhu, R.; Jiang, J.; Liang, R.; Liu, X.; Liu, G. Mussel-inspired surface functionalization of polyamide microfiltration membrane with zwitterionic silver nanoparticles for efficient anti-biofouling water disinfection. J. Colloid Interface Sci. 2021, 598, 302–313. [Google Scholar] [CrossRef]
- Lu, Q.; Li, N.; Zhang, X. Supramolecular recognition PVDF/PVA ultrafiltration membrane for rapid removing aromatic compounds from water. Chem. Eng. J. 2021, 436, 132889. [Google Scholar] [CrossRef]
- Baig, U.; Waheed, A.; Aljundi, I.H.; AbuMousa, R.A. Facile fabrication of graphitic carbon nitride nanosheets and its integrated polyamide hyper-cross-linked TFC nanofiltration membrane with intrinsic molecular porosity for salts and organic pollutant rejection from water. J. Mater. Res. Technol. 2021, 15, 6319–6328. [Google Scholar] [CrossRef]
- Grossi, L.B.; Alvim, C.B.; Alvares, C.M.S.; Martins, M.F.; Amaral, M.C.S. Purifying surface water contaminated with industrial failure using direct contact membrane distillation. Sep. Purif. Technol. 2020, 233, 116052. [Google Scholar] [CrossRef]
- Yadav, A.; Labhasetwar, P.K.; Shahi, V.K. Membrane distillation crystallization technology for zero liquid discharge and resource recovery: Opportunities, challenges and futuristic perspectives. Sci. Total Environ. 2022, 806, 150692. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.; Labhasetwar, P.K.; Shahi, V.K. Membrane distillation using low-grade energy for desalination: A review. J. Environ. Chem. Eng. 2021, 9, 105818. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y. Integrated forward osmosis-adsorption process for strontium-containing water treatment: Pre-concentration and solidification. J. Hazard. Mater. 2021, 414, 125518. [Google Scholar] [CrossRef]
- Wang, J.; Li, S.L.; Guan, Y.; Zhu, C.; Gong, G.; Hu, Y. Novel RO membranes fabricated by grafting sulfonamide group: Improving water permeability, fouling resistance and chlorine resistant performance. J. Memb. Sci. 2022, 641, 119919. [Google Scholar] [CrossRef]
- Boretti, A.; Al-Zubaidy, S.; Vaclavikova, M.; Al-Abri, M.; Castelletto, S.; Mikhalovsky, S. Outlook for graphene-based desalination membranes. NPJ Clean Water 2018, 1, 5. [Google Scholar] [CrossRef]
- Da Costa, A.R.; Fane, A.G.; Wiley, D.E. Spacer characterization and pressure drop modelling in spacer-filled channels for ultrafiltration. J. Memb. Sci. 1994, 87, 79–98. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.; Lee, E.; Hong, S. Improving the performance of membrane contactors for carbon dioxide stripping from water: Experimental and theoretical analysis. J. Memb. Sci. 2022, 654, 120552. [Google Scholar] [CrossRef]
- Song, L. Flux decline in crossflow microfiltration and ultrafiltration: Mechanisms and modeling of membrane fouling. J. Memb. Sci. 1998, 139, 183–200. [Google Scholar] [CrossRef]
- Biesheuvel, P.M.; van der Wal, A. Membrane capacitive deionization. J. Memb. Sci. 2010, 346, 256–262. [Google Scholar] [CrossRef]
- Liu, Y.; Liang, H.; Bai, L.; Yang, J.; Zhu, X.; Luo, X.; Li, G. Modeling insights into the role of support layer in the enhanced separation performance and stability of nanofiltration membrane. J. Memb. Sci. 2022, 658, 120681. [Google Scholar] [CrossRef]
- Wang, R.; Zhou, T.; Zhang, X.; Liu, L. Force-responsive antibiofouling strategy based on the ultrasound-controlled piezoelectric effect. Appl. Surf. Sci. 2022, 603, 154467. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, C.; Liu, H.; Zhang, J.; Li, H.; Zhang, C. Contemporary antibiofouling modifications ofreverse osmosis membranes: State-of-the-art insights on mechanisms and strategies. Chem. Eng. J. 2022, 429, 132400. [Google Scholar] [CrossRef]
- Qiu, Z.; Chen, J.; Dai, R.; Wang, Z. Modification of ultrafiltration membrane with antibacterial agent intercalated layered nanosheets: Toward superior antibiofouling performance for water treatment. Water Res. 2022, 219, 118539. [Google Scholar] [CrossRef]
- Qu, X.; Alvarez, P.J.J.; Li, Q. Applications of nanotechnology in water and wastewater treatment. Water Res. 2013, 47, 3931–3946. [Google Scholar] [CrossRef]
- Zhou, J.; Xia, Y.; Gong, Y.; Li, W.; Li, Z. Efficient natural organic matter removal from water using nano-MgO coupled with microfiltration membrane separation. Sci. Total Environ. 2020, 711, 135120. [Google Scholar] [CrossRef]
- Isawi, H. Evaluating the performance of different nano-enhanced ultrafiltration membranes for the removal of organic pollutants from wastewater. J. Water Process Eng. 2019, 31, 100833. [Google Scholar] [CrossRef]
- Dong, M.; Guo, J.; Wang, Y.; Gai, X.; Xiong, X.; Zeng, J.; Wang, Y.; Wu, Y. Humic acid non-covalent functionalized Multi-walled carbon nanotubes composite membrane and its application for the removal of organic dyes. J. Environ. Chem. Eng. 2022, 10, 107320. [Google Scholar] [CrossRef]
- Efome, J.E.; Rana, D.; Matsuura, T.; Lan, C.Q. Effects of operating parameters and coexisting ions on the efficiency of heavy metal ions removal by nano-fibrous metal-organic framework membrane filtration process. Sci. Total Environ. 2019, 674, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Yurekli, Y. Removal of heavy metals in wastewater by using zeolite nano-particles impregnated polysulfone membranes. J. Hazard. Mater. 2016, 309, 53–64. [Google Scholar] [CrossRef]
- Bao, J.; Li, H.; Xu, Y.; Chen, S.; Wang, Z.; Jiang, C.; Li, H.; Wei, Z.; Sun, S.; Zhao, W.; et al. Multi-functional polyethersulfone nanofibrous membranes with ultra-high adsorption capacity and ultra-fast removal rates for dyes and bacteria. J. Mater. Sci. Technol. 2021, 78, 131–143. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, G.; An, C.; Huang, J.; Xin, X.; Chen, X.; Hong, Y.; Song, P. Removal of Escherichia Coli from water using functionalized porous ceramic disk filter coated with Fe/TiO2 nano-composites. J. Water Process Eng. 2020, 33, 101013. [Google Scholar] [CrossRef]
- Behdarvand, F.; Valamohammadi, E.; Tofighy, M.A.; Mohammadi, T. Polyvinyl alcohol/polyethersulfone thin-film nanocomposite membranes with carbon nanomaterials incorporated in substrate for water treatment. J. Environ. Chem. Eng. 2021, 9, 104650. [Google Scholar] [CrossRef]
- Bakhshandeh, B.; Sorboni, S.G.; Haghighi, D.M.; Ahmadi, F.; Dehghani, Z.; Badiei, A. New analytical methods using carbon-based nanomaterials for detection of Salmonella species as a major food poisoning organism in water and soil resources. Chemosphere 2022, 287, 132243. [Google Scholar] [CrossRef]
- Ruiz-Torres, C.A.; Kang, J.; Kang, K.M.; Cho, K.M.; Nam, Y.T.; Byon, C.; Chang, Y.Y.; Kim, D.W.; Jung, H.T. Graphene-based ultrafast nanofiltration membrane under cross-flow operation: Effect of high-flux and filtered solute on membrane performance. Carbon N. Y. 2021, 185, 641–649. [Google Scholar] [CrossRef]
- Tan, Z.-K.; Gong, J.-L.; Fang, S.-Y.; Li, J.; Cao, W.-C.; Chen, Z.-P. Outstanding anti-bacterial thin-film composite membrane prepared by incorporating silver-based metal–organic framework (Ag-MOF) for water treatment. Appl. Surf. Sci. 2022, 590, 153059. [Google Scholar] [CrossRef]
- Devarayapalli, K.C.; Lee, J.; Kang, S.; Moon, S.; Vattikuti, S.V.P.; Lee, J.; Lee, K. Nanostructured cobalt-based metal-organic framework/cadmium sulfide electrocatalyst for enhanced oxygen evolution reaction and anion exchange membrane-based water electrolysis: Synergistic effect. J. Power Sources 2022, 527, 231151. [Google Scholar] [CrossRef]
- Zhu, J.; Qiu, W.; Yao, C.; Wang, C.; Wu, D.; Pradeep, S.; Yu, J.; Dai, Z. Water-stable zirconium-based metal-organic frameworks armed polyvinyl alcohol nanofibrous membrane with enhanced antibacterial therapy for wound healing. J. Colloid Interface Sci. 2021, 603, 243–251. [Google Scholar] [CrossRef]
- Himstedt, H.H.; Sengupta, A.; Qian, X.; Wickramasinghe, S.R. Magnetically responsive nano filtration membranes for treatment of coal bed methane produced water. J. Taiwan Inst. Chem. Eng. 2019, 94, 97–108. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Kang, Z.-W.; Gao, X.; Zeng, X.; Liu, M.; Yang, D.-P. Waste eggshell membrane-assisted synthesis of magnetic CuFe2O4 nanomaterials with multifunctional properties (adsorptive, catalytic, antibacterial) for water remediation. Colloids Surf. A Physicochem. Eng. Asp. 2021, 612, 125874. [Google Scholar] [CrossRef]
- Gao, Z.; Gu, X.; Liu, C.; Zhang, Z.; Shao, H.; Zhang, Q.; Long, M.; Guo, X. An internal electrostatic force-driven superoleophilic membrane-magnetic nanoparticles coupling system for superefficient water-in-oil emulsions separation. J. Memb. Sci. 2022, 660, 120842. [Google Scholar] [CrossRef]
- Adeleye, A.S.; Conway, J.R.; Garner, K.; Huang, Y.; Su, Y.; Keller, A.A. Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability. Chem. Eng. J. 2016, 286, 640–662. [Google Scholar] [CrossRef]
- Karimi, E.Z.; Vahdati-Khaki, J.; Zebarjad, S.M.; Bataev, I.A.; Bannov, A.G. A novel method for fabrication of Fe catalyst used for the synthesis of carbon nanotubes. Bull. Mater. Sci. 2014, 37, 1031–1038. [Google Scholar] [CrossRef]
- Omoriyekomwan, J.E.; Tahmasebi, A.; Dou, J.; Wang, R.; Yu, J. A review on the recent advances in the production of carbon nanotubes and carbon nanofibers via microwave-assisted pyrolysis of biomass. Fuel Process. Technol. 2021, 214, 106686. [Google Scholar] [CrossRef]
- Johnson, D.J.; Hilal, N. Can graphene and graphene oxide materials revolutionise desalination processes? Desalination 2021, 500, 114852. [Google Scholar] [CrossRef]
- Gaur, M.; Misra, C.; Yadav, A.B.; Swaroop, S.; Maolmhuaidh, F.Ó.; Bechelany, M.; Barhoum, A. Biomedical Applications of Carbon Nanomaterials: Fullerenes, Quantum Dots, Nanotubes, Nanofibers, and Graphene. Materials 2021, 14, 5978. [Google Scholar] [CrossRef]
- Delanka-Pedige, H.M.K.; Zhang, Y.; Nirmalakhandan, N. Algal wastewater treatment integrated with carbon adsorption and ozonation for water reclamation: Multi-criteria comparison with conventional pathways. Algal Res. 2022, 61, 102581. [Google Scholar] [CrossRef]
- Wang, C.; Xing, Y.; Lei, Y.; Xia, Y.; Zhang, C.; Zhang, R.; Wang, S.; Chen, P.; Zhu, S.; Li, J.; et al. Adsorption of water on carbon materials: The formation of “water bridge” and its effect on water adsorption. Colloids Surf. A Physicochem. Eng. Asp. 2021, 631, 127719. [Google Scholar] [CrossRef]
- Hyun, J.; Jo, W.; Yang, S.H.; Shin, S.-H.; Doo, G.; Choi, S.; Lee, D.-H.; Lee, D.W.; Oh, E.; Lee, J.Y.; et al. Tuning of water distribution in the membrane electrode assembly of anion exchange membrane fuel cells using functionalized carbon additives. J. Power Sources 2022, 543, 231835. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, B.; Li, M.; Li, C.; Zheng, S. Carboxyl-rich carbon nanocomposite based on natural diatomite as adsorbent for efficient removal of Cr (VI). J. Mater. Res. Technol. 2020, 9, 948–959. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhu, Y.; Xu, J. Fabrication of high sensitivity 2-PEA sensor based on Aldehyde-functionalized mesoporous carbon. Chin. Chem. Lett. 2022, in press. [Google Scholar] [CrossRef]
- Liu, M.; Zheng, J.; Wang, L.; Hu, Z.; Rao, W.; Liu, Y.; Xie, Y.; Yu, C. Amino-modified magnetic glucose-based carbon composites for efficient Cr(VI) removal. J. Taiwan Inst. Chem. Eng. 2022, 136, 104419. [Google Scholar] [CrossRef]
- Bannov, A.G.; Varentsov, V.K.; Chukanov, I.S.; Gorodilova, E.V.; Kuvshinov, G.G. Comparative analysis of methods of oxidative modification of carbon nanofibers. Prot. Met. Phys. Chem. Surf. 2012, 48, 199–206. [Google Scholar] [CrossRef]
- Bannov, A.G.; Uvarov, N.F.; Ukhina, A.V.; Chukanov, I.S.; Dyukova, K.D.D.; Kuvshinov, G.G. Structural changes in carbon nanofibers induced by ball milling. Carbon N. Y. 2012, 50, 1090–1098. [Google Scholar] [CrossRef]
- Essalhi, M.; Khayet, M.; Tesfalidet, S.; Alsultan, M.; Tavajohi, N. Desalination by direct contact membrane distillation using mixed matrix electrospun nanofibrous membranes with carbon-based nanofillers: A strategic improvement. Chem. Eng. J. 2021, 426, 131316. [Google Scholar] [CrossRef]
- Yang, J.; Hou, B.; Wang, J.; Tian, B.; Bi, J.; Wang, N.; Li, X.; Huang, X. Nanomaterials for the removal of heavy metals from wastewater. Nanomaterials 2019, 9, 424. [Google Scholar] [CrossRef]
- Bassyouni, M.; Abdel-Aziz, M.H.; Zoromba, M.S.; Abdel-Hamid, S.M.S.; Drioli, E. A review of polymeric nanocomposite membranes for water purification. J. Ind. Eng. Chem. 2019, 73, 19–46. [Google Scholar] [CrossRef]
- Conde-Cid, M.; Paíga, P.; Moreira, M.M.; Albergaria, J.T.; Álvarez-Rodríguez, E.; Arias-Estévez, M.; Delerue-Matos, C. Sulfadiazine removal using green zero-valent iron nanoparticles: A low-cost and eco-friendly alternative technology for water remediation. Environ. Res. 2021, 198, 110451. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Niu, H.; Zhao, X.; Cai, Y.; Wu, F. Carbon zero-valent iron materials possessing high-content fine Fe0 nanoparticles with enhanced microelectrolysis-Fenton-like catalytic performance for water purification. Appl. Catal. B Environ. 2021, 286, 119940. [Google Scholar] [CrossRef]
- Li, H.; Cao, Y.; Liu, P.; Li, Y.; Zhou, A.; Ye, F.; Xue, S.; Yue, X. Ammonia-nitrogen removal from water with gC3N4-rGO-TiO2 Z-scheme system via photocatalytic nitrification-denitrification process. Environ. Res. 2021, 205, 112434. [Google Scholar] [CrossRef]
- Van Bao, H.; Dat, N.M.; Giang, N.T.H.; Thinh, D.B.; Tai, L.T.; Trinh, D.N.; Hai, N.D.; Khoa, N.A.D.; Huong, L.M.; Nam, H.M.; et al. Behavior of ZnO-doped TiO2/rGO nanocomposite for water treatment enhancement. Surf. Interfaces 2021, 23, 100950. [Google Scholar] [CrossRef]
- Song, J.; Sun, G.; Yu, J.; Si, Y.; Ding, B. Construction of ternary Ag@ZnO/TiO2 fibrous membranes with hierarchical nanostructures and mechanical flexibility for water purification. Ceram. Int. 2020, 46, 468–475. [Google Scholar] [CrossRef]
- Wu, S.C.; Cheng, P.; Han, J.J.; Chen, Y.; Yan, X.; Guo, X.J.; Lang, W.Z. Construction of two-dimensional Ag/WS2 hybrid membranes with self-cleaning ability by photocatalysis for efficient water filtration. J. Memb. Sci. 2022, 641, 119865. [Google Scholar] [CrossRef]
- Wang, L.; Dionysiou, D.D.; Lin, J.; Huang, Y.; Xie, X. Removal of humic acid and Cr(VI) from water using ZnO–30N-zeolite. Chemosphere 2021, 279, 130491. [Google Scholar] [CrossRef]
- Yao, Z.; Jiao, W.; Shao, F.; Song, H.; Zhang, H.; Zhou, Q.; Li, A. Fabrication and characterization of amphiphilic magnetic water purification materials for efficient PPCPs removal. Chem. Eng. J. 2019, 360, 511–518. [Google Scholar] [CrossRef]
- Ambashta, R.D.; Sillanpää, M. Water purification using magnetic assistance: A review. J. Hazard. Mater. 2010, 180, 38–49. [Google Scholar] [CrossRef]
- Pinto, M.; Ramalho, P.S.F.; Moreira, N.F.F.; Gonçalves, A.G.; Nunes, O.C.; Pereira, M.F.R.; Soares, O.S.G.P. Application of magnetic nanoparticles for water purification. Environ. Adv. 2020, 2, 100010. [Google Scholar] [CrossRef]
- Huang, Y.; Keller, A.A. Magnetic nanoparticle adsorbents for emerging organic contaminants. ACS Sustain. Chem. Eng. 2013, 1, 731–736. [Google Scholar] [CrossRef]
- Tavakol, I.; Hadadpour, S.; Shabani, Z.; Ahmadzadeh Tofighy, M.; Mohammadi, T.; Sahebi, S. Synthesis of novel thin film composite (TFC) forward osmosis (FO) membranes incorporated with carboxylated carbon nanofibers (CNFs). J. Environ. Chem. Eng. 2020, 8, 104614. [Google Scholar] [CrossRef]
- Li, S.; Wan, Y.; Guo, S.; Luo, J. Ferric ions mediated defects narrowing of graphene oxide nanofiltration membrane for robust removal of organic micropollutants. Chem. Eng. J. 2021, 411, 128587. [Google Scholar] [CrossRef]
- Ma, H.; Wang, G.; Xu, Z.; Dong, X.; Zhang, X. Confining peroxymonosulfate activation in carbon nanotube intercalated nitrogen doped reduced graphene oxide membrane for enhanced water treatment: The role of nanoconfinement effect. J. Colloid Interface Sci. 2021, 608, 2740–2751. [Google Scholar] [CrossRef]
- Bachosz, K.; Vu, M.T.; Nghiem, L.D.; Zdarta, J.; Nguyen, L.N.; Jesionowski, T. Enzyme-based control of membrane biofouling for water and wastewater purification: A comprehensive review. Environ. Technol. Innov. 2022, 25, 102106. [Google Scholar] [CrossRef]
- Barhoum, A.; Pal, K.; Rahier, H.; Uludag, H.; Kim, I.S.; Bechelany, M. Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications. Appl. Mater. Today 2019, 17, 1–35. [Google Scholar] [CrossRef]
- Ma, C.; Fan, Q.; Dirican, M.; Subjalearndee, N.; Cheng, H.; Li, J.; Song, Y.; Shi, J.; Zhang, X. Rational design of meso-/micro-pores for enhancing ion transportation in highly-porous carbon nanofibers used as electrode for supercapacitors. Appl. Surf. Sci. 2021, 545, 148933. [Google Scholar] [CrossRef]
- Wang, M.; Wei, Y.; Zou, Q.; Zhang, W.; Xu, A.; Li, X. Tuning manganese (III) species in manganese oxide octahedral molecular sieve by interaction with carbon nanofibers for enhanced pollutant degradation in the presence of peroxymonosulfate. J. Colloid Interface Sci. 2019, 536, 271–280. [Google Scholar] [CrossRef]
- Li, Y.; Xu, R.; Qiao, L.; Li, Y.; Wang, D.; Li, D.; Liang, X.; Xu, G.; Gao, M.; Gong, H.; et al. Controlled synthesis of ZnO modified N-doped porous carbon nanofiber membrane for highly efficient removal of heavy metal ions by capacitive deionization. Microporous Mesoporous Mater. 2022, 338, 111889. [Google Scholar] [CrossRef]
- George, J.K.; Verma, N. Super-hydrophobic/super-oleophilic carbon nanofiber-embedded resorcinol-formaldehyde composite membrane for effective separation of water-in-oil emulsion. J. Memb. Sci. 2022, 654, 120538. [Google Scholar] [CrossRef]
- Heidarinejad, Z.; Dehghani, M.H.; Heidari, M.; Javedan, G.; Ali, I.; Sillanpää, M. Methods for preparation and activation of activated carbon: A review. Environ. Chem. Lett. 2020, 18, 393–415. [Google Scholar] [CrossRef]
- Pavoni, B.; Drusian, D.; Giacometti, A.; Zanette, M. Assessment of organic chlorinated compound removal from aqueous matrices by adsorption on activated carbon. Water Res. 2006, 40, 3571–3579. [Google Scholar] [CrossRef]
- Shahrokhi-Shahraki, R.; Benally, C.; El-Din, M.G.; Park, J. High efficiency removal of heavy metals using tire-derived activated carbon vs commercial activated carbon: Insights into the adsorption mechanisms. Chemosphere 2021, 264, 128455. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Ou, J.L.; Duan, Z.K.; Xing, Z.J.; Wang, Y. Adsorption of Cr(VI) on bamboo bark-based activated carbon in the absence and presence of humic acid. Colloids Surf. A Physicochem. Eng. Asp. 2015, 481, 108–116. [Google Scholar] [CrossRef]
- Prajapati, Y.N.; Bhaduri, B.; Joshi, H.C.; Srivastava, A.; Verma, N. Aqueous phase adsorption of different sized molecules on activated carbon fibers: Effect of textural properties. Chemosphere 2016, 155, 62–69. [Google Scholar] [CrossRef]
- Jegadeesan, G.B.; Mondal, K.; Lalvani, S.B. Adsorption of Se (IV) and Se (VI) Using Copper-Impregnated Activated Carbon and Fly Ash-Extracted Char Carbon. Water. Air. Soil Pollut. 2015, 226, 234. [Google Scholar] [CrossRef]
- Watson, K.; Farré, M.J.; Knight, N. Comparing a silver-impregnated activated carbon with an unmodified activated carbon for disinfection by-product minimisation and precursor removal. Sci. Total Environ. 2016, 542, 672–684. [Google Scholar] [CrossRef]
- Reed, B.B.E.; Vaughan, R.; Jiang, L. As(III), As(V), Hg, and Pb Removal by Fe-Oxide Impregnated Activated Carbon. J. Environ. Eng. 2000, 126, 869–873. [Google Scholar] [CrossRef]
- Gonçalves, S.P.C.; Strauss, M.; Delite, F.S.; Clemente, Z.; Castro, V.L.; Martinez, D.S.T. Activated carbon from pyrolysed sugarcane bagasse: Silver nanoparticle modification and ecotoxicity assessment. Sci. Total Environ. 2015, 565, 833–840. [Google Scholar] [CrossRef]
- Azizi, Y.; Benhamou, B.; Galanis, N.; El-Ganaoui, M. Etude De L’Effet Des Forces D’Archimede Sur Les Transferts Couples De Chaleur Et De Masse, Avec Changement De Phase, Dans Un Canal Vertical. J. Chem. Technol. Biotechnol. 2005, 88, 1183–1190. [Google Scholar] [CrossRef]
- Saucier, C.; Adebayo, M.A.; Lima, E.C.; Cataluña, R.; Thue, P.S.; Prola, L.D.T.; Puchana-Rosero, M.J.; Machado, F.M.; Pavan, F.A.; Dotto, G.L. Microwave-assisted activated carbon from cocoa shell as adsorbent for removal of sodium diclofenac and nimesulide from aqueous effluents. J. Hazard. Mater. 2015, 289, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Chu, W.; Gao, N.; Yin, D.; Deng, Y.; Templeton, M.R. Ozone-biological activated carbon integrated treatment for removal of precursors of halogenated nitrogenous disinfection by-products. Chemosphere 2012, 86, 1087–1091. [Google Scholar] [CrossRef] [PubMed]
- Mokhtari, P.; Ghaedi, M.; Dashtian, K.; Rahimi, M.R.; Purkait, M.K. Removal of methyl orange by copper sulfide nanoparticles loaded activated carbon: Kinetic and isotherm investigation. J. Mol. Liq. 2016, 219, 299–305. [Google Scholar] [CrossRef]
- Qin, W.; Li, W.G.; Zhang, D.Y.; Huang, X.F.; Song, Y. Ammonium removal of drinking water at low temperature by activated carbon filter biologically enhanced with heterotrophic nitrifying bacteria. Environ. Sci. Pollut. Res. 2016, 23, 4650–4659. [Google Scholar] [CrossRef] [PubMed]
- Lou, J.C.; Chang, C.J.; Chen, W.H.; Tseng, W.B.; Han, J.Y. Removal of trihalomethanes and haloacetic acids from treated drinking water by biological activated carbon filter. Water. Air. Soil Pollut. 2014, 225, 1851. [Google Scholar] [CrossRef]
- Liu, C.; Sun, Y.; Wang, D.; Sun, Z.; Chen, M.; Zhou, Z.; Chen, W. Performance and mechanism of low-frequency ultrasound to regenerate the biological activated carbon. Ultrason. Sonochem. 2017, 34, 142–153. [Google Scholar] [CrossRef]
- Schumann, P.; Ordóñez Andrade, J.A.; Jekel, M.; Ruhl, A.S. Packing granular activated carbon into a submerged gravity-driven flat sheet membrane module for decentralized water treatment. J. Water Process Eng. 2020, 38, 101517. [Google Scholar] [CrossRef]
- Kayvani Fard, A.; Bukenhoudt, A.; Jacobs, M.; McKay, G.; Atieh, M.A. Novel hybrid ceramic/carbon membrane for oil removal. J. Memb. Sci. 2018, 559, 42–53. [Google Scholar] [CrossRef]
- Li, C.; Yang, J.; Zhang, L.; Li, S.; Yuan, Y.; Xiao, X.; Fan, X.; Song, C. Carbon-based membrane materials and applications in water and wastewater treatment: A review. Environ. Chem. Lett. 2021, 19, 1457–1475. [Google Scholar] [CrossRef]
- Bae, S.D.; Lee, C.W.; Kang, L.S.; Sakoda, A. Preparation, characterization, and application of activated carbon membrane with carbon whiskers. Desalination 2007, 202, 247–252. [Google Scholar] [CrossRef]
- Yu, T.; Yin, H.; Cheng, L.; Bi, X. Effect of powder-activated carbon pre-coating membrane on the performance of the UF system for wastewater reclamation: A pilot-scale study. J. Water Reuse Desalin. 2021, 11, 586–596. [Google Scholar] [CrossRef]
- Abuabdou, S.M.A.; Jaffari, Z.H.; Ng, C.A.; Ho, Y.C.; Bashir, M.J.K. A new polyvinylidene fluoride membrane synthesized by integrating of powdered activated carbon for treatment of stabilized leachate. Water 2021, 13, 2282. [Google Scholar] [CrossRef]
- Anasori, B.; Lukatskaya, M.R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098. [Google Scholar] [CrossRef]
- Naguib, M.; Mochalin, V.N.; Barsoum, M.W.; Gogotsi, Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992–1005. [Google Scholar] [CrossRef]
- Ding, L.; Wei, Y.; Wang, Y.; Chen, H.; Caro, J.; Wang, H. A Two-Dimensional Lamellar Membrane: MXene Nanosheet Stacks. Angew. Chem. Int. Ed. 2017, 56, 1825–1829. [Google Scholar] [CrossRef]
- Kwon, O.; Choi, Y.; Choi, E.; Kim, M.; Woo, Y.C.; Kim, D.W. Fabrication techniques for graphene oxide-based molecular separation membranes: Towards industrial application. Nanomaterials 2021, 11, 757. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, Q.; Wu, C.; Li, P.; Xia, S. Fabrication of nanofiltration membrane on MoS2 modified PVDF substrate for excellent permeability, salt rejection, and structural stability. Chem. Eng. J. 2021, 416, 129154. [Google Scholar] [CrossRef]
- Li, H.; Song, Z.; Zhang, X.; Huang, Y.; Li, S.; Mao, Y.; Ploehn, H.J.; Bao, Y.; Yu, M. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science 2013, 342, 95–98. [Google Scholar] [CrossRef]
- Surwade, S.P.; Smirnov, S.N.; Vlassiouk, I.V.; Unocic, R.R.; Veith, G.M.; Dai, S.; Mahurin, S.M. Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 2015, 10, 459–464. [Google Scholar] [CrossRef]
- Han, Y.; Xu, Z.; Gao, C. Ultrathin graphene nanofiltration membrane for water purification. Adv. Funct. Mater. 2013, 23, 3693–3700. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Meng, T.; Zang, S.; Yang, C.; Luo, X.; Wang, H.; Chen, J.; Jing, F.; Wang, C.; et al. Monolithic all-weather solar-thermal interfacial membrane evaporator. Chem. Eng. J. 2022, 450, 137893. [Google Scholar] [CrossRef]
- Wang, Q.; Fan, Y.; Wu, C.; Jin, Y.; Li, C.; Sunarso, J.; Meng, X.; Yang, N. Palladium-intercalated MXene membrane for efficient separation of H2/CO2: Combined experimental and modeling work. J. Memb. Sci. 2022, 653, 120533. [Google Scholar] [CrossRef]
- Yadav, A.; Yadav, P.; Labhasetwar, P.K.; Shahi, V.K. CNT functionalized ZIF-8 impregnated poly(vinylidene fluoride-co-hexafluoropropylene) mixed matrix membranes for antibiotics removal from pharmaceutical industry wastewater by vacuum membrane distillation. J. Environ. Chem. Eng. 2021, 9, 106560. [Google Scholar] [CrossRef]
- Yadav, A.; Patel, R.V.; Vyas, B.G.; Labhasetwar, P.K.; Shahi, V.K. Recovery of CaSO4 and NaCl from sub-soil brine using CNT@MOF5 incorporated poly(vinylidene fluoride-hexafluoropropylene) membranes via vacuum-assisted distillation. Colloids Surf. A Physicochem. Eng. Asp. 2022, 645, 128918. [Google Scholar] [CrossRef]
- Rahmat, M.; Hubert, P. Carbon nanotube-polymer interactions in nanocomposites: A review. Compos. Sci. Technol. 2011, 72, 72–84. [Google Scholar] [CrossRef]
- Xue, S.M.; Xu, Z.L.; Tang, Y.J.; Ji, C.H. Polypiperazine-amide Nanofiltration Membrane Modified by Different Functionalized Multiwalled Carbon Nanotubes (MWCNTs). ACS Appl. Mater. Interfaces 2016, 8, 19135–19144. [Google Scholar] [CrossRef]
- Vatanpour, V.; Esmaeili, M.; Farahani, M.H.D.A. Fouling reduction and retention increment of polyethersulfone nanofiltration membranes embedded by amine-functionalized multi-walled carbon nanotubes. J. Memb. Sci. 2014, 466, 70–81. [Google Scholar] [CrossRef]
- Kim, T.; Shin, J.; Lee, K.; Jung, Y.; Lee, S.B.; Yang, S.J. A universal surface modification method of carbon nanotube fibers with enhanced tensile strength. Compos. Part A Appl. Sci. Manuf. 2021, 140, 106182. [Google Scholar] [CrossRef]
- Du, L.; Quan, X.; Fan, X.; Wei, G.; Chen, S. Conductive CNT/nanofiber composite hollow fiber membranes with electrospun support layer for water purification. J. Memb. Sci. 2020, 596, 117613. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Wang, P. Self-Floating Carbon Nanotube Membrane on Macroporous Silica Substrate for Highly Efficient Solar-Driven Interfacial Water Evaporation. ACS Sustain. Chem. Eng. 2016, 4, 1223–1230. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Li, S. Molecular dynamics modeling and simulation of water desalination through a double-walled carbon nanotube with Moiré pattern. J. Micromech. Mol. Phys. 2022, 7, 39–47. [Google Scholar] [CrossRef]
- Tijing, L.D.; Woo, Y.C.; Shim, W.G.; He, T.; Choi, J.S.; Kim, S.H.; Shon, H.K. Superhydrophobic nanofiber membrane containing carbon nanotubes for high-performance direct contact membrane distillation. J. Memb. Sci. 2016, 502, 158–170. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V. Electric field in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Mohan, V.B.; Lau, K.T.; Hui, D.; Bhattacharyya, D. Graphene-based materials and their composites: A review on production, applications and product limitations. Compos. Part B Eng. 2018, 142, 200–220. [Google Scholar] [CrossRef]
- Austria, H.F.; Subrahmanya, T.M.; Setiawan, O.; Widakdo, J.; Chiao, Y.H.; Hung, W.S.; Wang, C.F.; Hu, C.C.; Lee, K.R.; Lai, J.Y. A review on the recent advancements in graphene-based membranes and their applications as stimuli-responsive separation materials. J. Mater. Chem. A 2021, 9, 21510–21531. [Google Scholar] [CrossRef]
- Alkhouzaam, A.; Qiblawey, H. Functional GO-based membranes for water treatment and desalination: Fabrication methods, performance and advantages. A review. Chemosphere 2021, 274, 129853. [Google Scholar] [CrossRef]
- Anand, A.; Unnikrishnan, B.; Mao, J.Y.; Lin, H.J.; Huang, C.C. Graphene-based nanofiltration membranes for improving salt rejection, water flux and antifouling—A review. Desalination 2018, 429, 119–133. [Google Scholar] [CrossRef]
- Cui, Y.; An, X.; Zhang, S.; Tang, Q.; Lan, H.; Liu, H.; Qu, J. Emerging graphitic carbon nitride-based membranes for water purification. Water Res. 2021, 200, 117207. [Google Scholar] [CrossRef]
- Huang, H.H.; Joshi, R.K.; De Silva, K.K.H.; Badam, R.; Yoshimura, M. Fabrication of reduced graphene oxide membranes for water desalination. J. Memb. Sci. 2019, 572, 12–19. [Google Scholar] [CrossRef]
- Jin, L.; Wang, Z.; Zheng, S.; Mi, B. Polyamide-crosslinked graphene oxide membrane for forward osmosis. J. Memb. Sci. 2018, 545, 11–18. [Google Scholar] [CrossRef]
- Mohsenpour, S.; Leaper, S.; Shokri, J.; Alberto, M.; Gorgojo, P. Effect of graphene oxide in the formation of polymeric asymmetric membranes via phase inversion. J. Memb. Sci. 2022, 641, 119924. [Google Scholar] [CrossRef]
- Ng, L.Y.; Chua, H.S.; Ng, C.Y. Incorporation of graphene oxide-based nanocomposite in the polymeric membrane for water and wastewater treatment: A review on recent development. J. Environ. Chem. Eng. 2021, 9, 105994. [Google Scholar] [CrossRef]
- Karkooti, A.; Yazdi, A.Z.; Chen, P.; McGregor, M.; Nazemifard, N.; Sadrzadeh, M. Development of advanced nanocomposite membranes using graphene nanoribbons and nanosheets for water treatment. J. Memb. Sci. 2018, 560, 97–107. [Google Scholar] [CrossRef]
- Li, B.; Wang, C.G.; Surat’man, N.E.; Loh, X.J.; Li, Z. Microscopically tuning the graphene oxide framework for membrane separations: A review. Nanoscale Adv. 2021, 3, 5265–5276. [Google Scholar] [CrossRef]
- Liu, G.; Jin, W. Pervaporation membrane materials: Recent trends and perspectives. J. Memb. Sci. 2021, 636, 119557. [Google Scholar] [CrossRef]
- Lin, Y.; Shen, Q.; Kawabata, Y.; Segawa, J.; Cao, X.; Guan, K.; Istirokhatun, T.; Yoshioka, T.; Matsuyama, H. Graphene quantum dots (GQDs)-assembled membranes with intrinsic functionalized nanochannels for high-performance nanofiltration. Chem. Eng. J. 2021, 420, 127602. [Google Scholar] [CrossRef]
- Cao, Z.; Markey, G.; Barati Farimani, A. Ozark Graphene Nanopore for Efficient Water Desalination. J. Phys. Chem. B 2021, 125, 11256–11263. [Google Scholar] [CrossRef]
- Seo, D.H.; Pineda, S.; Woo, Y.C.; Xie, M.; Murdock, A.T.; Ang, E.Y.M.; Jiao, Y.; Park, M.J.; Lim, S.I.; Lawn, M.; et al. Anti-fouling graphene-based membranes for effective water desalination. Nat. Commun. 2018, 9, 683. [Google Scholar] [CrossRef]
- El-Shafai, N.M.; Beltagi, A.M.; Ibrahim, M.M.; Ramadan, M.S.; El-Mehasseb, I. Enhancement of the photocurrent and electrochemical properties of the modified nanohybrid composite membrane of cellulose/graphene oxide with magnesium oxide nanoparticle ([email protected]) for photocatalytic antifouling and supercapacitors applications. Electrochim. Acta 2021, 392, 138989. [Google Scholar] [CrossRef]
- Peng, P.; Lan, Y.; Zhang, Q.; Luo, J. Application of graphene structure/polyurethane membrane in pervaporative desulfurization. J. Appl. Polym. Sci. 2022, 139, 51514. [Google Scholar] [CrossRef]
- Rasouli, S.; Rezaei, N.; Hamedi, H.; Zendehboudi, S.; Duan, X. Superhydrophobic and superoleophilic membranes for oil-water separation application: A comprehensive review. Mater. Des. 2021, 204, 109599. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, H.; Li, D.; Wang, B.; Wang, H.; Bai, J.; Ma, S.; Wang, G. A graphene assembled porous fiber-based Janus membrane for highly effective solar steam generation. J. Colloid Interface Sci. 2021, 592, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Presumido, P.H.; Primo, A.; Vilar, V.J.P.; Garcia, H. Large area continuous multilayer graphene membrane for water desalination. Chem. Eng. J. 2021, 413, 127510. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, X.; Liang, L.; Gao, Y.; Cheng, H.; Li, X.; Zou, M.; Cao, A.; Ma, R.; Yuan, Q.; et al. Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science 2019, 364, 1057–1062. [Google Scholar] [CrossRef]
- Kang, J.; Choi, Y.; Kim, J.P.; Kim, J.H.; Kim, J.Y.; Kwon, O.; Kim, D.I.; Kim, D.W. Thermally-induced pore size tuning of multilayer nanoporous graphene for organic solvent nanofiltration. J. Memb. Sci. 2021, 637, 119620. [Google Scholar] [CrossRef]
- Liu, T.; Yang, B.; Graham, N.; Yu, W.; Sun, K. Trivalent metal cation cross-linked graphene oxide membranes for NOM removal in water treatment. J. Memb. Sci. 2017, 542, 31–40. [Google Scholar] [CrossRef]
- Yu, H.; He, Y.; Xiao, G.; Fan, Y.; Ma, J.; Gao, Y.; Hou, R.; Yin, X.; Wang, Y.; Mei, X. The roles of oxygen-containing functional groups in modulating water purification performance of graphene oxide-based membrane. Chem. Eng. J. 2020, 389, 124375. [Google Scholar] [CrossRef]
- Qiu, R.; Yuan, S.; Xiao, J.; Chen, X.D.; Selomulya, C.; Zhang, X.; Woo, M.W. Effects of Edge Functional Groups on Water Transport in Graphene Oxide Membranes. ACS Appl. Mater. Interfaces 2019, 11, 8483–8491. [Google Scholar] [CrossRef]
- Zhou, K.G.; Vasu, K.S.; Cherian, C.T.; Neek-Amal, M.; Zhang, J.C.; Ghorbanfekr-Kalashami, H.; Huang, K.; Marshall, O.P.; Kravets, V.G.; Abraham, J.; et al. Electrically controlled water permeation through graphene oxide membranes. Nature 2018, 559, 236–240. [Google Scholar] [CrossRef]
- Liu, W.; Li, R.; Liu, J.; Ma, X.; Xiao, Y.; Wang, Y. Nacre-like ultra-robust supramolecular-functionalized graphene oxide membrane for bifunctional separation. Carbon N. Y. 2021, 184, 618–626. [Google Scholar] [CrossRef]
- Chen, C.; Huang, F.; Jia, L.; Zhang, L.; Chen, E.; Liang, L.; Kong, Z.; Wang, X.; Zhang, W.; Shen, J.W. Molecular insights into desalination performance of lamellar graphene membranes: Significant of hydrophobicity and interlayer spacing. J. Mol. Liq. 2021, 333, 116024. [Google Scholar] [CrossRef]
- Badmus, S.O.; Oyehan, T.A.; Saleh, T.A. Enhanced efficiency of polyamide membranes by incorporating cyclodextrin-graphene oxide for water purification. J. Mol. Liq. 2021, 340, 116991. [Google Scholar] [CrossRef]
- Cao, G.; Yan, J.; Ning, X.; Zhang, Q.; Wu, Q.; Bi, L.; Zhang, Y.; Han, Y.; Guo, J. Antibacterial and antibiofilm properties of graphene and its derivatives. Colloids Surf. B Biointerfaces 2021, 200, 111588. [Google Scholar] [CrossRef]
- Matshetshe, K.; Sikhwivhilu, K.; Ndlovu, G.; Tetyana, P.; Moloto, N.; Tetana, Z. Antifouling and antibacterial β-cyclodextrin decorated graphene oxide/polyamide thin-film nanocomposite reverse osmosis membranes for desalination applications. Sep. Purif. Technol. 2022, 278, 119594. [Google Scholar] [CrossRef]
- Qian, Y.; Shang, J.; Liu, D.; Yang, G.; Wang, X.; Chen, C.; Kou, L.; Lei, W. Enhanced Ion Sieving of Graphene Oxide Membranes via Surface Amine Functionalization. J. Am. Chem. Soc. 2021, 143, 5080–5090. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Dong, Q.; Chen, J.T.; Sengupta, B.; Jiang, J.; Xu, W.L.; Li, H.; Li, S.; Yu, M. Printed graphene oxide-based membranes for gas separation and carbon capture. Chem. Eng. J. 2022, 430, 132942. [Google Scholar] [CrossRef]
- Dai, L.; Huang, K.; Xia, Y.; Xu, Z. Two-dimensional material separation membranes for renewable energy purification, storage, and conversion. Green Energy Environ. 2021, 6, 193–211. [Google Scholar] [CrossRef]
- Zakertabrizi, M.; Hosseini, E.; Habibnejad Korayem, A.; Razmjou, A. Hydrous Proton Transfer through Graphene Interlayer: An Extraordinary Mechanism under Magnifier. Adv. Mater. Technol. 2021, 6, 2001049. [Google Scholar] [CrossRef]
- Cheng, C.; Iyengar, S.A.; Karnik, R. Molecular size-dependent subcontinuum solvent permeation and ultrafast nanofiltration across nanoporous graphene membranes. Nat. Nanotechnol. 2021, 16, 989–995. [Google Scholar] [CrossRef]
- Yang, E.; Ham, M.H.; Park, H.B.; Kim, C.M.; Song, J.H.; Kim, I.S. Tunable semi-permeability of graphene-based membranes by adjusting reduction degree of laminar graphene oxide layer. J. Memb. Sci. 2018, 547, 73–79. [Google Scholar] [CrossRef]
- Ali, A.M.; Rashid, K.T.; Yahya, A.A.; Majdi, H.S.; Salih, I.K.; Yusoh, K.; Alsalhy, Q.F.; Abdulrazak, A.A.; Figoli, A. Fabrication of gum arabic-graphene (Gga) modified polyphenylsulfone (ppsu) mixed matrix membranes: A systematic evaluation study for ultrafiltration (uf) applications. Membranes 2021, 11, 542. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; He, Y.; Xiao, G.; Li, H.; Mei, X.; Cheng, Y.; Zhong, F.; Zhou, L.; Ou, J.Z. Intercalation of soft PPy polymeric nanoparticles in graphene oxide membrane for enhancing nanofiltration performances. Sep. Purif. Technol. 2021, 272, 118933. [Google Scholar] [CrossRef]
- Januário, E.F.D.; Vidovix, T.B.; Beluci, N.D.C.L.; Paixão, R.M.; da Silva, L.H.B.R.; Homem, N.C.; Bergamasco, R.; Vieira, A.M.S. Advanced graphene oxide-based membranes as a potential alternative for dyes removal: A review. Sci. Total Environ. 2021, 789, 147957. [Google Scholar] [CrossRef] [PubMed]
- Sarvestani, A.B.; Chogani, A.; Shariat, M.; Moosavi, A.; Kariminasab, H. The effect of nanopores geometry on desalination of single-layer graphene-based membranes: A molecular dynamics study. J. Mol. Liq. 2021, 339, 116749. [Google Scholar] [CrossRef]
- Liu, M.; Weston, P.J.; Hurt, R.H. Controlling nanochannel orientation and dimensions in graphene-based nanofluidic membranes. Nat. Commun. 2021, 12, 507. [Google Scholar] [CrossRef]
- Lee, K.H.; Kang, D.J.; Eom, W.; Lee, H.; Han, T.H. Holey graphene oxide membranes containing both nanopores and nanochannels for highly efficient harvesting of water evaporation energy. Chem. Eng. J. 2022, 430, 132759. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiao, X.; Zhou, Y.; Huang, L.; Wang, Y.; Rong, Q.; Han, Z.; Qu, H.; Zhu, Z.; Xu, S.; et al. Bioinspired Graphene Oxide Membranes with pH-Responsive Nanochannels for High-Performance Nanofiltration. ACS Nano 2021, 15, 13178–13187. [Google Scholar] [CrossRef]
- Ye, J.; Dai, J.; Yang, D.; Li, C.; Yan, Y.; Wang, Y. 2D/2D confinement graphene-supported bimetallic Sulfides/g-C3N4 composites with abundant sulfur vacancies as highly active catalytic self-cleaning membranes for organic contaminants degradation. Chem. Eng. J. 2021, 418, 129383. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Y.; Xue, J.; Wang, R.; Yin, Z.; Ding, L.; Wang, H. Graphene oxide-modified g-C3N4 nanosheet membranes for efficient hydrogen purification. Chem. Eng. J. 2021, 420, 129574. [Google Scholar] [CrossRef]
- Thebo, K.H.; Qian, X.; Zhang, Q.; Chen, L.; Cheng, H.M.; Ren, W. Highly stable graphene-oxide-based membranes with superior permeability. Nat. Commun. 2018, 9, 1486. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; He, Y.; Zhuang, J.; Shi, H. Hierarchical microsphere encapsulated in graphene oxide composite for durable synergetic membrane separation and Fenton-like degradation. Chem. Eng. J. 2022, 430, 133124. [Google Scholar] [CrossRef]
- Shi, Z.; Zhang, W.; Zhang, F.; Liu, X.; Wang, D.; Jin, J.; Jiang, L. Ultrafast separation of emulsified oil/water mixtures by ultrathin free-standing single-walled carbon nanotube network films. Adv. Mater. 2013, 25, 2422–2427. [Google Scholar] [CrossRef] [PubMed]
- Gogoi, M.; Goswami, R.; Borah, A.; Sarmah, H.; Rajguru, P.; Hazarika, S. Amide functionalized DWCNT nanocomposite membranes for chiral separation of the racemic DOPA. Sep. Purif. Technol. 2021, 279, 119704. [Google Scholar] [CrossRef]
- Vatanpour, V.; Madaeni, S.S.; Moradian, R.; Zinadini, S.; Astinchap, B. Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite. J. Memb. Sci. 2011, 375, 284–294. [Google Scholar] [CrossRef]
Membrane Material | Carbon Material | Pollutant | Water Flow | Rejection | Pressure | Ref. |
---|---|---|---|---|---|---|
Polyvinylidene fluoride | Granular activated carbon | Carbamazepine | 4.3–5.1 L·m−2·h−1 | 88% | 32.5 mbar | [87] |
Polyvinylidene fluoride | Granular activated carbon | Formylaminoantipyrine | 4.3–5.1 L·m−2·h−1 | 92% | 32.5 mbar | [87] |
Al2O3 | Powdered activated carbon | Oil | 18 L·m−2·h−1 | 99% | 5 bar | [88] |
Polyvinylidene fluoride | Activated carbon powder | NH3-N | 69.9 L·m−2·h−1 | 20% | 0.6 bar | [92] |
Polyvinylidene fluoride | Activated carbon powder | Colour | 89.3 L·m−2·h−1 | 51.5% | 0.6 bar | [92] |
Polyvinylidene fluoride | Activated carbon powder | Oxygen | 32.2 L·m−2·h−1 | 51.5% | 0.6 bar | [92] |
Al2O3 | MXene | Bovine serum albumin | >1,000 L·m−2·h−1·bar−1 | ~100% | 0.1–0.6 MPa | [95] |
Cellulose ester | SWCNTs | Oil/water | 100,000 L·m−2·h−1·bar−1 | 99.95 | 0.01 MPa | [162] |
Polysulfone | DWCNTs | 3.4-dihydroxyphenylalanine | 0.35–37.44 mmol·m−2·h−1 | 98–99% | 5 bar | [163] |
Polyethersulfone | MWCNTs | NaCl, MgSO4, Na2SO4 | 6–14 kg/m2·h | 20–80% | 4 bar | [164] |
Polysulfone matrix | Carboxylated carbon nanofibers | NaCl | 13.08 L·m−2·h−1 | 94.5% | N/A | [62] |
Resorcinol-formaldehyde -activated carbon fiber matrix | CuO-CNF | Oil | 426 L·m−2·h−1 | 99.7% | 5 | [70] |
Porous carbon nanofiber matrix | ZnO modified N-doped porous carbon nanofibers | Pb2+ | N/A | 99.42% | N/A | [69] |
Porous carbon nanofiber matrix | ZnO modified N-doped porous carbon nanofibers | Cu2+ | N/A | 68.46% | N/A | [69] |
Porous carbon nanofiber matrix | ZnO modified N-doped porous carbon nanofibers | Cd2+ | N/A | 70.36% | N/A | [69] |
Thin film composites (TFC) | Graphene quantum dots | Na2SO4 | 9.8 L·m−2·h−1·bar−1 | 97% | 1 bar | [126] |
Polytetrafluoroethylene (PTFE) | Graphene | Various metal salts, surfactants and oils | 0.5 L·day−1 | N/A | N/A | [128] |
Polyurethane | Graphene | Desulfurization of water and gas | 1,411 g·m2·h | 99% | N/A | [130] |
Cellulose fibers | Graphene | Metal ions and leaching ions from man-made wastewater | 1.40 kg·m−2·h−1 | 95.6% | N/A | [132] |
α-Al2O3 | B,N-doped graphene | NaCl, KCl | 24.3 L·m−2·h−1 | 95% | 10 | [133] |
β-cyclodextrin, polyacrylic acid | Graphene oxide | Metal ions | 21 L·m−2·h−1 | 96.7% | N/A | [140] |
Polyvinyl sulfone | Graphene oxide | Various metal salts | 119 ± 3 L·m−2·h−1 | 88% | N/A | [151] |
Polypyrrole | Graphene oxide | Various metal salts | 295 L·m−2·h−1·bar−1 | N/A | N/A | [152] |
Polyethylenimine | Graphene oxide | Organic compounds | 89 L·m−2·h−1·bar−1 | 96% | - | [157] |
Bimetallic sulfide (FeCoS) | N-doped graphene oxide | Tetracycline, bisphenol A, rhodamine B, and perfluorooctanoic acid | 632 L·m−2·h−1 | N/A | N/A | [158] |
g-C3N4 | Graphene oxide | H2/CO2 | 2.16×10−7 mol·m−2·s−1·Pa−1 | N/A | N/A | [159] |
Theanine | Graphene oxide | Rhodamine B and methylene blue | 10,000 L·m−2·h−1·bar−1 | 100% | N/A | [160] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazarenko, N.S.; Golovakhin, V.V.; Shestakov, A.A.; Lapekin, N.I.; Bannov, A.G. Recent Advances on Membranes for Water Purification Based on Carbon Nanomaterials. Membranes 2022, 12, 915. https://doi.org/10.3390/membranes12100915
Lazarenko NS, Golovakhin VV, Shestakov AA, Lapekin NI, Bannov AG. Recent Advances on Membranes for Water Purification Based on Carbon Nanomaterials. Membranes. 2022; 12(10):915. https://doi.org/10.3390/membranes12100915
Chicago/Turabian StyleLazarenko, Nikita S., Valerii V. Golovakhin, Artem A. Shestakov, Nikita I. Lapekin, and Alexander G. Bannov. 2022. "Recent Advances on Membranes for Water Purification Based on Carbon Nanomaterials" Membranes 12, no. 10: 915. https://doi.org/10.3390/membranes12100915
APA StyleLazarenko, N. S., Golovakhin, V. V., Shestakov, A. A., Lapekin, N. I., & Bannov, A. G. (2022). Recent Advances on Membranes for Water Purification Based on Carbon Nanomaterials. Membranes, 12(10), 915. https://doi.org/10.3390/membranes12100915