Affinity of Compounds for Phosphatydylcholine-Based Immobilized Artificial Membrane—A Measure of Their Bioconcentration in Aquatic Organisms
Abstract
:1. Introduction
- CAESAR method (Equations (11)–(13)) based on eight descriptors: MlogP (Moriguchi log of the octanol–water partition coefficient), BEHp2 (highest eigenvalue n. 2 of Burden matrix/weighted by atomic polarizabilities), AEige (absolute eigenvalue sum from electronegativity weighted distance matrix), GATS5v (Geary autocorrelation—lag 5/weighted by atomic van der Waals volumes), Cl-089 (Cl attached to C1(sp2)), X0sol (solvation connectivity index chi-0), MATS5v (Moran autocorrelation—lag 5/weighted by atomic van der Waals volumes), SsCl (sum of all (–Cl) E-state values in molecule) [37,43]. According to the CAESAR method, BCF is calculated according to two models, A and B, whichdiffer in the selection of descriptors (with MlogP and BEHp2 being common to A and B), and the BCF value is finally predicted as follows:
- The model suggested by the Technical Guidance Document (TGD) on risk assessment [18] (Equations (14)–(17)):
2. Materials and Methods
2.1. Compounds, IAM Chromatographic Data, Reference BCF Values
2.2. Calculated Descriptors
2.3. Partial Least Squares Approach
2.4. Statistical Tools
- K-fold cross-validation, with n compounds from the initial training set split into k even subsets, (k − 1) of which were used to train a new model and the remaining one to test it; the procedure was repeated k times, each time using a different subset of compounds as a test set. After each cross-validation step, the RMSE (root mean squared error) was calculated for the particular N-compound test subset according to the following Equation (20):
- Relationship between the predicted log BCFpred values (computed for the external test set of 67 compounds 121 to 187 that were not used to build models) with the reference values log BCFEPI—using root mean squared error of prediction (RMSEPext), calculated according to Equation (20);
- Comparison of the predicted log BCFpred values (calculated for 40 compounds, whose experimental log BCFvivo data are available), and these data—using squared coefficient of determination (R2vivo) and root-mean-squared error of prediction (RMSEPvivo), calculated according to Equation (20).
3. Results and Discussion
3.1. Multiple Linear Regression (MLR) Models
3.2. Partial Least Square (PLS) Models
- Models PLS1 based on 16 independent variables—including those involved in MLR analysis and some other descriptors that were not included in MLR to avoid colinearity problems;
- Model PLS2 based on a reduced set of independent variables.
3.3. Artificial Neural Networks
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Pidgeon, C.; Venkataram, U.V. Immobilized Artificial Membrane Chromatography: Supports Composed of Membrane Lipids. Anal. Biochem. 1989, 176, 36–47. [Google Scholar] [CrossRef]
- Sobanska, A.W.; Brzezinska, E. Phospholipid-Based Immobilized Artificial Membrane (IAM) Chromatography: A Powerful Tool to Model Drug Distribution Processes. Curr. Pharm. Des. 2017, 23, 6784–6794. [Google Scholar] [CrossRef]
- Tsopelas, F.; Stergiopoulos, C.; Tsantili-Kakoulidou, A. Immobilized Artificial Membrane Chromatography: From Medicinal Chemistry to Environmental Sciences. ADMET DMPK 2018, 6, 225–241. [Google Scholar] [CrossRef] [Green Version]
- Tsopelas, F.; Stergiopoulos, C.; Tsakanika, L.-A.; Ochsenkühn-Petropoulou, M.; Tsantili-Kakoulidou, A. The Use of Immobilized Artificial Membrane Chromatography to Predict Bioconcentration of Pharmaceutical Compounds. Ecotoxicol. Environ. Saf. 2017, 139, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Stergiopoulos, C.; Makarouni, D.; Tsantili-Kakoulidou, A.; Ochsenkühn-Petropoulou, M.; Tsopelas, F. Immobilized Artificial Membrane Chromatography as a Tool for the Prediction of Ecotoxicity of Pesticides. Chemosphere 2019, 224, 128–139. [Google Scholar] [CrossRef]
- Sobańska, A.W. Immobilized Artificial Membrane Chromatographic and Computational Descriptorsin Studies of Soil-Water Partition of Environmentally Relevant Compounds. Environ. Sci. Pollut.Res. 2022. [Google Scholar] [CrossRef]
- Fent, K.; Zenker, A.; Rapp, M. Widespread Occurrence of Estrogenic UV-Filters in Aquatic Ecosystems in Switzerland. Environ. Pollut. 2010, 158, 1817–1824. [Google Scholar] [CrossRef]
- Gago-Ferrero, P.; Díaz-Cruz, M.S.; Barceló, D. UV Filters Bioaccumulation in Fish from Iberian River Basins. Sci. Total Environ. 2015, 518–519, 518–525. [Google Scholar] [CrossRef] [Green Version]
- Saunders, L.J.; Hoffman, A.D.; Nichols, J.W.; Gobas, F.A.P.C. Dietary Bioaccumulation and Biotransformation of Hydrophobic Organic Sunscreen Agents in Rainbow Trout. Environ. Toxicol. Chem. 2020, 39, 574–586. [Google Scholar] [CrossRef]
- Schneider, S.L.; Lim, H.W. Review of Environmental Effects of Oxybenzone and Other Sunscreen Active Ingredients. J. Am. Acad. Dermatol. 2019, 80, 266–271. [Google Scholar] [CrossRef]
- Vidal-Liñán, L.; Villaverde-de-Sáa, E.; Rodil, R.; Quintana, J.B.; Beiras, R. Bioaccumulation of UV Filters in Mytilus Galloprovincialis Mussel. Chemosphere 2018, 190, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Burkhard, L.P. Evaluation of Published Bioconcentration Factor (BCF) and Bioaccumulation Factor (BAF) Data for Per-and Polyfluoroalkyl Substances Across Aquatic Species. Environ. Toxicol. Chem. 2021, 40, 1530–1543. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ran, Y. Distribution and Bioconcentration of Polycyclic Aromatic Hydrocarbons in Surface Water and Fishes. Sci. World J. 2012, 2012, 632910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, I.T.; Santos, L. Antibiotics in the Aquatic Environments: A Review of the European Scenario. Environ. Int. 2016, 94, 736–757. [Google Scholar] [CrossRef]
- Weisbrod, A.V.; Burkhard, L.P.; Arnot, J.; Mekenyan, O.; Howard, P.H.; Russom, C.; Boethling, R.; Sakuratani, Y.; Traas, T.; Bridges, T.; et al. Work group Report: Review of Fish Bioaccumulation Databases Used to Identify Persistent, Bioaccumulative, Toxic Substances. Environ. Health Perspect. 2007, 115, 255–261. [Google Scholar] [CrossRef] [Green Version]
- Arnot, J.A.; Gobas, F.A. A Review of Bioconcentration Factor (BCF) and Bioaccumulation Factor (BAF) Assessments for Organic Chemicals in Aquatic Organisms. Environ. Rev. 2006, 14, 257–297. [Google Scholar] [CrossRef]
- Arnot, J.A.; Gobas, F.A.P.C. A Generic QSAR for Assessing the Bioaccumulation Potential of Organic Chemicals in Aquatic Food Webs. QSAR Comb. Sci. 2003, 22, 337–345. [Google Scholar] [CrossRef]
- Grisoni, F.; Consonni, V.; Villa, S.; Vighi, M.; Todeschini, R. QSAR Models for Bioconcentration: Is the Increase in the Complexity Justified by More Accurate Predictions? Chemosphere 2015, 127, 171–179. [Google Scholar] [CrossRef]
- Chmiel, T.; Mieszkowska, A.; Kempińska-Kupczyk, D.; Kot-Wasik, A.; Namieśnik, J.; Mazerska, Z. The Impact of Lipophilicity on Environmental Processes, Drug Delivery and Bioavailability of Food Components. Microchem. J. 2019, 146, 393–406. [Google Scholar] [CrossRef]
- Costanza, J.; Lynch, D.G.; Boethling, R.S.; Arnot, J.A. Use of the Bioaccumulation Factor to Screen Chemicals for Bioaccumulation Potential. Environ. Toxicol. Chem. 2012, 31, 2261–2268. [Google Scholar] [CrossRef]
- Gissi, A.; Nicolotti, O.; Carotti, A.; Gadaleta, D.; Lombardo, A.; Benfenati, E. Integration of QSAR Models for Bioconcentration Suitable for REACH. Sci. Total Environ. 2013, 456–457, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Isnard, P.; Lambert, S. Estimating Bioconcentration Factors from Octanol- Water Partition Coefficient and Aqueous Solubility. Chemosphere 1988, 17, 21–34. [Google Scholar] [CrossRef]
- vanGestel, C.A.M.; Otermann, K.; Canton, J.H. Relation between Water Solubility, Octanol/ Water Partition Coefficients, and Bioconcentration of Organic Chemicals in Fish: A Review. Regul. Toxicol. Pharmacol. 1985, 5, 422–431. [Google Scholar] [CrossRef]
- Neely, W.B.; Branson, D.R.; Blau, G.E. Partition Coefficient to Measure Bioconcentration Potential of Organic Chemicals in Fish. Environ. Sci. Technol. 1974, 8, 1113–1115. [Google Scholar] [CrossRef]
- Veith, G.D.; DeFoe, D.L.; Bergstedt, B.V. Measuring and Estimating the Bioconcentration Factor of Chemicals in Fish. J. Fish. Res. Board Can. 1979, 36, 1040–1048. [Google Scholar] [CrossRef]
- Mackay, D. Correlation of Bioconcentration Factors. Environ. Sci. Technol. 1982, 16, 274–278. [Google Scholar] [CrossRef]
- Connell, D.W.; Hawker, D.W. Use of Polynomial Expressions to Describe the Bioconcentration of Hydrophobic Chemicals by Fish. Ecotoxicol. Environ. Saf. 1988, 16, 242–257. [Google Scholar] [CrossRef]
- Bintein, S.; Devillers, J.; Karcher, W. Nonlinear Dependence of Fish Bioconcentration on n-Octanol/ Water Partition Coefficient. SAR QSAR Environ. Res. 1993, 1, 29–39. [Google Scholar] [CrossRef]
- Devillers, J.; Bintein, S.; Domine, D. Comparison of BCF Models Based on LogP. Chemosphere 1996, 33, 1047–1065. [Google Scholar] [CrossRef]
- Spacie, A.; Hamelink, J.L. Alternative Models for Describing the Bioconcentration of Organics in Fish. Environ. Toxicol. Chem. 1982, 1, 309–320. [Google Scholar] [CrossRef]
- Jonker, M.T.O.; van der Heijden, S.A. Response to “Comment on ‘Bioconcentration Factor Hydrophobicity Cutoff: An Artificial Phenomenon Reconstructed’”. Environ. Sci. Technol. 2008, 42, 9451–9452. [Google Scholar] [CrossRef]
- Jonker, M.T.O.; van der Heijden, S.A. Bioconcentration Factor Hydrophobicity Cutoff: An Artificial Phenomenon Reconstructed. Environ. Sci. Technol. 2007, 41, 7363–7369. [Google Scholar] [CrossRef]
- Yang, Z.-Y.; Zeng, E.Y. Comment on “Bioconcentration Factor Hydrophobicity Cutoff: An Artificial Phenomenon Reconstructed”. Environ. Sci. Technol. 2008, 42, 9449–9450. [Google Scholar] [CrossRef] [PubMed]
- Garg, R.; Smith, C.J. Predicting the Bioconcentration Factor of Highly Hydrophobic Organic Chemicals. Food Chem. Toxicol. 2014, 69, 252–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimitrov, S.D.; Dimitrova, N.C.; Walker, J.D.; Veith, G.D.; Mekenyan, O.G. Predicting Bioconcentration Factors of Highly Hydrophobic Chemicals. Effects of Molecular Size. Pure Appl. Chem. 2002, 74, 1823–1830. [Google Scholar] [CrossRef]
- Dimitrov, S.; Dimitrova, N.; Parkerton, T.; Comber, M.; Bonnell, M.; Mekenyan, O. Baseline Model for Identifying the Bioaccumulation Potential of Chemicals. SAR QSAR Environ. Res. 2005, 16, 531–554. [Google Scholar] [CrossRef]
- Lombardo, A.; Roncaglioni, A.; Boriani, E.; Milan, C.; Benfenati, E. Assessment and Validation of the CAESAR Predictive Model for Bioconcentration Factor (BCF) in Fish. Chem. Cent. J. 2010, 4, S1. [Google Scholar] [CrossRef] [Green Version]
- Lunghini, F.; Marcou, G.; Azam, P.; Patoux, R.; Enrici, M.H.; Bonachera, F.; Horvath, D.; Varnek, A. QSPR Models for Bioconcentration Factor (BCF): Are They Able to Predict Data of Industrial Interest? SAR QSAR Environ. Res. 2019, 30, 507–524. [Google Scholar] [CrossRef]
- Miller, T.H.; Gallidabino, M.D.; MacRae, J.I.; Owen, S.F.; Bury, N.R.; Barron, L.P. Prediction of Bioconcentration Factors in Fish and Invertebrates Using Machine Learning. Sci. Total Environ. 2019, 648, 80–89. [Google Scholar] [CrossRef]
- Petoumenou, M.I.; Pizzo, F.; Cester, J.; Fernández, A.; Benfenati, E. Comparison between Bioconcentration Factor (BCF) Data Provided by Industry to the European Chemicals Agency (ECHA) and Data Derived from QSAR Models. Environ. Res. 2015, 142, 529–534. [Google Scholar] [CrossRef]
- Meylan, W.M.; Howard, P.H.; Boethling, R.S.; Aronson, D.; Printup, H.; Gouchie, S. Improved Method for Estimating Bioconcentration/ Bioaccumulation Factor from Octanol/ Water Partition Coefficient. Environ. Toxicol. Chem. 1999, 18, 664–672. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. EPISuiteTM- Estimation Program Interface|USEPA. Available online: https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface (accessed on 10 August 2022).
- Zhao, C.; Boriani, E.; Chana, A.; Roncaglioni, A.; Benfenati, E. A New Hybrid System of QSAR Models for Predicting Bioconcentration Factors (BCF). Chemosphere 2008, 73, 1701–1707. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Xu, F.; Li, B.; Cao, J.; Dawson, R.; Tao, S. Prediction of the Bioconcentration Factor of PCBjs in Fish Using the Molecular Connectivity Index and Fragment Constant Models. Water Environ. Res. 2005, 77, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Tao, S.; Cao, J.; Dawson, R.W. Prediction of Fish Bioconcentration Factors of Nonpolar Organic Pollutants Based on Molecular Connectivity Indices. Chemosphere 1999, 39, 987–999. [Google Scholar] [CrossRef]
- Sabljić, A. The Prediction of Fish Bioconcentration Factors of Organic Pollutants from the Molecular Connectivity Model. Z. Gesamte Hyg. Grenzgeb. 1987, 33, 493–496. [Google Scholar]
- Park, J.H.; Lee, H.J. Estimation of Bioconcentration Factor in Fish, Adsorption Coefficient for Soils and Sediments and Interfacial Tension with Waterf or Organic Nonelectrolytes Based on the Linear Solvation Energy Relationships. Chemosphere 1993, 26, 1905–1916. [Google Scholar] [CrossRef]
- Sahu, V.K.; Singh, R.K. Prediction of the Bioconcentration Factor of Organic Compounds in Fish. CLEAN—Soil Air Water 2009, 37, 850–857. [Google Scholar] [CrossRef]
- Hong, H.; Wang, L.; Han, S.; Zou, G. The Estimation of Bioconcentration Factors of Aromatic Hydrocarbons by High Performance Liquid Chromatography. Toxicol. Environ. Chem. 1996, 56, 185–191. [Google Scholar] [CrossRef]
- Guo, R.; Liang, X.; Chen, J.; Zhang, Q.; Wu, W.; Kettrup, A. Using HPLC Retention Parameters to Estimate Fish Bioconcentration Factors of Organic Compounds. J. Liq. Chromatogr. Relat. Technol. 2004, 27, 1861–1873. [Google Scholar] [CrossRef]
- Sobanska, A. RP-18 TLC Retention Data and Calculated Physico-Chemical Parameters as Predictors of Soil-Water Partition and Bioconcentration of Organic Sunscreens. Chemosphere 2021, 279, 130527. [Google Scholar] [CrossRef]
- Sprunger, L.; Blake-Taylor, B.H.; Wairegi, A.; Acree, W.E.; Abraham, M.H. Characterization of the Retention Behavior of Organic and Pharmaceutical Drug Molecules on an Immobilized Artificial Membrane Column with the Abraham Model. J. Chromatogr. A 2007, 1160, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Neri, I.; Laneri, S.; DiLorenzo, R.; Dini, I.; Russo, G.; Grumetto, L. Parabens Permeation through Biological Membranes: A Comparative Study Using Franz Cell Diffusion System and Biomimetic Liquid Chromatography. Molecules 2022, 27, 4263. [Google Scholar] [CrossRef] [PubMed]
- Russo, G. Study of the Mechanisms of Drug Passage through Biological Barriers Aimed to Optimize Bioavailability and/or Blood-Brain Barrier Permeation. Ph.D. Thesis, University of Naples Federico II, Naples, Italy, 2016. Available online: http://www.fedoa.unina.it/10986/1/Giacomo%20Russo.pdf (accessed on 11 August 2022).
- Soczewiński, E.; Wachtmeister, C.A. The Relation between the Composition of Certain Ternary Two-Phase Solvent Systems and RM Values. J. Chromatogr. A 1962, 7, 311–320. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- Sushko, I.; Novotarskyi, S.; Körner, R.; Pandey, A.K.; Rupp, M.; Teetz, W.; Brandmaier, S.; Abdelaziz, A.; Prokopenko, V.V.; Tanchuk, V.Y.; et al. Online Chemical Modeling Environment (OCHEM): Web Platform for Data Storage, Model Development and Publishing of Chemical Information. J. Comput Aided Mol. Des. 2011, 25, 533–554. [Google Scholar] [CrossRef] [Green Version]
- Flieger, J.; Tatarczak-Michalewska, M.; Kowalska, A.; Rządkowska, M.; Szacoń, E.; Kaczor, A.A.; Matosiuk, D. Fragmental Method KOWWIN as the Powerful Tool for Prediction of Chromatographic Behavior of Novel Bioactive Urea Derivatives. J. Braz. Chem. Soc. 2016, 27, 2312–2321. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, X.; Nguyen, T.T.; Liu, J.; Wu, T.; Lee, E.; Tu, X.M. Partial Least Squares Regression and Principal Component Analysis: Similarity and Differences between Two Popular Variable Reduction Approaches. Gen. Psychiatry 2022, 35, e100662. [Google Scholar] [CrossRef]
- Garthwaite, P.H. An Interpretation of Partial Least Squares. J. Am. Stat. Assoc. 1994, 89, 122–127. [Google Scholar] [CrossRef]
- Næs, T. (Ed.) . A User-Friendly Guide to Multivariate Calibration and Classification; NIR Publications: Chichester, UK, 2004; ISBN 978-0-9528666-2-6. [Google Scholar]
- Clark, D.E. Rapid Calculation of Polar Molecular Surface Area and Its Application to the Prediction of Transport Phenomena. 1. Prediction of Intestinal Absorption. J. Pharm. Sci. 1999, 88, 807–814. [Google Scholar] [CrossRef]
- Clark, D.E. Rapid Calculation of Polar Molecular Surface Area and Its Application to the Prediction of Transport Phenomena. 2. Prediction of Blood–Brain Barrier Penetration. J. Pharm. Sci. 1999, 88, 815–821. [Google Scholar] [CrossRef]
- Sobańska, A.W.; Brzezińska, E. IAM Chromatographic Models of Skin Permeation. Molecules 2022, 27, 1893. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-H.; Xia, Z.-N.; Yan, L.; Liu, S.-S. Prediction of Placental Barrier Permeability: A Model Based on Partial Least Squares Variable Selection Procedure. Molecules 2015, 20, 8270–8286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carracedo-Reboredo, P.; Liñares-Blanco, J.; Rodríguez-Fernández, N.; Cedrón, F.; Novoa, F.J.; Carballal, A.; Maojo, V.; Pazos, A.; Fernandez-Lozano, C. A Review on Machine Learning Approaches and Trends in Drug Discovery. Comput. Struct. Biotechnol. J. 2021, 19, 4538–4558. [Google Scholar] [CrossRef] [PubMed]
- Ciura, K.; Kovačević, S.; Pastewska, M.; Kapica, H.; Kornela, M.; Sawicki, W. Prediction of the Chromatographic Hydrophobicity Index with Immobilized Artificial Membrane Chromatography Using Simple Molecular Descriptors and Artificial Neural Networks. J. Chromatogr. A 2021, 1660, 462666. [Google Scholar] [CrossRef]
- Lipinski, C.A. Rule of Five in 2015 and beyond: Target and Ligand Structural Limitations, Ligand Chemistry Structure and Drug Discovery Project Decisions. Adv. Drug Deliv. Rev. 2016, 101, 34–41. [Google Scholar] [CrossRef]
- Lipinski, C.A. Lead- and Drug-like Compounds: The Rule-of-Five Revolution. Drug Discov. Today: Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef]
- Chedik, L.; Mias-Lucquin, D.; Bruyere, A.; Fardel, O. In Silico Prediction for Intestinal Absorption and Brain Penetration of Chemical Pesticides in Humans. Int. J. Environ. Res. Public Health 2017, 14, 708. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.; Garcia-Contreras, L. Mechanisms of Absorption and Elimination of Drugs Administered by Inhalation. Ther. Deliv. 2013, 4, 1027–1045. [Google Scholar] [CrossRef]
- Eixarch, H.; Haltner-Ukomadu, E.; Beisswenger, C.; Bock, U. Drug Delivery to the Lung: Permeability and Physicochemical Characteristics of Drugs as the Basis for a Pulmonary Biopharmaceutical Classification System (PBCS). J. Epithel. Biol. Pharmacol. 2010, 3, 1–14. [Google Scholar]
log Kow | Non-Ionic | log Kow | Ionic | ||
---|---|---|---|---|---|
Meylan | US EPA | Meylan a | US EPA b | ||
below 1 | 0.50 | 0.50 | below 5 | 0.50 | |
1 to 7 | 0.77 log Kow− 0.70 + ΣFi | 0.6598 log Kow− 0.333 + ΣFi | 5 to 6 | 0.75 | |
7 to 10.5 | −1.37 log Kow+ 14.4 + ΣFi | −0.49 log Kow+ 7.554 + ΣFi | 6 to 7 a or 8 b | 1.75 | |
7 a or 8 b to 9 | 1.00 | ||||
above 10.5 | 0.50 | above 9 | 0.50 |
Variable | VIP | Importance |
---|---|---|
log kwIAM | 2.53 | 1 |
MR | 1.08 | 2 |
#HvAt | 0.97 | 3 |
Mw | 0.97 | 4 |
HD | 0.92 | 5 |
DipPCh | 0.88 | 6 |
Et | 0.84 | 7 |
FRB | 0.84 | 8 |
DipS | 0.83 | 9 |
TPSA | 0.76 | 10 |
#ArHvAt | 0.72 | 11 |
DipH | 0.71 | 12 |
EHOMO | 0.69 | 13 |
HA | 0.64 | 14 |
ELUMO | 0.48 | 15 |
FCsp3 | 0.32 | 16 |
MLR1 | MLR2 | MLR3 | PLS1 | PLS2 | ANN14 | ANN43 | ANN44 | |
---|---|---|---|---|---|---|---|---|
RMSECV | 0.30 | 0.25 | 0.17 | 0.26 | 0.29 | - | - | - |
RMSEPext | 0.35 | 0.42 | 0.45 | 0.45 | 0.46 | 0.47 | 0.47 | 0.47 |
RMSEPvivo | 0.35 | 0.27 | 0.27 | 0.27 | 0.31 | 0.28 | 0.28 | 0.30 |
R2vivo | 0.74 | 0.83 | 0.83 | 0.83 | 0.77 | 0.81 | 0.82 | 0.79 |
log kwIAM | MW | #HAt | #ArHAt | FCsp3 | FRB | HA | HD | MR | TPSA | Et | EHOMO | ELUMO | DipPCh | DipH | DipS | log Kow | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
log kwIAM | 1.00 | 0.51 | 0.51 | 0.39 | −0.07 | 0.34 | 0.09 | −0.15 | 0.57 | −0.08 | −0.44 | 0.38 | −0.17 | −0.09 | 0.05 | −0.04 | 0.84 |
Mw | 0.51 | 1.00 | 0.98 | 0.50 | 0.07 | 0.62 | 0.78 | 0.38 | 0.98 | 0.64 | −0.86 | 0.49 | −0.42 | 0.45 | 0.52 | 0.49 | 0.32 |
#HAt | 0.51 | 0.98 | 1.00 | 0.52 | 0.06 | 0.63 | 0.78 | 0.37 | 0.99 | 0.64 | −0.87 | 0.53 | −0.39 | 0.46 | 0.52 | 0.49 | 0.32 |
#ArHAt | 0.39 | 0.50 | 0.52 | 1.00 | −0.58 | 0.16 | 0.27 | 0.02 | 0.53 | 0.17 | −0.44 | 0.56 | −0.52 | 0.13 | 0.40 | 0.16 | 0.29 |
FCsp3 | −0.07 | 0.07 | 0.06 | −0.58 | 1.00 | 0.27 | 0.09 | 0.06 | 0.08 | 0.00 | −0.01 | −0.29 | 0.59 | −0.01 | −0.07 | −0.01 | −0.04 |
FRB | 0.34 | 0.62 | 0.63 | 0.16 | 0.27 | 1.00 | 0.59 | 0.31 | 0.63 | 0.45 | −0.52 | 0.31 | −0.06 | 0.26 | 0.33 | 0.31 | 0.25 |
HA | 0.09 | 0.78 | 0.78 | 0.27 | 0.09 | 0.59 | 1.00 | 0.53 | 0.70 | 0.86 | −0.75 | 0.25 | −0.39 | 0.61 | 0.54 | 0.61 | −0.11 |
HD | −0.15 | 0.38 | 0.37 | 0.02 | 0.06 | 0.31 | 0.53 | 1.00 | 0.33 | 0.67 | −0.35 | 0.26 | −0.14 | 0.26 | 0.52 | 0.28 | −0.27 |
MR | 0.57 | 0.98 | 0.99 | 0.53 | 0.08 | 0.63 | 0.70 | 0.33 | 1.00 | 0.57 | −0.84 | 0.56 | −0.36 | 0.41 | 0.51 | 0.44 | 0.38 |
TPSA | −0.08 | 0.64 | 0.64 | 0.17 | 0.00 | 0.45 | 0.86 | 0.67 | 0.57 | 1.00 | −0.63 | 0.21 | −0.43 | 0.67 | 0.55 | 0.68 | −0.28 |
Et | −0.44 | −0.86 | −0.87 | −0.44 | −0.01 | −0.52 | −0.75 | −0.35 | −0.84 | −0.63 | 1.00 | −0.43 | 0.42 | −0.48 | −0.42 | −0.49 | −0.25 |
EHOMO | 0.38 | 0.49 | 0.53 | 0.56 | −0.29 | 0.31 | 0.25 | 0.26 | 0.56 | 0.21 | −0.43 | 1.00 | −0.23 | 0.13 | 0.44 | 0.19 | 0.26 |
ELUMO | −0.17 | −0.42 | −0.39 | −0.52 | 0.59 | −0.06 | −0.39 | −0.14 | −0.36 | −0.43 | 0.42 | −0.23 | 1.00 | −0.39 | −0.27 | −0.38 | −0.05 |
DipPCh | −0.09 | 0.45 | 0.46 | 0.13 | −0.01 | 0.26 | 0.61 | 0.26 | 0.41 | 0.67 | −0.48 | 0.13 | −0.39 | 1.00 | 0.33 | 0.97 | −0.28 |
DipH | 0.05 | 0.52 | 0.52 | 0.40 | −0.07 | 0.33 | 0.54 | 0.52 | 0.51 | 0.55 | −0.42 | 0.44 | −0.27 | 0.33 | 1.00 | 0.44 | −0.11 |
DipS | −0.04 | 0.49 | 0.49 | 0.16 | −0.01 | 0.31 | 0.61 | 0.28 | 0.44 | 0.68 | −0.49 | 0.19 | −0.38 | 0.97 | 0.44 | 1.00 | −0.25 |
log Kow | 0.84 | 0.32 | 0.32 | 0.29 | −0.04 | 0.25 | −0.11 | −0.27 | 0.38 | −0.28 | −0.25 | 0.26 | −0.05 | −0.28 | −0.11 | −0.25 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobańska, A.W. Affinity of Compounds for Phosphatydylcholine-Based Immobilized Artificial Membrane—A Measure of Their Bioconcentration in Aquatic Organisms. Membranes 2022, 12, 1130. https://doi.org/10.3390/membranes12111130
Sobańska AW. Affinity of Compounds for Phosphatydylcholine-Based Immobilized Artificial Membrane—A Measure of Their Bioconcentration in Aquatic Organisms. Membranes. 2022; 12(11):1130. https://doi.org/10.3390/membranes12111130
Chicago/Turabian StyleSobańska, Anna W. 2022. "Affinity of Compounds for Phosphatydylcholine-Based Immobilized Artificial Membrane—A Measure of Their Bioconcentration in Aquatic Organisms" Membranes 12, no. 11: 1130. https://doi.org/10.3390/membranes12111130
APA StyleSobańska, A. W. (2022). Affinity of Compounds for Phosphatydylcholine-Based Immobilized Artificial Membrane—A Measure of Their Bioconcentration in Aquatic Organisms. Membranes, 12(11), 1130. https://doi.org/10.3390/membranes12111130