Preparation and Characterization of Polyethersulfone/Activated Carbon Composite Membranes for Water Filtration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Membrane Fabrication
2.3. Filtration Experiments
2.3.1. Water Flux Test
2.3.2. Protein Separation
2.3.3. Bacteria Filtration Test
2.4. Membrane Characterization
2.4.1. Water Contact Angle Test
2.4.2. Equilibrium Water Content
2.4.3. Porosity
2.4.4. Average Pore Size
2.4.5. Molecular Weight Cutoff (MWCO)
3. Results and Discussion
3.1. Pure Water Flux Test Experiments
3.2. Protein Separation
3.3. Bacteria Filtration Test
3.4. Contact Angle Analysis
3.5. Equilibrium Water Content Study
3.6. Porosity
3.7. Measurement of Average Pore Size
3.8. Molecular Weight Cutoff Measurement
3.9. Membrane Morphology
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davoodbeygi, Y.; Askari, M.; Salehi, E.; Kheirieh, S. A review on hybrid membrane-adsorption systems for intensified water and wastewater treatment: Process configurations, separation targets, and materials applied. J. Environ. Manag. 2023, 335, 117577. [Google Scholar] [CrossRef] [PubMed]
- Ruthven, D.M. Principles of Adsorption and Adsorption Processes; John Wiley & Sons: Hoboken, NJ, USA, 1984. [Google Scholar]
- Lee, H.-K.; Chang, S.; Park, W.; Kim, T.-J.; Park, S.; Jeon, H. Effective treatment of uranium-contaminated soil-washing effluent using precipitation/flocculation process for water reuse and solid waste disposal. J. Water Process. Eng. 2022, 48, 102890. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Takashima, H.; Jayamohan, S. Application of roughing filter to pre-treat 1000 NTU raw water for slow sand filter. Water Pract. Technol. 2019, 14, 355–364. [Google Scholar] [CrossRef]
- Moreira, V.R.; Lebron, Y.A.; de Souza Santos, L.V.; Amaral, M.C. Dead-end ultrafiltration as a cost-effective strategy for improving arsenic removal from high turbidity waters in conventional drinking water facilities. Chem. Eng. J. 2021, 417, 128132. [Google Scholar] [CrossRef]
- Maillard, J.Y.; Bloomfield, S.; Coelho, J.R.; Collier, P.; Cookson, B.; Fanning, S.; Hill, A.; Hartemann, P.; Mcbain, A.J.; Oggioni, M.; et al. Does microbicide use in consumer products promote antimicrobial resistance? A critical review and recommen-dations for a cohesive approach to risk assessment. Microb. Drug Resist. 2013, 19, 344–354. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, G.E. Antisepsis, Disinfection, and Sterilization: Types, Action, and Resistance; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Ding, S.K.; Deng, Y.; Tom, B.; Fang, C.; Cao, Z.Q.; Chu, W.H. Disinfection byproduct formation during drinking water treat-ment and distribution: A review of unintended effects of engineering agents and materials. Water Res. 2019, 160, 313–329. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.; Liu, R.; Chen, X.; Chen, Q.; Lin, J.; Lin, X.; Van der Bruggen, B.; Zhao, S. Loose nanofiltration-based electrodialysis for highly efficient textile wastewater treatment. J. Memb. Sci. 2020, 608, 118182. [Google Scholar] [CrossRef]
- Samadi, A.; Gao, L.; Kong, L.; Orooji, Y.; Zhao, S. Waste-derived low-cost ceramic membranes for water treatment: Opportu-nities, challenges and future directions. Resour. Conserv. Recycl. 2022, 185, 106497. [Google Scholar] [CrossRef]
- Prihandana, G.S.; Ito, H.; Sanada, I.; Nishinaka, Y.; Kanno, Y.; Miki, N. Permeability and blood compatibility of nanoporous parylene film-coated polyethersulfone membrane under long-term blood diffusion. J. Appl. Polym. Sci. 2013, 131, 40024. [Google Scholar] [CrossRef]
- Prihandana, G.S.; Ito, H.; Nishinaka, Y.; Kanno, Y.; Miki, N. Polyethersulfone Membrane Coated With Nanoporous Parylene for Ultrafiltration. J. Microelectromech. Syst. 2012, 21, 1288–1290. [Google Scholar] [CrossRef]
- Dong, Y.; Wu, H.; Yang, F.; Gray, S. Cost and efficiency perspectives of ceramic membranes for water treatment. Water Res. 2022, 220, 118629. [Google Scholar] [CrossRef] [PubMed]
- Rani, S.L.S.; Kumar, R.V. Insights on applications of low-cost ceramic membranes in wastewater treatment: A mini-review. Case Stud. Chem. Environ. Eng. 2021, 4, 100149. [Google Scholar] [CrossRef]
- Kayvani Fard, A.; McKay, G.; Buekenhoudt, A.; Al Sulaiti, H.; Motmans, F.; Khraisheh, M.; Atieh, M. Inorganic Membranes: Preparation and Application for Water Treatment and Desalination. Materials 2018, 11, 74. [Google Scholar] [CrossRef] [PubMed]
- Nunes, S.P.; Culfaz-Emecen, P.Z.; Ramon, G.Z.; Visser, T.; Koops, G.H.; Jin, W.; Ulbricht, M. Thinking the future of membranes: Perspectives for advanced and new membrane materials and manufacturing processes. J. Membr. Sci. 2020, 598, 117761. [Google Scholar] [CrossRef]
- Zhao, D.; Leth, M.L.; Hachem, M.A.; Aziz, I.; Jančič, N.; Luxbacher, T.; Hélix-Nielsen, C.; Zhang, W. Facile fabrication of flexible ceramic nanofibrous membranes for enzyme immobilization and transformation of emerging pollutants. Chem. Eng. J. 2023, 451, 138902. [Google Scholar] [CrossRef]
- Khumalo, N.P.; Mhlanga, S.D.; Kuvarega, A.T.; Vilakati, G.D.; Mamba, B.B.; Dlamini, D.S. Adsorptive removal of heavy metals from aqueous solution by graphene oxide modified membranes. Int. J. Eng. Res. 2017, 8, 1184–1194. [Google Scholar]
- Jamalludin, M.R.; Harun, Z.; Hubadillah, S.K.; Basri, H.; Ismail, A.F.; Othman, M.H.D.; Shohur, M.F.; Yunos, M.Z. Antifouling polysulfone membranes blended with green SiO2 from rice husk ash (RHA) for humic acid separation. Chem. Eng. Res. Des. 2016, 114, 268–279. [Google Scholar] [CrossRef]
- Prihandana, G.S.; Ito, H.; Tanimura, K.; Yagi, H.; Hori, Y.; Soykan, O.; Sudo, R.; Miki, N. Solute diffusion through fibrotic tissue formed around protective cage system for implantable devices. J. Biomed. Mater. Res. Part B Appl. Biomater. 2015, 103, 1180–1187. [Google Scholar] [CrossRef]
- Prihandana, G.S.; Sriani, T.; Muthi’ah, A.D.; Machmudah, A.; Mahardika, M.; Miki, N. Study Effect of nAg Particle Size on the Properties and Antibacterial Characteristics of Polysulfone Membranes. Nanomaterials 2022, 12, 388. [Google Scholar] [CrossRef]
- Bae, J.; Kim, H.; Park, S.; Kim, K.S.; Choi, H. Parametrization Study of Electrospun Nanofiber Including LiCl Using Response Surface Methodology (RSM) for Water Treatment Application. Appl. Sci. 2020, 10, 7295. [Google Scholar] [CrossRef]
- Cheng, W.; Wang, P.; Zhang, Y.; Wang, H.; Ma, J.; Zhang, T. Oxidation resistances of polyamide nanofiltration membranes to hydroxyl and sulfate radicals. J. Membr. Sci. 2023, 666, 121156. [Google Scholar] [CrossRef]
- Lv, C.-J.; Hao, B.; Yasin, A.; Yue, X.; Ma, P.-C. Molecular and structural design of polyacrylonitrile-based membrane for oil-water separation. Polymer 2022, 253, 124969. [Google Scholar] [CrossRef]
- Ignacz, G.; Alqadhi, N.; Szekely, G. Explainable machine learning for unraveling solvent effects in polyimide organic solvent nanofiltration membranes. Adv. Membr. 2023, 3, 1000061. [Google Scholar] [CrossRef]
- Prihandana, G.S.; Sriani, T.; Mahardika, M. Effect of Polyvinylpyrrolidone on Polyvinylidene Fluoride/Hydroxyapatite- Blended Nanofiltration Membranes: Characterization and Filtration Properties. Recent Pat. Nanotechnol. 2023, 17, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Otitoju, T.A.; Ahmad, A.L.; Ooi, B.S. Recent advances in hydrophilic modification and performance of polyethersulfone (PES) membrane via additive blending. RSC Adv. 2018, 8, 22710–22728. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Liu, L.; Cui, F.; Ding, F.; Zhang, Q.; Li, Y. Predicting the performance of polyvinylidene fluoride, polyethersulfone and polysulfone filtration membranes using machine learning. J. Mater. Chem. A 2020, 8, 21862–21871. [Google Scholar] [CrossRef]
- Wang, T.-X.; Chen, S.-R.; Wu, L.-G.; Wang, Y.-X. PES mixed-matrix ultrafiltration membranes incorporating ZIF-8 and poly(ionic liquid) by microemulsion synthetic with flux and antifouling properties. Appl. Surf. Sci. 2022, 576, 151815. [Google Scholar] [CrossRef]
- Chen, J.; Gao, C.; Zhao, S.; Liu, S.; Ji, S.; Xing, Y.; Wu, T.; Wu, J.; Chen, H.; Zou, P.; et al. Construction of PES membranes using NH2-MIL-125 and Pluronic F127 via RTIPS method toward elevated ultrafiltration, antifouling and self-cleaning performance. J. Environ. Chem. Eng. 2022, 10, 107162. [Google Scholar] [CrossRef]
- Krylova, V.; Dukštienė, N.; Lelis, M.; Tučkutė, S. PES/PVC textile surface modification by thermo-chemical treatment for im-proving its hydrophilicity. Surf. Interf. 2021, 25, 101184. [Google Scholar] [CrossRef]
- Salimi, P.; Aroujalian, A.; Iranshahi, D. Development of PES-based hydrophilic membranes via corona air plasma for highly effective water purification. J. Environ. Chem. Eng. 2022, 10, 107775. [Google Scholar] [CrossRef]
- Ziemann, E.; Qin, J.; Coves, T.; Bernstein, R. Effect of branching in zwitterionic polymer brushes grafted from PES UF membrane surfaces via AGET-ATR(c)P. J. Membr. Sci. 2023, 672, 121422. [Google Scholar] [CrossRef]
- Mahdavi, H.; Hosseini, F. Fabrication of high-performance mixed matrix blend membranes comprising PES and TPU reinforced with APTS functionalized-graphene oxide via VIPS-NIPS technique for aqueous dye treatment and antifouling properties. J. Taiwan Inst. Chem. Eng. 2023, 142, 104609. [Google Scholar] [CrossRef]
- Fahmi, M.Z.; Wathoniyyah, M.; Khasanah, M.; Rahardjo, Y.; Wafiroh, S. Incorporation of graphene oxide in polyethersulfone mixed matrix membranes to enhance hemodialysis membrane performance. RSC Adv. 2018, 8, 931–937. [Google Scholar] [CrossRef]
- Jamshidi Gohari, R.; Halakoo, E.; Lau, W.J.; Kassim, M.A.; Matsuura, T.; Ismail, A.F. Novel polyethersulfone (PES)/hydrous manganese dioxide (HMO) mixed matrix membranes with improved anti-fouling properties for oily wastewater treatment process. RSC. Adv. 2014, 4, 17587–17596. [Google Scholar] [CrossRef]
- Vatanpour, V.; Madaeni, S.S.; Khataee, A.R.; Salehi, E.; Zinadini, S.; Monfared, H.A. TiO2 embedded mixed matrix PES nanocomposite membranes: Influence of different sizes and types of nanoparticles on antifouling and performance. Desalination 2012, 292, 19–29. [Google Scholar] [CrossRef]
- Sherugar, P.; Naik, N.S.; Padaki, M.; Nayak, V.; Gangadharan, A.; Nadig, A.R.; Déon, S. Fabrication of zinc doped aluminium oxide/polysulfone mixed matrix membranes for enhanced antifouling property and heavy metal removal. Chemosphere 2021, 275, 130024. [Google Scholar] [CrossRef] [PubMed]
- Mezohegyi, G.; van der Zee, F.P.; Font, J.; Fortuny, A.; Fabregat, A. Towards advanced aqueous dye removal processes: A short review on the versatile role of activated carbon. J. Environ. Manag. 2012, 102, 148–164. [Google Scholar] [CrossRef] [PubMed]
- Toledo, L.; Rivas, L.B. Quaternised chitosan in conjunction with ultrafiltration membranes to remove arsenate and chromate ions. Polym. Bull. 2015, 72, 1341–1344. [Google Scholar] [CrossRef]
- Shao, S.; Liang, H.; Qu, F.; Li, K.; Chang, H.; Yu, H.; Li, G. Combined influence by humic acid (HA) and powdered activated carbon (PAC) particles on ultrafiltration membrane fouling. J. Membr. Sci. 2016, 500, 99–105. [Google Scholar] [CrossRef]
- Kallem, P.; Ouda, M.; Bharath, G.; Hasan, S.W.; Banat, F. Enhanced water permeability and fouling resistance properties of ultrafiltration membranes incorporated with hydroxyapatite decorated orange-peel-derived activated carbon nanocomposites. Chemosphere 2022, 286, 131799. [Google Scholar] [CrossRef]
- Wu, C.; Dai, X.; Sun, X.; Zhang, J. Preparation and characterization of fluoroalkyl activated carbons/PVDF composite mem-branes for water and resources recovery by membrane distillation. Sep. Purif. Technol. 2023, 305, 122519. [Google Scholar] [CrossRef]
- Saraswathi, M.S.; Rana, R.; Alwarappan, S.; Gowrishankar, S.; Kanimozhia, P.; SNendran, A. Cellulose acetate ultrafiltration membranes customized with bio-inspired polydopamine coating and in situ immobilization of silver nanoparticles. New J. Chem. 2019, 43, 4216–4225. [Google Scholar] [CrossRef]
- Kanagaraj, P.; Nagendran, A.; Rana, D.; Matsuura, T.; Neelakandan, S.; Malarvizhi, K. Effects of Polyvinylpyrrolidone on the Permeation and Fouling-Resistance Properties of Polyetherimide Ultrafiltration Membranes. Ind. Eng. Chem. Res. 2015, 54, 4832–4838. [Google Scholar] [CrossRef]
- Mahendran, R.; Malaisamy, R.; Arthanareeswaran, G.; Mohan, D. Cellulose acetate−poly(ether sulfone) blend ultrafiltration membranes. II. Application studies. J. Appl. Polym. Sci. 2004, 92, 3659–3665. [Google Scholar] [CrossRef]
- Geldreich, E. Drinking water microbiology—New directions toward water quality enhancement. Int. J. Food Microbiol. 1989, 9, 295–312. [Google Scholar] [CrossRef] [PubMed]
- Nunes, S.P.; Peinemann, K.V. Ultrafiltration membranes of PVDF/PMMA. J. Membr. Sci. 1992, 73, 25–35. [Google Scholar] [CrossRef]
- Tamura, M.; Uragami, T.; Sugihara, M. Studies on syntheses and permeabilities of special polymer membranes: 30. Ultrafil-tration and dialysis characteristics of cellulose nitrate-poly (vinyl pyrrolidone) polymer blend membranes. Polymer 1981, 22, 829–835. [Google Scholar] [CrossRef]
- Manorma, I.; Ferreira, P.; Alves, M.H.; Gil, L.M. Gando-Ferreira Lignin separation from black liquor by mixed matrix polysulfone nanofiltration membrane filled with multiwalled carbon nanotubes. Sep. Purif. Technol. 2021, 260, 118231. [Google Scholar] [CrossRef]
- Sarbolouki, M.N. A General Diagram for Estimating Pore Size of Ultrafiltration and Reverse Osmosis Membranes. Sep. Sci. Technol. 1982, 17, 381–386. [Google Scholar] [CrossRef]
- Vatanpour, V.; Mousavi Khadem, S.S.; Dehqan, A.; Paziresh, S.; Ganjali, M.; Mehrpooya, M.; Pourbasheer, E.; Badiei, A.; Esmaeili, A.; Koyuncu, I.; et al. Application of g-C3N4/ZnO nanocomposites for fabrication of anti-fouling polymer membranes with dye and protein rejection superiority. J. Memb. Sci. 2022, 660, 120893. [Google Scholar] [CrossRef]
- Alonso, J.L.; Soriano, K.; Amoros, I.; Ferrus, M.A. Quantitative determination of E. coli and fecal coliforms in water using a chromogenic medium. J. Environ. Sci. Health 1998, 33, 1229–1248. [Google Scholar] [CrossRef]
- Wang, D.; Fiessel, W. Evaluation of media for simultaneous enumeration of total coliform and Escherichia coli in drinking water supplies by membrane filtration techniques. J. Environ. Sci. 2008, 20, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.; Wu, Y.; Cao, S.; Yuan, S.; Fang, Y.; Qin, J.; Shi, J.; Shi, C.; Ou, C.; Zhu, J. Facile in situ decorating polyacrylonitrile membranes using polyoxometalates for enhanced separation performance. J. Membr. Sci. 2022, 653, 120493. [Google Scholar] [CrossRef]
- Gogoi, M.; Goswami, R.; Ingole, P.; Hazarika, S. Selective permeation of L-tyrosine through functionalized single-walled carbon nanotube thin film nanocomposite membrane. Sep. Purif. Technol. 2020, 233, 116061. [Google Scholar] [CrossRef]
- Saranya, R.; Arthanareeswaran, G.; Ismail, A.F. Enhancement of anti-fouling properties during the treatment of paper mill effluent using functionalized zeolite and activated carbon nanomaterials based ultrafiltration. J. Chem. Technol. Biotechnol. 2019, 94, 2805–2815. [Google Scholar] [CrossRef]
- Sharma, M.; Alves, P.; Gil, M.H.; Gando-Ferreira, L.M. Fractionation of black liquor using ZnO nanoparticles/PES ultrafiltration membranes: Effect of operating variables. J. Clean. Prod. 2022, 345, 131183. [Google Scholar] [CrossRef]
- Sherugar, P.; Rao, S.; Kigga, M.; George, S.D.; Arthi, M.; Déon, S.; Padaki, M. Insights into the mechanically resilient, well-balanced polymeric membranes by incorporating Rhizophora mucronata derived activated carbon for sustainable wastewater decontamination. Chemosphere 2022, 306, 135528. [Google Scholar] [CrossRef]
- Sharma, M.; Alves, P.; Gando-Ferreira, L.M. Effect of activated carbon nanoparticles on the performance of PES nanofiltration membranes to separate kraft lignin from black liquor. J. Water Proc. Eng. 2023, 52, 103487. [Google Scholar] [CrossRef]
- Daraei, P.; Madaeni, S.S.; Ghaemi, N.; Salehi, E.; Khadivi, M.A.; Moradian, R.; Astinchap, B. Novel polyethersulfone nano-composite membrane prepared by PANI/Fe3O4 nanoparticles with enhanced performance for Cu(II) removal from water. J. Memb. Sci. 2012, 415–416, 250–259. [Google Scholar] [CrossRef]
- Bagheripour, E.; Moghadassi, A.R.; Hosseini, S.M.; Ray, M.B.; Parvizian, F.; Van der Bruggen, B. Highly hydrophilic and an-tifouling nanofiltration membrane incorporated with water-dispersible composite activated carbon/chitosan nanoparticles. Chem. Eng. Res. Des. 2018, 132, 812–821. [Google Scholar] [CrossRef]
- Zeidler, S.; Puhlfürß, P.; Kätzel, U.; Voigt, I. Preparation and characterization of new low MWCO ceramic nanofiltration membranes for organic solvents. J. Membr. Sci. 2014, 470, 421–430. [Google Scholar] [CrossRef]
- Ohland, A.L.; Salim, V.M.M.; Borges, C.P. Nanocomposite membranes for osmotic processes: Incorporation of functionalized hydroxyapatite in porous substrate and in selective layer. Desalination 2019, 463, 23–31. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prihandana, G.S.; Maulana, S.S.; Soedirdjo, R.S.; Tanujaya, V.; Pramesti, D.M.A.; Sriani, T.; Jamaludin, M.F.; Yusof, F.; Mahardika, M. Preparation and Characterization of Polyethersulfone/Activated Carbon Composite Membranes for Water Filtration. Membranes 2023, 13, 906. https://doi.org/10.3390/membranes13120906
Prihandana GS, Maulana SS, Soedirdjo RS, Tanujaya V, Pramesti DMA, Sriani T, Jamaludin MF, Yusof F, Mahardika M. Preparation and Characterization of Polyethersulfone/Activated Carbon Composite Membranes for Water Filtration. Membranes. 2023; 13(12):906. https://doi.org/10.3390/membranes13120906
Chicago/Turabian StylePrihandana, Gunawan Setia, Sayed Sulthan Maulana, Rahmat Santoso Soedirdjo, Venni Tanujaya, Desak Made Adya Pramesti, Tutik Sriani, Mohd Fadzil Jamaludin, Farazila Yusof, and Muslim Mahardika. 2023. "Preparation and Characterization of Polyethersulfone/Activated Carbon Composite Membranes for Water Filtration" Membranes 13, no. 12: 906. https://doi.org/10.3390/membranes13120906
APA StylePrihandana, G. S., Maulana, S. S., Soedirdjo, R. S., Tanujaya, V., Pramesti, D. M. A., Sriani, T., Jamaludin, M. F., Yusof, F., & Mahardika, M. (2023). Preparation and Characterization of Polyethersulfone/Activated Carbon Composite Membranes for Water Filtration. Membranes, 13(12), 906. https://doi.org/10.3390/membranes13120906