High Efficient CO2 Separation at High Pressure by Grain-Boundary-Controlled CHA Zeolite Membrane Investigated by Non-Equilibrium Molecular Dynamics
Abstract
:1. Introduction
2. Calculation Method
3. Results and Discussion
3.1. Perfectly Crystalline Model
3.2. Polycrystalline Model
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rubin, E.S.; Davison, J.E.; Herzog, H.J. The cost of CO2 capture and storage. Int. J. Greenh. Gas Control. 2015, 40, 378–400. [Google Scholar] [CrossRef]
- Baker, R.W.; Lokhandwala, K. Natural Gas Processing with Membranes: An Overview. Ind. Eng. Chem. Res. 2008, 47, 2109–2121. [Google Scholar] [CrossRef]
- Koros, W.J.; Mahajan, R. Pushing the limits on possibilities for large scale gas separation: which strategies? J. Membr. Sci. 2000, 175, 181–196. [Google Scholar] [CrossRef]
- Kong, X.; Qiu, H.; Meng, D.; Tang, X.; Yang, S.; Guo, W.; Zhang, Y.; Kong, L.; Zhang, Y.; Zhang, Z. Reproducible synthesis of all-silica CHA zeolite membranes in a homogeneous mother liquor. Sep. Purif. Tech. 2021, 274, 119104. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, C.; Gao, X.; Peng, L.; Jiang, J.; Gu, X. Preparation of defect-free DDR zeolite membranes by eliminating template with ozone at low temperature. J. Membr. Sci. 2017, 539, 152–160. [Google Scholar] [CrossRef]
- Kida, K.; Maeta, Y.; Yogo, K. Preparation and gas permeation properties on pure silica CHA-type zeolite membranes. J. Membr. Sci. 2017, 522, 363–370. [Google Scholar] [CrossRef] [Green Version]
- Karakiliç, P.; Wang, X.; Kapteijn, F.; Nijmeijer, A.; Winnubst, L. Defect-free high-silica CHA zeolite membranes with high selectivity for light gas separation. J. Membr. Sci. 2019, 586, 34–43. [Google Scholar] [CrossRef]
- Araki, S.; Okubo, Y.; Maekawa, K.; Imasaka, S.; Yamamoto, H. Preparation of a high-silica chabazite-type zeolite membrane with high CO2 permeability using tetraethylammonium hydroxide. J. Membr. Sci. 2020, 613, 118480. [Google Scholar] [CrossRef]
- Kida, K.; Maeta, Y.; Yogo, K. Pure silica CHA-type zeolite membranes for dry and humidified CO2/CH4 mixtures separation. Sep. Purif. Tech. 2018, 197, 116–121. [Google Scholar] [CrossRef]
- Zhou, J.; Gao, F.; Sun, K.; Jin, X.; Zhang, Y.; L, B.; Zhou, R. Green Synthesis of Highly CO2-Selective CHA Zeolite Membranes in All-Silica and Fluoride-Free Solution for CO2/CH4 Separations. Energy Fuels 2020, 34, 11307–11314. [Google Scholar] [CrossRef]
- Xomeritakis, G.; Gouzinis, A.; Nair, S.; Okubo, T.; He, M.; Overney, R.M.; Tsapatsis, M. Growth, microstructure, and permeation properties of supported zeolite (MFI) films and membranes prepared by secondary growth. Chem. Eng. Sci. 1999, 54, 3521–3531. [Google Scholar] [CrossRef]
- Korelskiy, D.; Ye, P.; Nabavi, M.S.; Hedlund, J. Selective blocking of grain boundary defects in high-flux zeolite membranes by coking. J. Mater. Chem. A 2017, 5, 7295–7299. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Jeong, H.; Snyder, M.A.; Stoenger, J.A.; Masel, R.I.; Tsapatisis, M. Grain Boundary Defect Elimination in a Zeolite Membrane by Rapid Thermal Processing. Science 2009, 325, 590–593. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Jang, E.; Hong, S.; Kim, D.; Kim, E.; Ricther, H.; Simon, A.; Choi, N.; Korelskiy, D.; Fouladvand, S.; et al. Microstructural control of a SSZ-13 zeolite film via rapid thermal processing. J. Membr. Sci. 2019, 591, 117342. [Google Scholar] [CrossRef]
- Hong, S.; Kim, D.; Richter, H.; Moon, J.; Choi, N.; Nam, J.; Choi, J. Quantitative elucidation of the elusive role of defects in polycrystalline MFI zeolite membranes on xylene separation performance. J. Membr. Sci. 2019, 569, 91–103. [Google Scholar] [CrossRef]
- Park, S.; Lee, M.; Hong, S.; Jeong, Y.; Kim, D.; Choi, N.; Nam, J.; Baik, H.; Choi, J. Low-temperature ozone treatment for p-xylene perm-selective MFI type zeolite membranes: Unprecedented revelation of performance-negating cracks larger than 10 nm in polycrystalline membrane structures. J. Membr. Sci. 2023, 668, 121212. [Google Scholar] [CrossRef]
- Takaba, H.; Yamamoto, A.; Hayamizu, K.; Oumi, Y.; Sano, T.; Akiba, E.; Nakao, S. Dependence of the diffusion coefficients of methane in silicalite on diffusion distance as investigated by 1H PFG NMR. Chem. Phys. Lett. 2004, 393, 87–91. [Google Scholar] [CrossRef]
- Takaba, H.; Yamamoto, A.; Hayamizu, K.; Nakao, S. Gas Diffusion in Polycrystalline Silicalite Membranes Investigated by 1H Pulse Field-Gradient NMR. J. Phys. Chem. B 2005, 109, 13871–13876. [Google Scholar] [CrossRef] [PubMed]
- Arya, G.; Chang, H.; Maginn, E.J. Acritical comparison of equilibrium, non-equilibrium and boundary-driven molecular dynamics techniques for studying transport in microporous materials. J. Chem. Phys. 2001, 115, 8112–8124. [Google Scholar] [CrossRef]
- Yoshioka, T.; Tsuru, T.; Asaeda, M. Molecular dynamics studies on gas permeation properties through microporous silica membranes. Sep. Purif. Tech. 2001, 25, 441–449. [Google Scholar] [CrossRef]
- Hirosawa, F.; Miyagawa, M.; Takaba, H. Selectivity enhancement by the presence of grain boundary in chabazite zeolite membranes investigated by non-equilibrium molecular dynamics. J. Membr. Sci. 2021, 632, 119348. [Google Scholar] [CrossRef]
- Yoshioka, T.; Asaeda, M.; Tsuru, T. A molecular dynamics simulation of pressure-driven gas permeation in a micropore potential field on silica membranes. J. Membr. Sci. 2007, 293, 81–93. [Google Scholar] [CrossRef] [Green Version]
- Nagumo, R.; Takaba, H.; Nakao, S. A Methodology to Estimate Transport Diffusivities in ‘Single-File’ Permeation through Zeolite Membranes Using Molecular Simulations. J. Chem. Eng. Jpn. 2007, 40, 1045–1055. [Google Scholar] [CrossRef]
- Miyamoto, M.; Fujioka, Y.; Yogo, K. Pure silica CHA type zeolite for CO2 separation using pressure swing adsorption at high pressure. J. Mater. Chem. 2012, 22, 20186–20189. [Google Scholar] [CrossRef]
- Krishna, R.; van Baten, J.M. Insights into diffusion of gases in zeolites gained from molecular dynamics simulations. Micropor. Mesopor. Mater. 2008, 109, 91–108. [Google Scholar] [CrossRef]
- Krishna, R.; van Baten, J.M. Maxwell–Stefan modeling of slowing-down effects in mixed gas permeation across porous membranes. J. Membr. Sci. 2011, 383, 289–300. [Google Scholar] [CrossRef]
- Li, S.; Martinek, J.G.; Falconer, J.L.; Noble, R.D.; Gardner, T.Q. High-Pressure CO2/CH4 Separation Using SAPO-34 Membranes. Ind. Eng. Chem. Res. 2005, 44, 3220–3228. [Google Scholar] [CrossRef]
- Krishna, R.; van Baten, J.M. Using the spreading pressure to inter-relate the characteristics of unary, binary and ternary mixture permeation across microporous membranes. J. Membr. Sci. 2022, 643, 120049. [Google Scholar] [CrossRef]
- Takaba, H.; Yamamoto, A.; Nakao, S. Modeling of methane permeation through a defective region in MFI-type zeolite membranes. Desalination 2006, 192, 82–90. [Google Scholar] [CrossRef]
f (fs) | ||||||
---|---|---|---|---|---|---|
0.5 MPa | 2.0 MPa | 4.0 MPa | 6.0 MPa | 8.0 MPa | ||
Perfectly crystalline | CO2 | 21,524 | 5381 | 2690 | 1794 | 1345 |
CH4 | 12,978 | 3245 | 1622 | 1082 | 811 | |
Polycrystalline | CO2 | 9146 | 2287 | 1143 | 762 | 572 |
CH4 | 5515 | 1379 | 689 | 460 | 345 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hirosawa, F.; Miyagawa, M.; Takaba, H. High Efficient CO2 Separation at High Pressure by Grain-Boundary-Controlled CHA Zeolite Membrane Investigated by Non-Equilibrium Molecular Dynamics. Membranes 2023, 13, 278. https://doi.org/10.3390/membranes13030278
Hirosawa F, Miyagawa M, Takaba H. High Efficient CO2 Separation at High Pressure by Grain-Boundary-Controlled CHA Zeolite Membrane Investigated by Non-Equilibrium Molecular Dynamics. Membranes. 2023; 13(3):278. https://doi.org/10.3390/membranes13030278
Chicago/Turabian StyleHirosawa, Fumiya, Masaya Miyagawa, and Hiromitsu Takaba. 2023. "High Efficient CO2 Separation at High Pressure by Grain-Boundary-Controlled CHA Zeolite Membrane Investigated by Non-Equilibrium Molecular Dynamics" Membranes 13, no. 3: 278. https://doi.org/10.3390/membranes13030278
APA StyleHirosawa, F., Miyagawa, M., & Takaba, H. (2023). High Efficient CO2 Separation at High Pressure by Grain-Boundary-Controlled CHA Zeolite Membrane Investigated by Non-Equilibrium Molecular Dynamics. Membranes, 13(3), 278. https://doi.org/10.3390/membranes13030278