Life Cycle, PESTLE and Multi-Criteria Decision Analysis of Membrane Contactor-Based Nitrogen Recovery Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Introduction of the Investigated Process
2.2. Examined Life Cycle Assessment Methods
2.3. Introduction of the Multi-Criteria Analysis (MCDA)
3. Results and Discussion
3.1. Demonstrated Results Implemented with LCA Methods
3.2. Results of the MCDA Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Uzkurt Kaljunen, J.; Al-Juboori, R.A.; Mikola, A.; Righetto, I.; Konola, I. Newly Developed Membrane Contactor-Based N and P Recovery Process: Pilot-Scale Field Experiments and Cost Analysis. J. Clean. Prod. 2021, 281, 125288. [Google Scholar] [CrossRef]
- Wowra, K.; Zeller, V.; Schebek, L. Nitrogen in Life Cycle Assessment (LCA) of Agricultural Crop Production Systems: Comparative Analysis of Regionalization Approaches. Sci. Total Environ. 2021, 763, 143009. [Google Scholar] [CrossRef] [PubMed]
- Koskue, V.; Pyrhönen, V.-P.; Freguia, S.; Ledezma, P.; Kokko, M. Modelling and Techno-Economic Assessment of (Bio)Electrochemical Nitrogen Removal and Recovery from Reject Water at Full WWTP Scale. J. Environ. Manag. 2022, 319, 115747. [Google Scholar] [CrossRef]
- Aguado, D.; Noriega-Hevia, G.; Ferrer, J.; Seco, A.; Serralta, J. PLS-Based Soft-Sensor to Predict Ammonium Concentration Evolution in Hollow Fibre Membrane Contactors for Nitrogen Recovery. J. Water Process Eng. 2022, 47, 102735. [Google Scholar] [CrossRef]
- Chen, T.-L.; Chen, L.-H.; Lin, Y.J.; Yu, C.-P.; Ma, H.; Chiang, P.-C. Advanced Ammonia Nitrogen Removal and Recovery Technology Using Electrokinetic and Stripping Process towards a Sustainable Nitrogen Cycle: A Review. J. Clean. Prod. 2021, 309, 127369. [Google Scholar] [CrossRef]
- Rahman, S.M.; Eckelman, M.J.; Onnis-Hayden, A.; Gu, A.Z. Life-Cycle Assessment of Advanced Nutrient Removal Technologies for Wastewater Treatment. Environ. Sci. Technol. 2016, 50, 3020–3030. [Google Scholar] [CrossRef]
- Shi, S.; Tong, B.; Wang, X.; Luo, W.; Tan, M.; Wang, H.; Hou, Y. Recovery of Nitrogen and Phosphorus from Livestock Slurry with Treatment Technologies: A Meta-Analysis. Waste Manag. 2022, 144, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Heidarzadeh Vazifehkhoran, A.; Finzi, A.; Perazzolo, F.; Riva, E.; Ferrari, O.; Provolo, G. Nitrogen Recovery from Different Livestock Slurries with an Innovative Stripping Process. Sustainability 2022, 14, 7709. [Google Scholar] [CrossRef]
- Hu, Y.; Xie, M.; Chen, G.; Huang, M.; Tan, W. Nitrogen Recovery from a Palladium Leachate via Membrane Distillation: System Performance and Ammonium Chloride Crystallization. Resour. Conserv. Recycl. 2022, 183, 106368. [Google Scholar] [CrossRef]
- Ye, Y.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Varjani, S.; Ding, A.; Bui, X.-T.; Nguyen, D.P. Bio-Membrane Based Integrated Systems for Nitrogen Recovery in Wastewater Treatment: Current Applications and Future Perspectives. Chemosphere 2021, 265, 129076. [Google Scholar] [CrossRef]
- Parra-Saldivar, R.; Bilal, M.; Iqbal, H.M.N. Life Cycle Assessment in Wastewater Treatment Technology. Curr. Opin. Environ. Sci. 2020, 13, 80–84. [Google Scholar] [CrossRef]
- Corominas, L.; Byrne, D.M.; Guest, J.S.; Hospido, A.; Roux, P.; Shaw, A.; Short, M.D. The Application of Life Cycle Assessment (LCA) to Wastewater Treatment: A Best Practice Guide and Critical Review. Water Res. 2020, 184, 116058. [Google Scholar] [CrossRef]
- Lam, K.L.; Zlatanović, L.; van der Hoek, J.P. Life Cycle Assessment of Nutrient Recycling from Wastewater: A Critical Review. Water Res. 2020, 173, 115519. [Google Scholar] [CrossRef] [PubMed]
- Hong, T.; Li, Y.; Wang, S.; Li, Y.; Jing, X. Polyurethane-Based Gas Separation Membranes: A Review and Perspectives. Sep. Purif. Technol. 2022, 301, 122067. [Google Scholar] [CrossRef]
- Sidhikku Kandath Valappil, R.; Ghasem, N.; Al-Marzouqi, M. Current and Future Trends in Polymer Membrane-Based Gas Separation Technology: A Comprehensive Review. J. Ind. Eng. Chem. 2021, 98, 103–129. [Google Scholar] [CrossRef]
- Pradhan, S.K.; Mikola, A.; Heinonen-Tanski, H.; Vahala, R. Recovery of Nitrogen and Phosphorus from Human Urine Using Membrane and Precipitation Process. J. Environ. Manag. 2019, 247, 596–602. [Google Scholar] [CrossRef] [PubMed]
- Nagy, J.; Kaljunen, J.; Toth, A.J. Nitrogen Recovery from Wastewater and Human Urine with Hydrophobic Gas Separation Membrane: Experiments and Modelling. Chem. Pap. 2019, 73, 1903–1915. [Google Scholar] [CrossRef] [Green Version]
- Soto-Herranz, M.; Sánchez-Báscones, M.; García-González, M.C.; Martín-Ramos, P. Comparison of the Ammonia Trapping Performance of Different Gas-Permeable Tubular Membrane System Configurations. Membranes 2022, 12, 1104. [Google Scholar] [CrossRef]
- Razman, K.K.; Hanafiah, M.M.; Mohammad, A.W. An Overview of LCA Applied to Various Membrane Technologies: Progress, Challenges, and Harmonization. Environ. Technol. Innov. 2022, 27, 102803. [Google Scholar] [CrossRef]
- Zhou, J.; Chang, V.W.-C.; Fane, A.G. Life Cycle Assessment for Desalination: A Review on Methodology Feasibility and Reliability. Water Res. 2014, 61, 210–223. [Google Scholar] [CrossRef]
- Abdallah, M.; Shanableh, A.; Elshazly, D.; Feroz, S. Techno-Economic and Environmental Assessment of Wastewater Management Systems: Life Cycle Approach. Environ. Impact Assess. Rev. 2020, 82, 106378. [Google Scholar] [CrossRef]
- Do Thi, H.T.; Pasztor, T.; Fozer, D.; Manenti, F.; Toth, A.J. Comparison of Desalination Technologies Using Renewable Energy Sources with Life Cycle, PESTLE, and Multi-Criteria Decision Analyses. Water 2021, 13, 3023. [Google Scholar] [CrossRef]
- Do Thi, H.T.; Mizsey, P.; Toth, A.J. Applicability of Membranes in Protective Face Masks and Comparison of Reusable and Disposable Face Masks with Life Cycle Assessment. Sustainability 2021, 13, 12574. [Google Scholar] [CrossRef]
- SimaPro “SimaPro Life Cycle Analysis (9.3.0.3)” [Computer Program]. Available online: https://simapro.com/ (accessed on 22 December 2022).
- Wu, Z.; Duan, H.; Li, K.; Ye, L. A Comprehensive Carbon Footprint Analysis of Different Wastewater Treatment Plant Configurations. Environ. Res. 2022, 214, 113818. [Google Scholar] [CrossRef]
- Catalán, E.; Sánchez, A. Solid-State Fermentation (SSF) Versus Submerged Fermentation (SmF) for the Recovery of Cellulases from Coffee Husks: A Life Cycle Assessment (LCA) Based Comparison. Energies 2020, 13, 2685. [Google Scholar] [CrossRef]
- SimaPro Database Manual. Available online: https://simapro.com/ (accessed on 22 December 2022).
- Heidari, A.; Boleydei, H.; Rohani, A.; Lu, H.R.; Younesi, H. Integrating Life Cycle Assessment and Life Cycle Costing Using TOPSIS to Select Sustainable Biomass-Based -Carbonaceous Adsorbents for CO2 Capture. J. Clean. Prod. 2022, 357, 131968. [Google Scholar] [CrossRef]
- Pinzon Amorocho, J.A.; Hartmann, T. A Multi-Criteria Decision-Making Framework for Residential Building Renovation Using Pairwise Comparison and TOPSIS Methods. J. Build. Eng. 2022, 53, 104596. [Google Scholar] [CrossRef]
- Deb, D.; Bhargava, K. Chapter 8—Optimization of on-Site PID Detection Methods. In Degradation, Mitigation, and Forecasting Approaches in Thin Film Photovoltaics; Deb, D., Bhargava, K., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 133–149. ISBN 978-0-12-823483-9. [Google Scholar]
- Zanghelini, G.M.; Cherubini, E.; Soares, S.R. How Multi-Criteria Decision Analysis (MCDA) Is Aiding Life Cycle Assessment (LCA) in Results Interpretation. J. Clean. Prod. 2018, 172, 609–622. [Google Scholar] [CrossRef]
- Myllyviita, T.; Holma, A.; Antikainen, R.; Lähtinen, K.; Leskinen, P. Assessing Environmental Impacts of Biomass Production Chains—Application of Life Cycle Assessment (LCA) and Multi-Criteria Decision Analysis (MCDA). J. Clean. Prod. 2012, 29–30, 238–245. [Google Scholar] [CrossRef]
- Balioti, V.; Tzimopoulos, C.; Evangelides, C. Multi-Criteria Decision Making Using TOPSIS Method Under Fuzzy Environment. Application in Spillway Selection. Proceedings 2018, 2, 637. [Google Scholar] [CrossRef]
- European Commission Recovery and Resilience Facility. 2022. Available online: https://ec.europa.eu/info/index_en (accessed on 22 December 2022).
- Golsteijn, L. Interpretation of Metrics: DALYs and Damage to Human Health. 2016. Available online: https://pre-sustainability.com/articles/metrics-interpretation-daly-and-damage-to-human-health/ (accessed on 22 December 2022).
- Çapa, S.; Özdemir, A.; Günkaya, Z.; Özkan, A.; Banar, M. An Environmental and Economic Assessment Based on Life Cycle Approaches for Industrial Wastewater Treatment and Water Recovery. J. Water Process Eng. 2022, 49, 103002. [Google Scholar] [CrossRef]
- Dewalkar, S.V.; Shastri, S.S. Integrated Life Cycle Assessment and Life Cycle Cost Assessment Based Fuzzy Multi-Criteria Decision-Making Approach for Selection of Appropriate Wastewater Treatment System. J. Water Process Eng. 2022, 45, 102476. [Google Scholar] [CrossRef]
- Saidi, K.; Omri, A. Reducing CO2 Emissions in OECD Countries: Do Renewable and Nuclear Energy Matter? Prog. Nucl. Energy. 2020, 126, 103425. [Google Scholar] [CrossRef]
- European Commission State of the Energy Union 2021- Contributing to the European Green Deal and the Union’s Recovery. 2021. Available online: https://www.europeansources.info/record/state-of-the-energy-union-2021-contributing-to-the-european-green-deal-and-the-unions-recovery/ (accessed on 22 December 2022).
- Statista Average Renewable Electricity Generation Cost Worldwide in 2021, by Energy Source. 2021. Available online: https://www.statista.com/statistics/478049/global-utility-scale-electricity-generation-cost-by-resource/ (accessed on 22 December 2022).
- Kar, S.; Singh, R.; Gurian, P.L.; Hendricks, A.; Kohl, P.; McKelvey, S.; Spatari, S. Life Cycle Assessment and Techno-Economic Analysis of Nitrogen Recovery by Ammonia Air-Stripping from Wastewater Treatment. Sci. Total Environ. 2023, 857, 159499. [Google Scholar] [CrossRef] [PubMed]
IMPACT+ World Endpoint | Electricity High Voltage | Nuclear | Solar | Heat and Power | Wind Energy Offshore | Wind Energy Onshore | Unit |
---|---|---|---|---|---|---|---|
Total | 138.09 | 118.91 | 140.75 | 122.96 | 120.00 | 121.38 | EUR2003 |
Human health | 25.35 | 15.78 | 17.31 | 20.46 | 16.02 | 16.06 | EUR2003 |
Ecosystem quality | 112.73 | 103.12 | 123.45 | 102.50 | 103.98 | 105.32 | EUR2003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagy, J.; Do Thi, H.T.; Toth, A.J. Life Cycle, PESTLE and Multi-Criteria Decision Analysis of Membrane Contactor-Based Nitrogen Recovery Process. Membranes 2023, 13, 87. https://doi.org/10.3390/membranes13010087
Nagy J, Do Thi HT, Toth AJ. Life Cycle, PESTLE and Multi-Criteria Decision Analysis of Membrane Contactor-Based Nitrogen Recovery Process. Membranes. 2023; 13(1):87. https://doi.org/10.3390/membranes13010087
Chicago/Turabian StyleNagy, Judit, Huyen Trang Do Thi, and Andras Jozsef Toth. 2023. "Life Cycle, PESTLE and Multi-Criteria Decision Analysis of Membrane Contactor-Based Nitrogen Recovery Process" Membranes 13, no. 1: 87. https://doi.org/10.3390/membranes13010087
APA StyleNagy, J., Do Thi, H. T., & Toth, A. J. (2023). Life Cycle, PESTLE and Multi-Criteria Decision Analysis of Membrane Contactor-Based Nitrogen Recovery Process. Membranes, 13(1), 87. https://doi.org/10.3390/membranes13010087