Entamoeba histolytica: Membrane and Non-Membrane Protein Structure, Function, Immune Response Interaction, and Vaccine Development
Abstract
:1. Introduction
2. Biological Membrane Proteins and Antigens
2.1. Gal/GalNAc Lectin
2.2. Cysteine Proteinase
2.3. Entamoeba Histolytica Lipopeptidophosphoglycan (EhLPPG)
2.4. Protein Disulfide Isomerase
2.5. Thioredoxin
3. Non-Membrane Protein
3.1. Entamoeba Histolytica Ubiquitin (Ehub)
3.2. Calreticulin
3.3. Entamoeba Histolytica Migration Inhibitory Factor (EhMIF)
3.4. Extracellular Vesicles
3.5. Enolase
3.6. Actin
3.7. Alcohol Dehydrogenase (ADH)
4. Docking of Membrane Protein and Vaccine Development
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abhyankar, M.M.; Orr, M.T.; Kinsey, R.; Sivananthan, S.; Nafziger, A.J.; Oakland, D.N.; Young, M.K.; Farr, L.; Uddin, M.J.; Leslie, J.L.; et al. Optimizing a multi-component intranasal Entamoeba histolytica vaccine formulation using a design of experiments strategy. Front. Immunol. 2021, 12, 683157. [Google Scholar] [CrossRef] [PubMed]
- WHO/PAHO/UNESCO Report. A consultation with experts on amoebiasis. Mexico City, Mexico 28–29 January, 1997. Epidemiol. Bull. 1997, 18, 13–14. [Google Scholar]
- Kantor, M.; Abrantes, A.; Estevez, A.; Schiller, A.; Torrent, J.; Gascon, J.; Hernandez, R.; Ochner, C. Entamoeba histolytica: Updates in clinical manifestation, pathogenesis, and vaccine development. Can. J. Gastroenterol. Hepatol. 2018, 2018, 4601420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abhyankar, M.M.; Noor, Z.; Tomai, M.A.; Elvecrog, J.; Fox, C.B.; Petri, W.A. Nanoformulation of synergistic TLR ligands to enhance vaccination against Entamoeba histolytica. Vaccine 2017, 35, 916–922. [Google Scholar] [CrossRef]
- Haque, R.; Mondal, D.; Duggal, P.; Kabir, M.; Roy, S.; Farr, B.M.; Sack, R.B.; Petri, W.A., Jr. Entamoeba histolytica infection in children and protection from subsequent amebiasis. Infect. Immun. 2006, 74, 904–909. [Google Scholar] [CrossRef] [Green Version]
- Swaminathan, A.; Torresi, J.; Schlagenhauf, P.; Thursky, K.; Wilder-Smith, A.; Connor, B.A.; Schwartz, E.; Vonsonnenberg, F.; Keystone, J.; O’Brien, D.P. A global study of pathogens and host risk factors associated with infectious gastrointestinal disease in returned international travellers. J. Infect. 2009, 59, 19–27. [Google Scholar] [CrossRef]
- Fotedar, R.; Stark, D.; Beebe, N.; Marriott, D.; Ellis, J.; Harkness, J. Laboratory diagnostic techniques for Entamoeba species. Clin. Microbiol. Rev. 2007, 20, 511–532. [Google Scholar] [CrossRef] [Green Version]
- Noordin, R.; Yunus, M.H.; Saidin, S.; Mohamed, Z.; Fuentes Corripio, I.; Rubio, J.M.; Golkar, M.; Hisam, S.; Lee, R.; Mahmud, R. Multi-laboratory evaluation of a lateral flow rapid test for detection of amebic liver abscess. Am. J. Trop. Med. 2020, 103, 2233–2238. [Google Scholar] [CrossRef]
- Saidin, S.; Othman, N.; Noordin, R. Update on laboratory diagnosis of amoebiasis. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 15–38. [Google Scholar] [CrossRef]
- Padilla-Vaca, F.; Ankri, S.; Bracha, R.; Koole, L.A.; Mirelman, D. Down regulation of Entamoeba histolytica virulence by monoxenic cultivation with Escherichia coli O55 is related to a decrease in expression of the light (35-kilodalton) subunit of the Gal/GalNAc lectin. Infect. Immun. 1999, 67, 2096–2102. [Google Scholar] [CrossRef] [Green Version]
- Chacín-Bonilla, L. Current pharmacotherapy of amebiasis, advances in new drugs, and design of a vaccine. SCIELO 2012, 53, 301–314. [Google Scholar]
- Shrivastav, M.T.; Malik, Z.; Somlata. Revisiting drug development against the neglected tropical disease, amebiasis. Front. Cell. Infect. Microbiol. 2020, 10, 628257. [Google Scholar] [CrossRef] [PubMed]
- Moonah, S.N.; Jiang, N.M.; Petri, W.A., Jr. Host immune response to intestinal amebiasis. PLoS Pathog. 2013, 9, e1003489. [Google Scholar] [CrossRef] [PubMed]
- Uribe-Querol, E.; Rosales, C. Immune response to the enteric parasite Entamoeba histolytica. Physiol. J. 2020, 35, 244–260. [Google Scholar] [CrossRef]
- Begum, S.; Quach, J.; Chadee, K. Immune evasion mechanisms of Entamoeba histolytica: Progression to disease. Front. Microbiol. 2015, 6, 1394. [Google Scholar] [CrossRef] [Green Version]
- Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Innate Immunity. In Molecular Biology of the Cell, 4th ed.; Garland Science: New York, NY, USA, 2002. [Google Scholar]
- Snyder, P.W. Immunology for the toxicologic pathologist. Toxicol. Pathol. 2012, 40, 143–147. [Google Scholar] [CrossRef] [Green Version]
- Quach, J.; St-Pierre, J.; Chadee, K. The future for vaccine development against Entamoeba histolytica. Hum. Vaccines Immunother. 2014, 10, 1514–1521. [Google Scholar] [CrossRef] [Green Version]
- Amanna, I.J.; Slifka, M.K. Successful vaccines. Curr. Top. Microbiol. Immunol. 2020, 428, 1. [Google Scholar] [CrossRef]
- Bayat, M.; Asemani, Y.; Najafi, S. Essential considerations during vaccine design against COVID-19 and review of pioneering vaccine candidate platforms. Int. Immunopharmacol. 2021, 97, 107679. [Google Scholar] [CrossRef]
- Azmi, N.; Othman, N. Entamoeba histolytica: Proteomics bioinformatics reveal predictive functions and protein–protein interactions of differentially abundant membrane and cytosolic proteins. Membranes 2021, 11, 376. [Google Scholar] [CrossRef]
- Chou, K.-C.; Shen, H.-B. MemType-2L: A web server for predicting membrane proteins and their types by incorporating evolution information through Pse-PSSM. Biochem. Biophys. Res. Commun. 2007, 360, 339–345. [Google Scholar] [CrossRef]
- Guo, L.; Wang, S.; Li, M.; Cao, Z. Accurate classification of membrane protein types based on sequence and evolutionary information using deep learning. BMC Bioinform. 2019, 20, 700. [Google Scholar] [CrossRef] [PubMed]
- Frederick, J.R.; Petri, W.A., Jr. Roles for the galactose-/N-acetylgalactosamine-binding lectin of Entamoeba in parasite virulence and differentiation. J. Glycobiol. 2005, 15, 53R–59R. [Google Scholar] [CrossRef] [PubMed]
- Mann, B.J. Structure and function of the Entamoeba histolytica Gal/GalNAc lectin. Int. Rev. Cytol. 2002, 216, 59–80. [Google Scholar] [CrossRef] [PubMed]
- Dodson, J.M.; Lenkowski, P.W.; Eubanks, A.C.; Jackson, T.F.G.H.; Napodano, J.; Lyerly, D.M.; Lockhart, L.A.; Mann, B.J.; Petri, W.A. Infection and immunity mediated by the carbohydrate recognition domain of the Entamoeba histolytica Gal/GalNAc lectin. J. Infect. Dis. 1999, 179, 460–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, X.-J.; Hughes, M.A.; Huston, C.D.; Loftus, B.; Gilchrist, C.A.; Lockhart, L.A.; Ghosh, S.; Miller-Sims, V.; Mann, B.J.; Petri, W.A.; et al. Intermediate subunit of the Gal/GalNAc lectin of Entamoeba histolytica is a member of a gene family containing multiple CXXC sequence motifs. Infect. Immun. 2001, 69, 5892–5898. [Google Scholar] [CrossRef] [Green Version]
- Kato, K.; Yahata, K.; Gopal Dhoubhadel, B.; Fujii, Y.; Tachibana, H. Novel hemagglutinating, hemolytic and cytotoxic activities of the intermediate subunit of Entamoeba histolytica lectin. Sci. Rep. 2015, 5, 13901. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Hernández, J.; Retana-González, C.; Ramos-Martínez, E.; Cruz-Colín, J.; Saralegui-Amaro, A.; Baltazar-Rosario, G.; Gutiérrez-Ruíz, C.; Aristi-Urista, G.; López-Vancell, R. Entamoeba histolytica trophozoites interact with the c-Met receptor at the surface of liver origin cells through the Gal/GalNAc amoebic lectin. Life 2021, 11, 923. [Google Scholar] [CrossRef]
- Welter, B.H.; Walters, H.A.; Temesvari, L.A. Reduced expression of a rhomboid protease, EhROM1, correlates with changes in the submembrane distribution and size of the Gal/GalNAc lectin subunits in the human protozoan parasite, Entamoeba histolytica. PLoS ONE 2020, 15, e0219870. [Google Scholar] [CrossRef]
- Kato, K.; Tachibana, H. Identification of multiple domains of Entamoeba histolytica intermediate subunit lectin-1 with hemolytic and cytotoxic activities. Int. J. Mol. Sci. 2022, 23, 7700. [Google Scholar] [CrossRef]
- Nakada-Tsukui, K.; Nozaki, T. Immune response of amebiasis and immune evasion by Entamoeba histolytica. Front. Immunol. 2016, 7, 175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abhyankar, M.M.; Orr, M.T.; Lin, S.; Suraju, M.O.; Simpson, A.; Blust, M.; Pham, T.; Guderian, J.A.; Tomai, M.A.; Elvecrog, J.; et al. Adjuvant composition and delivery route shape immune response quality and protective efficacy of a recombinant vaccine for Entamoeba histolytica. NPJ Vaccines 2018, 3, 22. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Hernández, S.L.; Cervantes-García, D.; Muñoz-Ortega, M.; Aldaba-Muruato, L.R.; Loera-Muro, V.M.; Ascacio-Martínez, J.A.; de Jesús Loera-Arias, M.; de Oca-Luna, R.M.; Ventura-Juárez, J. An anti-amoebic vaccine: Generation of the recombinant antigen LC3 from Entamoeba histolytica linked to mutated exotoxin A (PEΔIII) via the Pichia pastoris system. Biotechnol. Lett. 2017, 39, 1149–1157. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Hernández, S.L.; Becerra-González, V.M.; Muñoz-Ortega, M.H.; Loera-Muro, V.M.; Ávila-Blanco, M.E.; Medina-Rosales, M.N.; Ventura-Juárez, J. Evaluation of the PEΔIII-LC3-KDEL3 chimeric protein of Entamoeba histolytica-lectin as a vaccine candidate against amebic liver abscess. J. Immunol. Res. 2021, 2021, 6697900. [Google Scholar] [CrossRef]
- Meneses-Ruiz, D.M.; Laclette, J.P.; Aguilar-Díaz, H.; Hernández-Ruiz, J.; Luz-Madrigal, A.; Sampieri, A.; Vaca, L.; Carrero, J.C. Mucosal delivery of ACNPV baculovirus driving expression of the Gal-lectin LC3 fragment confers protection against amoebic liver abscess in hamster. Int. J. Biol. Sci. 2011, 7, 1345–1356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meneses-Ruiz, D.M.; Aguilar-Diaz, H.; Bobes, R.J.; Sampieri, A.; Vaca, L.; Laclette, J.P.; Carrero, J.C. Protection against amoebic liver abscess in hamster by intramuscular immunization with an Autographa californica baculovirus driving the expression of the Gal-lectin LC3 fragment. Biomed Res. Int. 2015, 2015, 760598. [Google Scholar] [CrossRef] [Green Version]
- Kato, K.; Makiuchi, T.; Cheng, X.; Tachibana, H. Comparison of hemolytic activity of the intermediate subunit of Entamoeba histolytica and Entamoeba dispar lectins. PLoS ONE 2017, 12, e0181864. [Google Scholar] [CrossRef] [Green Version]
- Min, X.; Feng, M.; Guan, Y.; Man, S.; Fu, Y.; Cheng, X.; Tachibana, H. Evaluation of the c-terminal fragment of Entamoeba histolytica Gal/GalNAc lectin intermediate subunit as a vaccine candidate against amebic liver abscess. PLoS Negl. Trop. Dis. 2016, 10, e0004419. [Google Scholar] [CrossRef] [Green Version]
- UNIPROT. Gal/GalNAc Lectin Igl1. Available online: https://www.uniprot.org/uniprotkb/Q964D2/entry (accessed on 19 September 2022).
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Bruchhaus, I.; Loftus, B.J.; Hall, N.; Tannich, E. The intestinal protozoan parasite Entamoeba histolytica contains 20 cysteine protease genes, of which only a small subset is expressed during in vitro cultivation. Eukaryot. Cell 2003, 2, 501–509. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Nora, G.P.; Schneider, E.L.; Kerr, I.D.; Hansell, E.; Hirata, K.; Gonzalez, D.; Sajid, M.; Boyd, S.E.; Hruz, P.; et al. A novel Entamoeba histolytica cysteine proteinase, EhCP4, is key for invasive amebiasis and a therapeutic target. J. Biol. Chem. 2010, 285, 18516–18527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meléndez-López, S.G.; Herdman, S.; Hirata, K.; Choi, M.-H.; Choe, Y.; Craik, C.; Caffrey, C.R.; Hansell, E.; Chávez-Munguía, B.; Chen, Y.T.; et al. Use of recombinant Entamoeba histolytica cysteine proteinase 1 to identify a potent inhibitor of amebic invasion in a human colonic model. Eukaryot. Cell 2007, 6, 1130–1136. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Naik, S.R.; Naik, S. Role of cysteine proteinase of Entamoeba histolytica in target cell death. J. Parasitol. 2004, 129, 127–135. [Google Scholar] [CrossRef]
- Ocádiz-Ruiz, R.; Fonseca, W.; Linford, A.S.; Yoshino, T.P.; Orozco, E.; Rodríguez, M.A. The knockdown of each component of the cysteine proteinase-adhesin complex of Entamoeba histolytica (EhCPADH) affects the expression of the other complex element as well as the in vitro and in vivo virulence. J. Parasitol. 2016, 143, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Quintas-Granados, L.I.; Orozco, E.; Brieba, L.G.; Arroyo, R.; Ortega-López, J. Purification, refolding and autoactivation of the recombinant cysteine proteinase EhCP112 from Entamoeba histolytica. Protein Expr. Purif. 2009, 63, 26–32. [Google Scholar] [CrossRef]
- Cornick, S.; Moreau, F.; Chadee, K. Entamoeba histolytica cysteine proteinase 5 evokes mucin exocytosis from colonic goblet cells via αvβ3 integrin. PLoS Pathog. 2016, 12, e1005579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, Y.; Mortimer, L.; Chadee, K. Entamoeba histolytica cysteine proteinase 5 binds integrin on colonic cells and stimulates NFkappaB-mediated pro-inflammatory responses. J. Biol. Chem. 2010, 285, 35497–35504. [Google Scholar] [CrossRef] [Green Version]
- UNIPROT. Cysteine Proteinase 5. Available online: https://www.uniprot.org/uniprotkb/Q06FF8/entry (accessed on 19 September 2022).
- Lotter, H.; González-Roldán, N.; Lindner, B.; Winau, F.; Isibasi, A.; Moreno-Lafont, M.; Ulmer, A.J.; Holst, O.; Tannich, E.; Jacobs, T. Natural killer T cells activated by a lipopeptidophosphoglycan from Entamoeba histolytica are critically important to control amebic liver abscess. PLoS Pathog. 2009, 5, e1000434. [Google Scholar] [CrossRef] [Green Version]
- Wong-Baeza, I.; Alcántara-Hernández, M.; Mancilla-Herrera, I.; Ramírez-Saldívar, I.; Arriaga-Pizano, L.; Ferat-Osorio, E.; López-Macías, C.; Isibasi, A. The role of lipopeptidophosphoglycan in the immune response to Entamoeba histolytica. J. Biomed. Biotechnol. 2010, 2010, 254521. [Google Scholar] [CrossRef] [Green Version]
- Moody, S.; Becker, S.; Nuchamowitz, Y.; Mirelman, D. Virulent and avirulent Entamoeba histolytica and Entamoeba dispar differ in their cell surface phosphorylated glycolipids. J. Parasitol. 1997, 114, 95–104. [Google Scholar] [CrossRef]
- Maldonado-Bernal, C.; Kirschning, C.J.; Rosenstein, Y.; Rocha, L.M.; Rios-Sarabia, N.; Espinosa-Cantellano, M.; Becker, I.; Estrada, I.; Salazar-González, R.M.; López-Macías, C.; et al. The innate immune response to Entamoeba histolytica lipopeptidophosphoglycan is mediated by toll-like receptors 2 and 4. Parasite Immunol. 2005, 27, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Vivanco-Cid, H.; Alpuche-Aranda, C.; Wong-Baeza, I.; Rocha-RamÍRez, L.M.; Rios-Sarabia, N.; Estrada-Garcia, I.; Villasis-Keever, M.A.; Lopez-Macias, C.; Isibasi, A. Lipopopeptidephosphoglycan from Entamoeba histolytica activates human macrophages and dendritic cells and reaches their late endosomes. Parasite Immunol. 2007, 29, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Ávila, E.E.; Salaiza, N.; Pulido, J.; Rodríguez, M.C.; Díaz-Godínez, C.; Laclette, J.P.; Becker, I.; Carrero, J.C. Entamoeba histolytica trophozoites and lipopeptidophosphoglycan trigger human neutrophil extracellular traps. PLoS ONE 2016, 11, e0158979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumarasamy, G.; Abdus Sani, A.A.; Olivos-García, A.; Noordin, R.; Othman, N. Antigenic membrane proteins of virulent variant of Entamoeba histolytica HM-1:IMSS. Pathog. Glob. Health 2020, 114, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Mares, R.E.; Minchaca, A.Z.; Villagrana, S.; Melendez-Lopez, S.G.; Ramos, M.A. Analysis of the isomerase and chaperone-like activities of an amebic PDI (EhPDI). Biomed Res. Int. 2015, 2015, 286972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mares, R.E.; Magaña, P.D.; Meléndez-López, S.G.; Licea, A.F.; Cornejo-Bravo, J.M.; Ramos, M.A. Oxidative folding and reductive activities of EhPDI, a protein disulfide isomerase from Entamoeba histolytica. Parasitol. Int. 2009, 58, 311–313. [Google Scholar] [CrossRef]
- Ramos, M.A.; Mares, R.E.; Magaña, P.D.; Rivas, I.D.; Meléndez-López, S.G. Entamoeba histolytica: Biochemical characterization of a protein disulfide isomerase. Exp. Parasitol. 2011, 128, 76–81. [Google Scholar] [CrossRef]
- Mares, R.E.; Ramos, M.A. An amebic protein disulfide isomerase (PDI) complements the yeast PDI1 mutation but is unable to support cell viability under ER or thermal stress. FEBS Open Bio 2018, 8, 49–55. [Google Scholar] [CrossRef]
- Amit, A.; Vijayamahantesh; Dikhit, M.R.; Singh, A.K.; Kumar, V.; Suman, S.S.; Singh, A.; Kumar, A.; Thakur, A.K.; Das, V.R.; et al. Immunization with Leishmania donovani protein disulfide isomerase DNA construct induces Th1 and Th17 dependent immune response and protection against experimental Visceral leishmaniasis in BALB/c mice. Mol. Immunol. 2017, 82, 104–113. [Google Scholar] [CrossRef]
- UNIPROT. Protein Disulfide Isomerase. Available online: https://www.uniprot.org/uniprotkb/A0A5K1UZD0/entry (accessed on 19 September 2022).
- Mancilla-Herrera, I.; Méndez-Tenorio, A.; Wong-Baeza, I.; Jiménez-Uribe, A.P.; Alcántara-Hernández, M.; Ocadiz-Ruiz, R.; Moreno-Eutimio, M.A.; Arriaga-Pizano, L.A.; López-Macías, C.; González-y-Merchand, J.; et al. A Toll/IL-1R/resistance domain-containing thioredoxin regulates phagocytosis in Entamoeba histolytica. Parasites Vectors 2012, 5, 224. [Google Scholar] [CrossRef] [Green Version]
- Leitsch, D. Drug susceptibility testing in microaerophilic parasites: Cysteine strongly affects the effectivities of metronidazole and auranofin, a novel and promising antimicrobial. Int. J. Parasitol. Drugs Drug Resist. 2017, 7, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Andrade, R.M.; Reed, S.L. New drug target in protozoan parasites: The role of thioredoxin reductase. Front. Microbiol. 2015, 6, 975. [Google Scholar] [CrossRef] [PubMed]
- Holmgren, A.; Johansson, C.; Berndt, C.; Lönn, M.E.; Hudemann, C.; Lillig, C.H. Thiol redox control via thioredoxin and glutaredoxin systems. Biochem. Soc. Trans. 2005, 33, 1375–1377. [Google Scholar] [CrossRef] [Green Version]
- UNIPROT. Thioredoxin, Putative. Available online: https://www.uniprot.org/uniprotkb/S0AYD1/entry (accessed on 19 September 2022).
- Flores, M.S.; Obregón-Cardenas, A.; Rangel, R.; Tamez, E.; Flores, A.; Trejo-Avila, L.; Quintero, I.; Arévalo, K.; Maldonado, M.G.; Gandarilla, F.L.; et al. Glycan moieties in Entamoeba histolytica ubiquitin are immunodominant. Parasite Immunol. 2021, 43, e12812. [Google Scholar] [CrossRef]
- Wöstmann, C.; Tannich, E.; Bakker-Grunwald, T. Ubiquitin of Entamoeba histolytica deviates in six amino acid residues from the consensus of all other known ubiquitins. FEBS Lett. 1992, 308, 54–58. [Google Scholar] [CrossRef] [Green Version]
- Obregón, A.; Flores, M.S.; Rangel, R.; Arévalo, K.; Maldonado, G.; Quintero, I.; Galán, L. Characterization of N-glycosylations in Entamoeba histolytica ubiquitin. Exp. Parasitol. 2019, 196, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Bosch, D.E.; Siderovski, D.P. Structural determinants of ubiquitin conjugation in Entamoeba histolytica. Exp. Mol. Med. 2013, 288, 2290. [Google Scholar] [CrossRef] [Green Version]
- Flores, M.S.; Tamez, E.; Rangel, R.; Monjardin, J.; Bosques, F.; Obregon, A.; Trejo-Avila, L.; Quintero, I.; Gandarilla, F.; Arevalo, K.; et al. Ubiquitin of Entamoeba histolytica induces antibody response in patients with invasive amoebiasis. Parasite Immunol. 2022, 44, e12919. [Google Scholar] [CrossRef]
- González, E.; de Leon Mdel, C.; Meza, I.; Ocadiz-Delgado, R.; Gariglio, P.; Silva-Olivares, A.; Galindo-Gómez, S.; Shibayama, M.; Morán, P.; Valadez, A.; et al. Entamoeba histolytica calreticulin: An endoplasmic reticulum protein expressed by trophozoites into experimentally induced amoebic liver abscesses. Parasitol. Res. 2011, 108, 439–449. [Google Scholar] [CrossRef]
- González-Rivas, E.; Ximenez, C.; Nieves-Ramirez, M.E.; Moran Silva, P.; Partida-Rodríguez, O.; Hernandez, E.H.; Rojas Velázquez, L.; Serrano Vázquez, A.; Magaña Nuñez, U. Entamoeba histolytica calreticulin induces the expression of cytokines in peripheral blood mononuclear cells isolated from patients with amebic liver abscess. Front. Cell. Infect. Microbiol. 2018, 8, 358. [Google Scholar] [CrossRef] [Green Version]
- Girard-Misguich, F.; Sachse, M.; Santi-Rocca, J.; Guillén, N. The endoplasmic reticulum chaperone calreticulin is recruited to the uropod during capping of surface receptors in Entamoeba histolytica. Mol. Biochem. Parasitol. 2008, 157, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Ximénez, C.; González, E.; Nieves, M.E.; Silva-Olivares, A.; Shibayama, M.; Galindo-Gómez, S.; Escobar-Herrera, J.; García de León, M.d.C.; Morán, P.; Valadez, A.; et al. Entamoeba histolytica and E. dispar calreticulin: Inhibition of classical complement pathway and differences in the level of expression in amoebic liver abscess. Biomed Res. Int. 2014, 2014, 127453. [Google Scholar] [CrossRef] [PubMed]
- UNIPROT. Calreticulin. Available online: https://www.uniprot.org/uniprotkb/C4M296/entry (accessed on 19 September 2022).
- Moonah, S.N.; Abhyankar, M.M.; Haque, R.; Petri, W.A. The macrophage migration inhibitory factor homolog of Entamoeba histolytica binds to and immunomodulates host macrophages. Infect. Immun. 2014, 82, 3523–3530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngobeni, R.; Abhyankar, M.M.; Jiang, N.M.; Farr, L.A.; Samie, A.; Haque, R.; Moonah, S.N. Entamoeba histolytica-encoded homolog of macrophage migration inhibitory factor contributes to mucosal inflammation during amoebic colitis. J. Infect. Dis. 2017, 215, 1294–1302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, S.; Padalia, J.; Ngobeni, R.; Abendroth, J.; Farr, L.; Shirley, D.A.; Edwards, T.; Moonah, S. Targeting parasite-produced macrophage migration inhibitory factor as an antivirulence strategy with antibiotic-antibody combination to reduce tissue damage. J. Infect. Dis. 2020, 221, 1185–1193. [Google Scholar] [CrossRef]
- Ghosh, S.; Leaton, L.A.; Farr, L.; Barfield, A.; Moonah, S. Interaction between parasite-encoded JAB1/CSN5 and macrophage migration inhibitory factor proteins attenuates its proinflammatory function. Sci. Rep. 2018, 8, 10241. [Google Scholar] [CrossRef] [Green Version]
- UNIPROT. Migration Inhibitory Factor Protein. Available online: https://www.uniprot.org/uniprotkb/A0A5K1URL6/entry (accessed on 19 September 2022).
- Sharma, M.; Morgado, P.; Zhang, H.; Ehrenkaufer, G.; Manna, D.; Singh, U. Characterization of extracellular vesicles from Entamoeba histolytica identifies roles in intercellular communication that regulates parasite growth and development. Infect. Immun. 2020, 88, e00349-20. [Google Scholar] [CrossRef]
- Sabatke, B.; Gavinho, B.; Coceres, V.; de Miguel, N.; Ramirez, M.I. Unveiling the role of EVs in anaerobic parasitic protozoa. Mol. Immunol. 2021, 133, 34–43. [Google Scholar] [CrossRef]
- Nievas, Y.R.; Lizarraga, A.; Salas, N.; Cóceres, V.M.; de Miguel, N. Extracellular vesicles released by anaerobic protozoan parasites: Current situation. Cell. Microbiol. 2020, 22, e13257. [Google Scholar] [CrossRef]
- Tovy, A.; Siman Tov, R.; Gaentzsch, R.; Helm, M.; Ankri, S. A new nuclear function of the Entamoeba histolytica glycolytic enzyme enolase: The metabolic regulation of cytosine-5 methyltransferase 2 (Dnmt2) activity. PLoS Pathog. 2010, 6, e1000775. [Google Scholar] [CrossRef] [Green Version]
- Hidalgo, M.E.; Sánchez, R.; Pérez, D.G.; Rodríguez, M.A.; García, J.; Orozco, E. Molecular characterization of the Entamoeba histolytica enolase gene and modelling of the predicted protein. FEMS Microbiol. Lett. 1997, 148, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Schulz, E.C.; Tietzel, M.; Tovy, A.; Ankri, S.; Ficner, R. Structure analysis of Entamoeba histolytica enolase. Acta Crystallogr. D 2011, 67, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.; Seo, K.; Yang, M.; Cui, C.; Yang, M.; Xiang, S.; Yan, Z.; Wu, S.; Han, J.; Yu, X.; et al. Mycoplasma suis alpha-enolase subunit vaccine induces an immune response in experimental animals. Vaccines 2021, 9, 1506. [Google Scholar] [CrossRef] [PubMed]
- Téllez-Martínez, D.; Leandro Portuondo, D.; Loesch, M.L.; Batista-Duharte, A.; Zeppone Carlos, I. A recombinant enolase-montanide™ petgel a vaccine promotes a protective Th1 immune response against a highly virulent Sporothrix schenckii by toluene exposure. Pharmaceutics 2019, 11, 144. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Chen, T.; Sun, H.; Tang, Z.; Yu, J.; Lin, Z.; Ren, P.; Zhou, X.; Huang, Y.; Li, X.; et al. Immune response induced by oral delivery of Bacillus subtilis spores expressing enolase of Clonorchis sinensis in grass carps (Ctenopharyngodon idellus). Fish Shellfish Immunol. 2017, 60, 318–325. [Google Scholar] [CrossRef]
- DataBank, P. Enolase 1. Available online: https://www.ebi.ac.uk/pdbe/entry/pdb/3qtp/analysis (accessed on 25 October 2022).
- DataBank, P. Pfam Enolase, N-Terminal Domain. Available online: https://www.ebi.ac.uk/pdbe/entry/view3D/3qtp/?view=entry_index&viewer=litemol (accessed on 25 October 2022).
- DataBank, P. Pfam Enolase, C-Terminal Tim Barrel Domain. Available online: https://www.ebi.ac.uk/pdbe/entry/view3D/3qtp/?view=entry_index&viewer=litemol (accessed on 25 October 2022).
- Hernández-Cuevas, N.A.; Jhingan, G.D.; Petropolis, D.; Vargas, M.; Guillen, N. Acetylation is the most abundant actin modification in Entamoeba histolytica and modifications of actin’s amino-terminal domain change cytoskeleton activities. Cell. Microbiol. 2019, 21, e12983. [Google Scholar] [CrossRef]
- Adeoti, O.M.; Aderinto, A.O.; Adesina, D.A.; Adesanya, V.O.; Olaoye, O.J. A bioinformatics approach to designing a multi-variant vaccine against Entamoeba histolytica. Biomed. Res. J. 2021, 5, 360–370. [Google Scholar]
- Rath, P.P.; Gourinath, S. The actin cytoskeleton orchestra in Entamoeba histolytica. Proteins Struct. Funct. Genet. 2020, 88, 1361–1375. [Google Scholar] [CrossRef]
- Velázquez-Domínguez, J.A.; Hernández-Ramírez, V.I.; Calzada, F.; Varela-Rodríguez, L.; Pichardo-Hernández, D.L.; Bautista, E.; Herrera-Martínez, M.; Castellanos-Mijangos, R.D.; Matus-Meza, A.S.; Chávez-Munguía, B.; et al. Linearolactone and kaempferol disrupt the actin cytoskeleton in Entamoeba histolytica: Inhibition of amoebic liver abscess development. J. Nat. Prod. 2020, 83, 3671–3680. [Google Scholar] [CrossRef]
- Herrera-Martínez, M.; Hernández-Ramírez, V.I.; Hernández-Carlos, B.; Chávez-Munguía, B.; Calderón-Oropeza, M.A.; Talamás-Rohana, P. Antiamoebic activity of Adenophyllum aurantium (L.) Strother and its effect on the actin cytoskeleton of Entamoeba histolytica. Front. Pharmacol. 2016, 7, 169. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Huang, X.; Zhang, G.; Gong, P.; Zhang, X.; Wu, L. Immune response and protective efficacy against homologous challenge in BALB/c mice vaccinated with DNA vaccine encoding Toxoplasma gondii actin depolymerizing factor gene. Vet. Parasitol. 2011, 179, 1–6. [Google Scholar] [CrossRef] [PubMed]
- UNIPROT. Actin. Available online: https://www.uniprot.org/uniprotkb/P11426/entry (accessed on 19 September 2022).
- Davis, P.H.; Chen, M.; Zhang, X.; Clark, C.G.; Townsend, R.R.; Stanley, S.L., Jr. Proteomic comparison of Entamoeba histolytica and Entamoeba dispar and the role of E. histolytica alcohol dehydrogenase 3 in virulence. PLoS Negl. Trop. Dis. 2009, 3, e415. [Google Scholar] [CrossRef]
- König, C.; Meyer, M.; Lender, C.; Nehls, S.; Wallaschkowski, T.; Holm, T.; Matthies, T.; Lercher, D.; Matthiesen, J.; Fehling, H.; et al. An alcohol dehydrogenase 3 (ADH3) from Entamoeba histolytica is involved in the detoxification of toxic aldehydes. Microorganisms 2020, 8, 1608. [Google Scholar] [CrossRef] [PubMed]
- Lowerre, K.; Hemme, C.; Espinosa, A. Prediction of the Entamoeba histolytica alcohol dehydrogenase 2 (EhADH2) protein structure using bioinformatics tools. FASEB J. 2017, 31, 603.23. [Google Scholar] [CrossRef]
- Gabrielle, M.; Leito, J.; Espinosa, A. Structural and biochemical analyses of alcohol dehydrogenase E enzymes from Entamoeba invadens IP-1, E. invadens VK-1:NS and E. dispar. FASEB J. 2017, 31, 606.16. [Google Scholar] [CrossRef]
- Hackey, M.; Rossi, L.; Espinosa, A. Inhibitory effects of substituted pyrazoline derivatives on Entamoeba histolytica alcohol and acetaldehyde dehydrogenase (EhADH2) activities. FASEB J. 2017, 31, 921.4. [Google Scholar] [CrossRef]
- Espinosa, A.; Perdrizet, G.; Paz-y-Miño, C.G.; Lanfranchi, R.; Phay, M. Effects of iron depletion on Entamoeba histolytica alcohol dehydrogenase 2 (EhADH2) and trophozoite growth: Implications for antiamoebic therapy. J. Antimicrob. Chemother. 2009, 63, 675–678. [Google Scholar] [CrossRef] [Green Version]
- Leitao, J.; Oduaran, E.; Rossi, L.; Espinosa, A. Isolation and purification of Entamoeba histolytica alcohol dehydrogenase 2 (EhADH2) enzymatic activities and inhibition by pyrazoline derivatives. FASEB J. 2015, 29, 722.1. [Google Scholar] [CrossRef]
- Espinosa, A.; Clark, D.; Stanley, S.L. Entamoeba histolytica alcohol dehydrogenase 2 (EhADH2) as a target for anti-amoebic agents. J. Antimicrob. Chemother. 2004, 54, 56–59. [Google Scholar] [CrossRef] [Green Version]
- Siman-Tov, R.; Ankri, S. Nitric oxide inhibits cysteine proteinases and alcohol dehydrogenase 2 of Entamoeba histolytica. Parasitol. Res. 2003, 89, 146–149. [Google Scholar] [CrossRef]
- Schlenke, T.A.; McKean, K.A. A role for alcohol dehydrogenase in the Drosophila immune response? Insect Mol. Biol. 2005, 14, 175–178. [Google Scholar] [CrossRef] [PubMed]
- UNIPROT. Alcohol Dehydrogenase 3. Available online: https://www.uniprot.org/uniprotkb/Q24857/entry (accessed on 19 September 2022).
- Wang, G.; Zhu, W. Molecular docking for drug discovery and development: A widely used approach but far from perfect. Future Med. Chem. 2016, 8, 1707–1710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Comput. Aided Drug Des. 2011, 7, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S. Drug and vaccine design against novel coronavirus (2019-nCoV) spike protein through computational approach. Preprints 2020. [Google Scholar] [CrossRef]
Protein | Types of Molecule | Antibody Interaction Study | Signal Peptide/Transmembrane Domain | Used in Vaccine Studies | References |
---|---|---|---|---|---|
Gal/GalNAc lectin | Membrane protein | IgA | Signal peptide | Yes | [13,15,32] |
Cysteine proteinases | Membrane protein | Antigenic | Putative, transmembrane | No | [48,49] |
Lipopeptidophosphoglycan (LPPG) | Macromolecule | The antibody involved was not specified | Signal peptide | No | [51,52,54,55,56] |
Protein disulfide isomerase (PDI) | Membrane protein | Antigenic | Signal peptide | No | [57] |
Thioredoxin | Membrane protein | Antigenic | Signal peptide | No | [57] |
E. histolytica Ubiquitin (Ehub) | Cytosolic protein | IgG | - | No | [69] |
E. histolytica migration inhibitory factor (EhMIF) | Cytosolic protein | The antibody involved was not specified | - | No | [79,80,81] |
Enolase | Cytosolic protein | Antigenic | - | No | [57] |
Actin | Cytosolic protein | Antigenic | - | No | [57] |
Alcohol dehydrogenase (ADH) | Cytosolic protein | Antigenic | - | No | [57] |
Calreticulin (CRT) | Cytosolic protein | Antigenic | - | No | [75,76,77] |
Extracellular vesicles (EVs) | Macromolecule | Modulates the immune system | - | No | [86] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jasni, N.; Saidin, S.; Kin, W.W.; Arifin, N.; Othman, N. Entamoeba histolytica: Membrane and Non-Membrane Protein Structure, Function, Immune Response Interaction, and Vaccine Development. Membranes 2022, 12, 1079. https://doi.org/10.3390/membranes12111079
Jasni N, Saidin S, Kin WW, Arifin N, Othman N. Entamoeba histolytica: Membrane and Non-Membrane Protein Structure, Function, Immune Response Interaction, and Vaccine Development. Membranes. 2022; 12(11):1079. https://doi.org/10.3390/membranes12111079
Chicago/Turabian StyleJasni, Nurhana, Syazwan Saidin, Wong Weng Kin, Norsyahida Arifin, and Nurulhasanah Othman. 2022. "Entamoeba histolytica: Membrane and Non-Membrane Protein Structure, Function, Immune Response Interaction, and Vaccine Development" Membranes 12, no. 11: 1079. https://doi.org/10.3390/membranes12111079
APA StyleJasni, N., Saidin, S., Kin, W. W., Arifin, N., & Othman, N. (2022). Entamoeba histolytica: Membrane and Non-Membrane Protein Structure, Function, Immune Response Interaction, and Vaccine Development. Membranes, 12(11), 1079. https://doi.org/10.3390/membranes12111079