Development and Implementation of MBR Monitoring: Use of 2D Fluorescence Spectroscopy
Abstract
:1. Monitoring of Membrane Bioreactors
2. Two-Dimensional Fluorescence Spectroscopy
2.1. Use of 2D Fluorescence Spectroscopy to Characterize MBR Systems
2.2. Extraction of Information from Fluorescence Data
2.3. Machine Learning and 2D Fluorescence Spectroscopy for MBR Monitoring
3. Conclusions and Future Perspectives
- Using an optical probe, it is possible to collect fluorescence EEMs either from liquid media or from membrane surfaces.
- It does not consume reagents, and it can be applied online and without disturbing the system.
- As a fingerprinting technique, the use of EEMs enables characterizing the status of the system and can be used as a multiparameter tool with reduced analytical effort.
- After the initial establishment of the multivariate statistical models for a given process, the application of machine learning to fluorescence enables the continuous update and improvement of models with new process data (extending the domain of applicability).
- The mathematical multivariate approaches followed so far can be used to explore further information contained in fluorescence spectra to predict additional performance parameters.
- The acquisition of fluorescence spectra at the membrane surface, in situ, should also be considered in future research work.
- Machine learning can be used to integrate different monitoring and operating parameters in user-friendly monitoring systems (which translate the monitoring data into performance parameters that can be designed to support operating decisions) and implement automatic control.
- The implementation of such a monitoring (and control) tool requires a simple, robust, and economic spectrofluorometer equipped with optical probes and the use of an optical switchbox for monitoring at multiple locations of the system.
- Above all, the development of a dedicated and user-friendly software is essential to integrate the acquisition of fluorescence data, other data sources, and mathematical tools.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Meng, F.; Chae, S.-R.R.; Drews, A.; Kraume, M.; Shin, H.-S.S.; Yang, F. Recent Advances in Membrane Bioreactors (MBRs): Membrane Fouling and Membrane Material. Water Res. 2009, 43, 1489–1512. [Google Scholar] [CrossRef] [PubMed]
- The Water Environment Federation; World Powerlifting Congress Federation; American Water Works Association; American Public Health Association. Standard Methods for the Examination of Water and Wastewater; The Water Environment Federation: Alexandria, VA, USA, 1980. [Google Scholar]
- Drews, A. Membrane Fouling in Membrane Bioreactors-Characterisation, Contradictions, Cause and Cures. J. Memb. Sci. 2010, 363, 1–28. [Google Scholar] [CrossRef]
- Le-Clech, P.; Chen, V.; Fane, T.A.G. Fouling in Membrane Bioreactors Used in Wastewater Treatment. J. Memb. Sci. 2006, 284, 17–53. [Google Scholar] [CrossRef]
- Rosenberger, S.; Evenblij, H.; Tepoele, S.; Wintgens, T.; Laabs, C. The Importance of Liquid Phase Analyses to Understand Fouling in Membrane Assisted Activated Sludge Processes—Six Case Studies of Different European Research Groups. J. Memb. Sci. 2005, 263, 113–126. [Google Scholar] [CrossRef]
- Zhang, J.; Chua, H.C.; Zhou, J.; Fane, A.G. Factors Affecting the Membrane Performance in Submerged Membrane Bioreactors. J. Memb. Sci. 2006, 284, 54–66. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.; Hamilton, J.; Rebers, P.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Lyko, S.; Wintgens, T.; Alhalbouni, D.; Baumgarten, S.; Tacke, D.; Drensla, K.; Janot, A.; Dott, W.; Pinnekamp, J.; Melin, T. Long-Term Monitoring of a Full-Scale Municipal Membrane Bioreactor—Characterisation of Foulants and Operational Performance. J. Memb. Sci. 2008, 317, 78–87. [Google Scholar] [CrossRef]
- Her, N.; Amy, G.; Mcknight, D.; Sohn, J.; Yoon, Y. Characterization of DOM as a Function of MW by Fluorescence EEM and HPLC-SEC Using UVA, DOC, and Fluorescence Detection. Water Res. 2003, 37, 4295–4303. [Google Scholar] [CrossRef]
- Rosenberger, S.; Laabs, C.; Lesjean, B.; Gnirss, R.; Amy, G.; Jekel, M.; Schrotter, J.-C. Impact of Colloidal and Soluble Organic Material on Membrane Performance in Membrane Bioreactors for Municipal Wastewater Treatment. Water Res. 2006, 40, 710–720. [Google Scholar] [CrossRef]
- Jiang, T.; Kennedy, M.D.; De Schepper, V.; Nam, S.-N.; Nopens, I.; Vanrolleghem, P.A.; Amy, G. Characterization of Soluble Microbial Products and Their Fouling Impacts in Membrane Bioreactors. Environ. Sci. Technol. 2010, 44, 6642–6648. [Google Scholar] [CrossRef] [PubMed]
- Kakuda, T.; Iwasaki, H.; Huang, X.; Kimura, K. Intensive Monitoring of Sludge Filterability of a Pilot-Scale Membrane Bioreactor Treating Municipal Wastewater for Better Interpretation of Fouling. J. Water Process Eng. 2021, 40, 101970. [Google Scholar] [CrossRef]
- Wu, B.; Yi, S.; Fane, A.G. Microbial Behaviors Involved in Cake Fouling in Membrane Bioreactors under Different Solids Retention Times. Bioresour. Technol. 2011, 102, 2511–2516. [Google Scholar] [CrossRef] [PubMed]
- Chang, I.S.; Judd, S.J. Domestic Wastewater Treatment by a Submerged MBR (Membrane Bio-Reactor) with Enhanced Air Sparging. Water Sci. Technol. 2003, 47, 149–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, Y.; Kim, H.S.; Ham, S.Y.; Park, J.H.; Park, H.D. Investigation of Critical Sludge Characteristics for Membrane Fouling in a Submerged Membrane Bioreactor: Role of Soluble Microbial Products and Extracted Extracellular Polymeric Substances. Chemosphere 2021, 271, 129879. [Google Scholar] [CrossRef]
- Guglielmi, G.; Saroj, D.P.; Chiarani, D.; Andreottola, G. Sub-Critical Fouling in a Membrane Bioreactor for Municipal Wastewater Treatment: Experimental Investigation and Mathematical Modelling. Water Res. 2007, 41, 3903–3914. [Google Scholar] [CrossRef]
- Wu, X.; Han, H.; Qiao, J. Data-Driven Intelligent Warning Method for Membrane Fouling. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 3318–3329. [Google Scholar] [CrossRef]
- Kamali, M.; Appels, L.; Yu, X.; Aminabhavi, T.M.; Dewil, R. Artificial Intelligence as a Sustainable Tool in Wastewater Treatment Using Membrane Bioreactors. Chem. Eng. J. 2021, 417, 128070. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, Z.; Du, X.; Gong, B.; Jegatheesan, V.; Haq, I.U. Recent Advances in the Prediction of Fouling in Membrane Bioreactors. Membranes 2021, 11, 381. [Google Scholar] [CrossRef]
- Wolf, G.; Almeida, J.S.; Pinheiro, C.; Correia, V.; Rodrigues, C.; Reis, M.A.; Crespo, J.G. Two-Dimensional Fluorometry Coupled with Artificial Neural Networks: A Novel Method for on-Line Monitoring of Complex Biological Processes. Biotechnol. Bioeng. 2001, 72, 297–306. [Google Scholar] [CrossRef]
- Lakowicz, J.R. (Ed.) Principles of Fluorescence Spectroscopy; Springer: New York, NY, USA, 2006; ISBN 978-0-387-31278-1. [Google Scholar]
- Portugal, C.A.M.; Galinha, C.F. Fluorescence Excitation-Emission Matrix (EEM). In Encyclopedia of Membranes; Springer: Berlin/Heidelberg, Germany, 2016; pp. 786–788. [Google Scholar]
- Kimura, K.; Naruse, T.; Watanabe, Y. Changes in Characteristics of Soluble Microbial Products in Membrane Bioreactors Associated with Different Solid Retention Times: Relation to Membrane Fouling. Water Res. 2009, 43, 1033–1039. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wu, Z.; Tang, S. Characterization of Dissolved Organic Matter in a Submerged Membrane Bioreactor by Using Three-Dimensional Excitation and Emission Matrix Fluorescence Spectroscopy. Water Res. 2009, 43, 1533–1540. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, P.; Wang, Q.; Wu, Z.; Zhou, Q.; Yang, D. Effective Control of Membrane Fouling by Filamentous Bacteria in a Submerged Membrane Bioreactor. Chem. Eng. J. 2010, 158, 608–615. [Google Scholar] [CrossRef]
- Wang, Z.; Tang, S.; Zhu, Y.; Wu, Z.; Zhou, Q.; Yang, D. Fluorescent Dissolved Organic Matter Variations in a Submerged Membrane Bioreactor under Different Sludge Retention Times. J. Memb. Sci. 2010, 355, 151–157. [Google Scholar] [CrossRef]
- Zhu, J.; You, H.; Yong, H.; Li, Z.; Xie, B.; Chen, H. Impacts of Bio-Carriers on the Characteristics of Cake Layer and Membrane Fouling in a Novel Hybrid Membrane Bioreactor for Treating Mariculture Wastewater. Chemosphere 2022, 300, 134593. [Google Scholar] [CrossRef]
- Teychene, B.; Guigui, C.; Cabassud, C.; Amy, G. Toward a Better Identification of Foulant Species in MBR Processes. Desalination 2008, 231, 27–34. [Google Scholar] [CrossRef]
- Rodríguez-Vidal, F.J.; García-Valverde, M.; Ortega-Azabache, B.; González-Martínez, Á.; Bellido-Fernández, A.; Díez-Blanco, V.; Ruíz-Pérez, M.O. Monitoring the Performance of Wastewater Treatment Plants for Organic Matter Removal Using Excitation-Emission Matrix Fluorescence. Microchem. J. 2022, 175, 107177. [Google Scholar] [CrossRef]
- Liu, T.; Chen, Z.; Yu, W.; You, S. Characterization of Organic Membrane Foulants in a Submerged Membrane Bioreactor with Pre-Ozonation Using Three-Dimensional Excitation e Emission Matrix Fluorescence Spectroscopy. Water Res. 2011, 45, 2111–2121. [Google Scholar] [CrossRef]
- Ma, D.; Gao, Y.; Gao, B.; Wang, Y.; Yue, Q.; Li, Q. Impacts of Powdered Activated Carbon Addition on Trihalomethane Formation Reactivity of Dissolved Organic Matter in Membrane Bioreactor Effluent. Chemosphere 2014, 117, 338–344. [Google Scholar] [CrossRef]
- Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K. Fluorescence Excitation−Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. Environ. Sci. Technol. 2003, 37, 5701–5710. [Google Scholar] [CrossRef]
- Zhang, D.; Trzcinski, A.P.; Luo, J.; Stuckey, D.C.; Tan, S.K. Fate and Behavior of Dissolved Organic Matter in a Submerged Anoxic-Aerobic Membrane Bioreactor (MBR). Environ. Sci. Pollut. Res. 2018, 25, 4289–4302. [Google Scholar] [CrossRef] [PubMed]
- Poojamnong, K.; Tungsudjawong, K.; Khongnakorn, W.; Jutaporn, P. Characterization of Reversible and Irreversible Foulants in Membrane Bioreactor (MBR) for Eucalyptus Pulp and Paper Mill Wastewater Treatment Using Fluorescence Regional Integration. J. Environ. Chem. Eng. 2020, 8, 104231. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, J.; Gao, B.; Sillanpää, M. Landfill Leachate Treatment In-Depth by Bio-Chemical Strategy: Microbial Activation and Catalytic Ozonation Mechanism. Chem. Eng. J. 2022, 444, 136464. [Google Scholar] [CrossRef]
- Bro, R. PARAFAC. Tutorial and Applications. Chemom. Intell. Lab. Syst. 1997, 38, 149–171. [Google Scholar] [CrossRef]
- Stedmon, C.A.; Bro, R. Characterizing Dissolved Organic Matter Fluorescence with Parallel Factor Analysis: A Tutorial. Limnol. Oceanogr. Methods 2008, 6, 572–579. [Google Scholar] [CrossRef]
- Carstea, E.M.; Bridgeman, J.; Baker, A.; Reynolds, D.M. Fluorescence Spectroscopy for Wastewater Monitoring: A Review. Water Res. 2016, 95, 205–219. [Google Scholar] [CrossRef]
- Xue, Z.; Lv, Z.; Liu, C.; Yang, X.; Yu, S.; Li, L. Chromatographic and Spectroscopic Comparison of Dissolved Organic Matter Variation in Anaerobic-Anoxic-Oxic Process with Tertiary Filtration and Membrane Bioreactor. J. Water Process Eng. 2022, 47, 102693. [Google Scholar] [CrossRef]
- Cai, W.; Liu, J.; Zhu, X.; Zhang, X.; Liu, Y. Fate of Dissolved Organic Matter and Byproducts Generated from On-Line Chemical Cleaning with Sodium Hypochlorite in MBR. Chem. Eng. J. 2017, 323, 233–242. [Google Scholar] [CrossRef]
- Yu, J.; Xiao, K.; Xue, W.; Shen, Y.; Tan, J.; Liang, S.; Wang, Y.; Huang, X. Excitation-Emission Matrix (EEM) Fluorescence Spectroscopy for Characterization of Organic Matter in Membrane Bioreactors: Principles, Methods and Applications. Front. Environ. Sci. Eng. 2020, 14, 31. [Google Scholar] [CrossRef]
- Jacquin, C.; Lesage, G.; Traber, J.; Pronk, W.; Heran, M. Three-Dimensional Excitation and Emission Matrix Fluorescence (3DEEM) for Quick and Pseudo-Quantitative Determination of Protein- and Humic-like Substances in Full-Scale Membrane Bioreactor (MBR). Water Res. 2017, 118, 82–92. [Google Scholar] [CrossRef]
- Lindemann, C.; Marose, S.; Nielsen, H.; Scheper, T. 2-Dimensional Fluorescence Spectroscopy for on-Line Bioprocess Monitoring. Sens. Actuators B Chem. 1998, 51, 273–277. [Google Scholar] [CrossRef]
- Galinha, C.F.; Carvalho, G.; Portugal, C.A.M.; Guglielmi, G.; Reis, M.A.M.; Crespo, J.G. Two-Dimensional Fluorescence as a Fingerprinting Tool for Monitoring Wastewater Treatment Systems. J. Chem. Technol. Biotechnol. 2011, 86, 985–992. [Google Scholar] [CrossRef]
- Galinha, C.F.; Carvalho, G.; Portugal, C.A.M.; Guglielmi, G.; Reis, M.A.M.; Crespo, J.G. Multivariate Statistically-Based Modelling of a Membrane Bioreactor for Wastewater Treatment Using 2D Fluorescence Monitoring Data. Water Res. 2012, 46, 3623–3636. [Google Scholar] [CrossRef] [PubMed]
- Pons, M.-N.; Le Bonté, S.; Potier, O. Spectral Analysis and Fingerprinting for Biomedia Characterisation. J. Biotechnol. 2004, 113, 211–230. [Google Scholar] [CrossRef] [PubMed]
- Lavine, B.K.; Davidson, C.E.; Moores, A.J. Genetic Algorithms for Spectral Pattern Recognition. Vib. Spectrosc. 2002, 28, 83–95. [Google Scholar] [CrossRef]
- Tartakovsky, B.; Sheintuch, M.; Hilmer, J.-M.M.; Scheper, T. Application of Scanning Fluorometry for Monitoring of a Fermentation Process. Biotechnol. Prog. 1996, 12, 126–131. [Google Scholar] [CrossRef]
- Tartakovsky, B.; Sheintuch, M.; Hilmer, J.; Scheper, T. Modelling of E. coli Fermentations: Comparison of Multicompartment and Variable Structure Models. Bioprocess Eng. 1997, 16, 323–329. [Google Scholar]
- Marose, S.; Lindemann, C.; Scheper, T. Two-Dimensional Fluorescence Spectroscopy: A New Tool for on-Line Bioprocess Monitoring. Biotechnol. Prog. 1998, 14, 63–74. [Google Scholar] [CrossRef]
- Wolf, G.; Almeida, J.S.; Reis, M.A.M.; Crespo, J.G. Modelling of the Extractive Membrane Bioreactor Process Based on Natural Fluorescence Fingerprints and Process Operation History. Water Sci. Technol. 2005, 51, 51–58. [Google Scholar] [CrossRef]
- Wolf, G.; Almeida, J.S.; Crespo, J.G.; Reis, M.A.M. An Improved Method for Two-Dimensional Fluorescence Monitoring of Complex Bioreactors. J. Biotechnol. 2007, 128, 801–812. [Google Scholar] [CrossRef]
- Galinha, C.F.; Carvalho, G.; Portugal, C.A.M.; Guglielmi, G.; Oliveira, R.; Crespo, J.G.; Reis, M.A.M. Real-Time Monitoring of Membrane Bioreactors with 2D-Fluorescence Data and Statistically Based Models. Water Sci. Technol. 2011, 63, 1381–1388. [Google Scholar] [CrossRef]
- Galinha, C.F.; Guglielmi, G.; Carvalho, G.; Portugal, C.A.M.; Crespo, J.G.; Reis, M.A.M. Development of a Hybrid Model Strategy for Monitoring Membrane Bioreactors. J. Biotechnol. 2013, 164, 386–395. [Google Scholar] [CrossRef]
- Pawlowski, S.; Galinha, C.F.; Crespo, J.G.; Velizarov, S. Prediction of Reverse Electrodialysis Performance by Inclusion of 2D Fluorescence Spectroscopy Data into Multivariate Statistical Models. Sep. Purif. Technol. 2015, 150, 159–169. [Google Scholar] [CrossRef]
- Pawlowski, S.; Galinha, C.F.; Crespo, J.G.; Velizarov, S. 2D Fluorescence Spectroscopy for Monitoring Ion-Exchange Membrane Based Technologies—Reverse Electrodialysis (RED). Water Res. 2016, 88, 184–198. [Google Scholar] [CrossRef]
- Lejarazu-larrañaga, A.; Ortiz, J.M.; Molina, S.; Pawlowski, S. Nitrate Removal by Donnan Dialysis and Anion-Exchange Membrane Bioreactor Using Upcycled End-of-Life Reverse Osmosis Membranes. Membranes 2022, 12, 101. [Google Scholar] [CrossRef]
- Cifuentes-Cabezas, M.; Galinha, C.F.; Crespo, J.G.; Vincent-Vela, M.C.; Mendoza-Roca, J.A.; Alvarez-Blanco, S. Nanofiltration of Wastewaters from Olive Oil Production: Study of Operating Conditions and Analysis of Fouling by 2D Fluorescence and FTIR Spectroscopy. Chem. Eng. J. 2022, 454, 140025. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-Regression: A Basic Tool of Chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Galinha, C.F.; Sanches, S.; Crespo, J.G. Membrane Bioreactors. In Fundamental Modelling of Membrane Systems; Elsevier: Amsterdam, The Netherlands, 2018; pp. 209–249. ISBN 9780128134849. [Google Scholar]
- Galinha, C.F.; Crespo, J.G. From Black Box to Machine Learning: A Journey through Membrane Process Modelling. Membranes 2021, 11, 574. [Google Scholar] [CrossRef]
Process | Part of Spectra | Sample Preparation | Data Interpretation | Inputs | Outputs | Year | Ref |
---|---|---|---|---|---|---|---|
Microorganism cultivation | Selected regions | No | Selection of Ex/Em pairs combined with multivariate data analysis | Selected pairs of Ex/Em | Several performance parameters (cell concentration, medium composition, turbidity) | 1996 to 1998 | [44,49,50,51] |
Extractive MBR | Entire EEM | No | ANN | Entire EEMs | Outlet concentration of 1,2-dichloroethane (pollutant); ammonia; chloride | 2001 | [21] |
Extractive MBR | Entire EEM | No | ANN | Operational parameters (present and past) + entire EEMs | Seven performance parameters | 2005 | [52] |
Extractive MBR | Entire EEM | No | PCA + ANN | Process performance data + principal components of EEMs | Seven performance parameters | 2007 | [53] |
MBR | Entire EEM | No | PCA + PLS regression | Principal components of EEMs | COD in permeate | 2011 | [45] |
MBR | Entire EEM | No | PLS regression | Entire EEMs | COD in feed; COD in permeate | 2011 | [54] |
MBR | Entire EEM | No | PCA + PLS + input selection | Principal components of EEMs; additional monitoring parameters | Seven performance parameters | 2012 | [46] |
MBR | Entire EEM | No | Mechanistic modeling + PLS regression with PCA of EEMs | Characterization parameters + principal components of EEMs | MLSS; COD in permeate; NO2 + NO3 in permeate | 2013 | [55] |
Reverse electrodialysis | Entire EEM | Directly at membrane surface | PCA + PLS regression | Operating data + principal components of EEMs | Pressure drop; stack electric resistance; net power density | 2015 | [56] |
Reverse electrodialysis | Entire EEM | Directly at membrane surface | PCA | Principal components of EEMs | Qualitative analysis of membranes surface | 2016 | [57] |
MBR | Specific peaks | No | PARAFAC | PARAFAC components | Qualitative analysis of PARAFAC components | 2017 | [41] |
MBR | Regions | Dilution | FRI | Volume of fluorescence from EEMs regions | Protein-like and humic-like substances | 2017 | [43] |
MBR and other | Regions; peaks | No | FRI; PARAFAC | PARAFAC components | Qualitative analysis of PARAFAC components | 2022 | [40] |
Anion-exchange MBR | Entire EEM | Directly at membrane surface | PCA | Principal components of EEMs | Qualitative analysis of membranes surface | 2022 | [58] |
Nanofiltration | Entire EEM | Directly at membrane surface | PCA | Principal components of EEMs | Qualitative analysis of membranes surface | 2023 | [59] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galinha, C.F.; Crespo, J.G. Development and Implementation of MBR Monitoring: Use of 2D Fluorescence Spectroscopy. Membranes 2022, 12, 1218. https://doi.org/10.3390/membranes12121218
Galinha CF, Crespo JG. Development and Implementation of MBR Monitoring: Use of 2D Fluorescence Spectroscopy. Membranes. 2022; 12(12):1218. https://doi.org/10.3390/membranes12121218
Chicago/Turabian StyleGalinha, Claudia F., and João G. Crespo. 2022. "Development and Implementation of MBR Monitoring: Use of 2D Fluorescence Spectroscopy" Membranes 12, no. 12: 1218. https://doi.org/10.3390/membranes12121218