Synthesis and Oxygen Mobility of Bismuth Cerates and Titanates with Pyrochlore Structure
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structural Features
3.2. Oxygen Transport Features
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Shlyakhtina, A.V.; Shcherbakova, L.G. New solid electrolytes of the pyrochlore family. Russ. J. Electrochem. 2012, 48, 1–25. [Google Scholar] [CrossRef]
- Julbe, A.; Farrusseng, D.; Guizard, C. Limitations and potentials of oxygen transport dense and porous ceramic membranes for oxidation reactions. Catal. Today 2005, 104, 102–113. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, Y.; Zeng, L.; He, Y.; Yu, P.; Luo, H. Effects of Bi Substitution on the cobalt-free 60wt.%Ce0.9Pr0.1O2−δ-40wt.%Pr0.6Sr0.4Fe1−xBixO3−δ oxygen transport membranes. Processes 2021, 9, 1767. [Google Scholar] [CrossRef]
- Sunarso, J.; Motuzas, J.; Liuc, S.; Diniz da Costa, J.C. Bi-doping effects on the structure and oxygen permeation properties of BaSc0.1Co0.9O3−δ perovskite membranes. J. Membr. Sci. 2010, 361, 120–125. [Google Scholar] [CrossRef]
- Phair, J.W.; Badwal, S.P.S. Materials for separation membranes in hydrogen and oxygen production and future power generation. Sci. Tech. Adv. Mater. 2006, 7, 792–805. [Google Scholar] [CrossRef]
- Phair, J.W.; Badwal, S.P.S. Review of proton conductors for hydrogen separation. Ionics 2006, 12, 103–115. [Google Scholar] [CrossRef] [Green Version]
- Tucker, M.C. Progress in metal-supported solid oxide electrolysis cells: A review. Int. J. Hydrog. Energy 2020, 45, 24203–24218. [Google Scholar] [CrossRef]
- Shlyakhtina, A.V.; Abrantes, J.C.C.; Gomes, E.; Lyskov, N.V.; Konysheva, E.Y.; Chernyak, S.A.; Kharitonova, E.P.; Karyagina, O.K.; Kolbanev, I.V.; Shcherbakova, L.G. Evolution of oxygen–ion and proton conductivity in Ca-doped Ln2Zr2O7 (Ln = Sm, Gd), located near pyrochlore–fluorite phase boundary. Materials 2019, 12, 2452. [Google Scholar] [CrossRef] [Green Version]
- Anantharaman, A.P.; Hari, P.D. Potential of pyrochlore structure materials in solid oxide fuel cell applications. Ceram. Int. 2021, 47, 4367–4388. [Google Scholar] [CrossRef]
- Zhong, F.; Yang, S.; Chen, C.; Fang, H.; Chen, K.; Zhou, C.; Lin, L.; Luo, Y.; Au, C.; Jiang, L. Defect-induced pyrochlore Pr2Zr2O7 cathode rich in oxygen vacancies for direct ammonia solid oxide fuel cells. J. Power Sources 2022, 520, 230847. [Google Scholar] [CrossRef]
- Esposito, V.; Luong, B.H.; Di Bartolomeo, E.; Wachsmann, E.D.; Traversa, E. Bi2Ru2O7 Pyrochlore electrodes for Bi2O3 based electrolyte for IT-SOFC applications. ECS Trans. 2006, 1, 263–277. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, R.; Kumar, S.; Kaur, M.; Sharma, J.D. Enhancement in the photocatalytic activity of Bi2Ti2O7 nanopowders synthesised via Pechini vs co-precipitation method. Ceram. Int. 2019, 45, 20386–20395. [Google Scholar] [CrossRef]
- Saha, D.; Madras, G.; Guru Row, T.N. Synthesis and structure of Bi2Ce2O7: A new compound exhibiting high solar photocatalytic activity. Dalton Trans. 2012, 41, 9598–9600. [Google Scholar] [CrossRef]
- Raj, A.K.V.; Rao, P.P.; Sreena, T.S.; Aju Thara, T.R. Pigmentary colors from yellow to red in Bi2Ce2O7 by rare earth ion substitutions as possible high NIR reflecting pigments. Dyes Pigm. 2019, 160, 177–187. [Google Scholar] [CrossRef]
- Těšitelová, K.; Šulcová, P. Synthesis and study of Bi2Ce2O7 as inorganic pigment. J. Therm. Anal. Calorim. 2012, 125, 1047–1052. [Google Scholar] [CrossRef]
- Hardy, A.; Van Elshocht, S.; Hadermann, J.; Pourtois, G.; De Gendt, S.; Afanas’ev, V.V.; Van Bael, M.K. Properties and thermal stability of solution processed ultrathin, high-k bismuth titanate (Bi2Ti2O7) films. Mater. Res. Bull. 2012, 47, 511–517. [Google Scholar] [CrossRef]
- Cho, K.H.; Kang, M.G.; Jang, H.W.; Shin, H.Y.; Kang, C.Y.; Yoon, S.J. Significantly reduced leakage currents in organic thin film transistors with Mn-doped Bi2Ti2O7 high-k gate dielectrics. Phys. Status Solidi-Rapid Res. Lett. 2012, 6, 208–210. [Google Scholar] [CrossRef]
- Chezhina, N.V.; Piir, I.V.; Krasnov, A.G.; Koroleva, M.S.; Kellerman, D.G.; Semenov, V.G.; Shalaeva, E.V.; Leonidov, I.O.; Shein, I.R. Structure and magnetic properties of a nanosized iron-doped bismuth titanate pyrochlore. Inorg. Chem. 2022, 61, 13369–13378. [Google Scholar] [CrossRef]
- Díaz-guillén, J.A.; Díaz-guillén, M.R.; Padmasree, K.P.; Fuentes, A.F.; Santamaría, J.; León, C. High ionic conductivity in the pyrochlore-type Gd2−yLayZr2O7 solid solution (0 ≤ y ≤ 1). Solid State Ion. 2008, 179, 2160–2164. [Google Scholar] [CrossRef]
- Sadykov, V.A.; Koroleva, M.S.; Piir, I.V.; Chezhina, N.V.; Korolev, D.A.; Skriabin, P.I.; Krasnov, A.V.; Sadovskaya, E.M.; Eremeev, N.F.; Nekipelov, S.V.; et al. Structural and transport properties of doped bismuth titanates and niobates. Solid State Ion. 2018, 315, 33–39. [Google Scholar] [CrossRef]
- Talanov, M.V.; Talanov, V.M. Structural diversity of ordered pyrochlores. Chem. Mater. 2021, 33, 2706–2725. [Google Scholar] [CrossRef]
- Kocevski, V.; Pilania, G.; Uberuaga, B.P. Modeling disorder in pyrochlores and other anion-deficient fluorite structural derivative oxides. Front. Chem. 2021, 9, 712543. [Google Scholar] [CrossRef] [PubMed]
- Talanov, M.V.; Talanov, V.M. Formation of breathing pyrochlore lattices: Structural, thermodynamic and crystal chemical aspects. CrystEngComm. 2020, 2, 1176–1187. [Google Scholar] [CrossRef]
- Lang, M.; Zhang, F.; Zhang, J.; Wang, J.; Lian, J.; Weber, W.J.; Schuster, B.; Trautmann, C.; Neumann, R.; Ewing, R.C. Review of A2B2O7 pyrochlore response to irradiation and pressure. Nucl. Instrum. Methods Phys. Res. B Nucl. Instrum. Meth. B 2010, 268, 2951–2959. [Google Scholar] [CrossRef]
- Cai, L.; Arias, A.L.; Nino, J.C. The tolerance factors of the pyrochlore crystal structure. J. Mater. Chem. 2011, 2, 3611–3618. [Google Scholar] [CrossRef]
- Krasnov, A.G.; Piir, I.V.; Koroleva, M.S.; Sekushin, N.A.; Ryabkov, Y.I.; Piskaykina, M.M.; Sadykov, V.A.; Sadovskaya, E.M.; Pelipenko, V.V.; Eremeev, N.F. The conductivity and ionic transport of doped bismuth titanate pyrochlore Bi1.6MxTi2O7−δ (M—Mg, Sc, Cu). Solid State Ion. 2017, 302, 118–125. [Google Scholar] [CrossRef]
- Shlyakhtina, A.V.; Pigalskiy, K.S.; Belov, D.A.; Lyskov, N.V.; Kharitonova, E.P.; Kolbanev, I.V.; Borunova, A.B.; Karyagina, O.K.; Sadovskaya, E.M.; Sadykov, V.A.; et al. Proton and oxygen ion conductivity in the pyrochlore/fluorite family of Ln2−xCaxScMO7−δ (Ln = La, Sm, Ho, Yb; M = Nb, Ta; x = 0, 0.05, 0.1) niobates and tantalates. Dalton Trans. 2018, 47, 2376–2392. [Google Scholar] [CrossRef]
- Sadykov, V.; Shlyakhtina, A.; Lyskov, N.; Sadovskaya, E.; Cherepanova, S.; Eremeev, N.; Skazka, V.; Goncharov, V.; Kharitonova, E. Oxygen diffusion in Mg-doped Sm and Gd zirconates with pyrochlore structure. Ionics 2020, 26, 4621–4633. [Google Scholar] [CrossRef]
- Shlyakhtina, A.V. Morphotropy, isomorphism, and polymorphism of Ln2M2O7-based (Ln = La-Lu, Y, Sc; M = Ti, Zr, Hf, Sn) oxides. Cryst. Rep. 2013, 58, 548–562. [Google Scholar] [CrossRef]
- Huo, D.; Baldinozzi, G.; Siméone, D.; Khodja, H.; Surblé, S. Grain size—Dependent electrical properties of La1.95Sr0.05Zr2O7−δ as potential proton ceramic fuel cell electrolyte. Solid State Ion. 2016, 298, 35–43. [Google Scholar] [CrossRef]
- Esquivel-Elizondo, J.R.; Hinojosa, B.B.; Nino, J.C.; Esquivel-Elizondo, J.R. Bi2Ti2O7: It is not what you have read. Chem. Mater. 2011, 23, 4965–4974. [Google Scholar] [CrossRef]
- Krasnov, A.V.; Shein, I.R.; Piir, I.V.; Ryabkov, Y.I. Bismuth titanate pyrochlores doped by alkaline earth elements: First-principles calculations and experimental study. Solid State Ion. 2018, 317, 183–189. [Google Scholar] [CrossRef]
- Anu; Yadav, K.; Gaur, A.; Haldar, K.K. Effect of oxygen vacancies, lattice distortions and secondary phase on the structural, optical, dielectric and ferroelectric properties in Cd-doped Bi2Ti2O7 nanoparticles. Mater. Res. Bull. 2021, 141, 111373. [Google Scholar] [CrossRef]
- Uniyal, S.; Atri, S.; Uma, S.; Nagarajan, R. Microstructural changes caused by Ba and Pr doping in nanosized Bi2Ce2O7 leading to interesting optical, magnetic, and catalytic property. CrystEngComm. 2021, 33, 986–999. [Google Scholar] [CrossRef]
- Li, G.; Mao, Y.; Li, L.; Feng, S.; Wang, M.; Yao, X. Solid solubility and transport properties of nanocrystalline (CeO2)1−x(BiO1.5)x by hydrothermal conditions. Chem. Mater. 1999, 11, 1259–1266. [Google Scholar] [CrossRef]
- Li, Z.C.; Zhang, H.; Bergman, B. Synthesis and characterization of nanostructured Bi2O3-doped cerium oxides fabricated by PVA polymerization process. Ceram. Int. 2008, 34, 1949–1953. [Google Scholar] [CrossRef]
- Sadykov, V.; Bespalko, Y.; Sadovskaya, E.; Krieger, T.; Belyaev, V.; Eremeev, N.; Mikhailenko, M.; Bryazgin, A.; Korobeynikov, M.; Ulihin, A.; et al. Structural and transport properties of e-beam sintered lanthanide tungstates and tungstates-molybdates. Nanomaterials 2022, 12, 3282. [Google Scholar] [CrossRef]
- Lysenko, E.; Vlasov, V.; Nikolaev, E.; Surzhikov, A.; Ghyngazov, S. Technological Aspects of Lithium-Titanium Ferrite Synthesis by Electron-Beam Heating. Materials 2023, 16, 604. [Google Scholar] [CrossRef]
- Ghyngazov, S. Zirconia ceramics processing by intense electron and ion beams. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2018, 435, 190–193. [Google Scholar] [CrossRef]
- Sadykov, V.; Usoltsev, V.; Fedorova, Y.; Mezentseva, N.; Krieger, T.; Eremeev, N.; Arapova, M.; Ishchenko, A.; Salanov, A.; Pelipenko, V.; et al. Advanced Sintering Techniques in Design of Planar IT SOFC and Supported Oxygen Separation Membranes. In Sintering of Ceramics-New Emerging Technologies, 1st ed.; Lakshmanan, A., Ed.; InTech-Open: Rijeka, Croatia, 2012; pp. 121–140. [Google Scholar]
- Sadykov, V.; Usoltsev, V.; Yeremeev, N.; Mezentseva, N.; Pelipenko, V.; Krieger, T.; Belyaev, V.; Sadovskaya, E.; Muzykantov, V.; Fedorova, Y.; et al. Functional Nanoceramics for Intermediate Temperature Solid Oxide Fuel Cells and Oxygen Separation Membranes. J. Europ. Ceram. Soc. 2013, 33, 2241–2250. [Google Scholar] [CrossRef]
- Sadykov, V.; Sadovskaya, E.; Eremeev, N.; Skazka, V.; Goncharov, V. 2D diffusion of oxygen in Ln10Mo2O21 (Ln = Nd, Ho) oxides. Solid State Ion. 2020, 346, 115229. [Google Scholar] [CrossRef]
- Stoyanovskii, V.O.; Vedyagin, A.A.; Volodin, A.M.; Bespalko, Y.N. Effect of carbon shell on stabilization of single-phase lanthanum and praseodymium hexaaluminates prepared by a modified Pechini method. Ceram. Int. 2020, 46, 29150–29159. [Google Scholar] [CrossRef]
- Henderson, S.J.; Shebanova, O.; Hector, A.L.; McMillan, P.F.; Weller, M.T. Structural Variations in pyrochlore-structured Bi2Hf2O7, Bi2Ti2O7 and Bi2Hf2−xTixO7 solid solutions as a function of composition and temperature by neutron and X-ray diffraction and Raman spectroscopy. Chem. Mater. 2007, 19, 1712–1722. [Google Scholar] [CrossRef]
- Fang, W.; Zhou, L.; Shen, B.; Zhou, Y.; Yi, Q.; Xing, M.; Zhang, J. Advanced Bi2O2.7/Bi2Ti2O7 composite film with enhanced visible-light-driven activity for the degradation of organic dyes. Res. Chem. Intermed. 2018, 44, 4609–4618. [Google Scholar] [CrossRef]
- Prekajski, M.; Fruth, V.; Andronescu, C.; Trandafilović, L.; Pantić, J.; Kremenović, A.; Matović, B. Thermal stability of Ce1−xBixO2−δ (x = 0.1 – 0.5) solid solution. J. Alloys Comp. 2013, 578, 26–31. [Google Scholar] [CrossRef]
- Leite, E.R.; Nobre, M.A.L.; Cerqueira, M.; Longo, E.; Valera, J.A. Particle growth during calcination of polycation oxides synthesized by the polymeric precursors method. J. Am. Ceram. Soc. 1997, 80, 2649–2657. [Google Scholar] [CrossRef]
- Sadykov, V.A.; Sadovskaya, E.M.; Filonova, E.A.; Eremeev, N.F.; Belyaev, V.D.; Tsvinkinberg, V.A.; Pikalova, E.Y. Oxide ionic transport features in Gd-doped La nickelates. Solid State Ion. 2020, 357, 115462. [Google Scholar] [CrossRef]
- Kilner, J.A. Fast oxygen transport in acceptor doped oxides. Solid State Ion. 2000, 129, 13–23. [Google Scholar] [CrossRef]
- De Souza, R.A.; Kilner, J.A.; Walker, J.F. A SIMS study of oxygen tracer diffusion and surface exchange in La0.8Sr0.2MnO3+δ. Mater. Lett. 2000, 43, 43–52. [Google Scholar] [CrossRef]
- Geffroy, P.-M.; Blond, E.; Richet, N.; Chartier, T. Understanding and identifying the oxygen transport mechanisms through a mixed-conductor membrane. Chem. Eng. Sci. 2017, 162, 245–261. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, T.; Dewangan, N.; Li, Z.; Das, S.; Pati, S.; Li, Z.; Lin, J.Y.S.; Kawi, S. Catalytic mixed conducting ceramic membrane reactors for methane conversion. React. Chem. Eng. 2020, 5, 1868–1891. [Google Scholar] [CrossRef]
- Sun, L.; Wang, Z.; Gao, B. Ceramic membranes originated from cost-effective and abundant natural minerals and industrial wastes for broad applications—A review. Desalin. Water Treat. 2020, 201, 121–138. [Google Scholar] [CrossRef]
- Han, N.; Shen, Z.; Zhao, X.; Chen, R.; Thakur, V.K. Perovskite oxides for oxygen transport: Chemistry and material horizons. Sci. Total Environ. 2022, 806, 151213. [Google Scholar] [CrossRef] [PubMed]
- Poetzsch, D.; Merkle, R.; Maier, J. Proton conductivity in mixed-conducting BSFZ perovskite from thermogravimetric relaxation. Phys. Chem. Chem. Phys. 2014, 16, 16446–16453. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H. Dual-phase mixed protonic-electronic conducting hydrogen separation membranes: A review. Membranes 2022, 12, 647. [Google Scholar] [CrossRef] [PubMed]
- Animitsa, I.; Neiman, A.; Sharafutdinov, A.; Nochrin, S. Strontium tantalates with perovskite-related structure. Solid State Ion. 2000, 136–137, 265–271. [Google Scholar] [CrossRef]
- Stub, S.Ø.; Vøllestad, E.; Norby, T. Mechanisms of protonic surface transport in porous oxides: Example of YSZ. J. Phys. Chem. C 2017, 121, 12817–12825. [Google Scholar] [CrossRef] [Green Version]
- Sunarso, J.; Hashim, S.S.; Zhu, N.; Zhou, W. Perovskite oxides applications in high temperature oxygen separation, solid oxide fuel cell and membrane reactor: A review. Prog. Energy Combust. Sci. 2017, 61, 57–77. [Google Scholar] [CrossRef]
- Escolástico, S.; Solís, C.; Haugsrud, R. On the ionic character of H2 separation through mixed conducting Nd5.5W0.5Mo0.5O11.25−δ membrane. Int. J. Hydrog. Energy 2017, 42, 11392–11399. [Google Scholar] [CrossRef]
- Papac, M.; Stevanović, V.; Zakutayev, A.; O’Hayre, R. Triple ionic–electronic conducting oxides for next-generation electrochemical devices. Nat. Mater. 2020, 20, 301–313. [Google Scholar] [CrossRef]
- Virkar, A.V. Transport of H2, O2 and H2O through single-phase, two-phase and multi-phase mixed proton, oxygen ion, and electron hole conductors. Solid State Ion. 2001, 140, 275–283. [Google Scholar] [CrossRef]
- Sanders, M.D.; O’Hayre, R.P. Coupled transport and uphill permeation of steam and oxygen in a dense ceramic membrane. J. Membr. Sci. 2011, 376, 96–101. [Google Scholar] [CrossRef]
№ | Composition | Tcalcin., °C | Phase | Lattice Parameter, Å | Crystallite Size, Å |
---|---|---|---|---|---|
1 | Bi2Ce2O7 | 500 | CeO2 | 5.463 (1) | 100 |
Bi2O3 | - | 200 | |||
900 | CeO2 | 5.435 (1) | 260 | ||
Bi2O3 | - | 340 | |||
1300 | CeO2 | 5.413 (1) | >1500 | ||
2 | Bi1.6Y0.4Ce2O7 | 500 | Bi1.2Y0.8O3 (CeO2) Bi2O3 | 5.441 (1) | 85 |
700 | CeO2 | 5.437 (1) | 130 | ||
1300 | CeO2 | 5.407 (1) | >1500 | ||
3 | Bi1.6Y0.4Ti2O7 | 500 | 30% Bi4Ti3O12 | a = 5.5 (1), c = 5.4 (1), c = 32.94 (5) | >1500 |
40% Bi7.5Y0.5O12 | a = b = 7.725 (1), c = 5.632 (1) | 150 | |||
30% Bi2O3 | - | 1000 | |||
700 | 60% Bi4Ti3O12 40% Bi1.74Ti2O6.624 (pyrochlore) | a = 5.385 (1), c = 5.409 (1), c = 32.820 (6) a = 10.277 (2) | 640 600 | ||
900 | 70% Bi1.74Ti2O6.624 | a = 10.289 (1) | >1500 | ||
30% Bi4Ti3O12 | a = 5.430 (1), c = 5.402 (1), c = 32.895 (4) | >1500 | |||
1100 | Bi1.74Ti2O6.624 | a = 10.310 (1) | >1500 | ||
1100 After RTS | 92% Bi1.74Ti2O6.624 | a = 10.273 (2) | >1500 | ||
8% Bi4Ti3O12 | a = 5.422 (3), c = 5.392 (3), c = 32.80 (2) | 900 |
Sample | Sintering Temperature (°C) | Sintering Technique | Porosity (%) | Mean Pore Size (μm) |
---|---|---|---|---|
Bi2Ce2O7 | 1100 | Conventional | 7 | 1.2 |
Bi1.6Y0.4Ce2O7 | 1100 | Conventional | 13 | 1.9 |
Bi1.6Y0.4Ti2O7 | 1100 | Conventional | 3 | 0.83 |
Radiation-thermal | 1 | 0.25 | ||
1300 | Conventional | 2 | 0.76 |
Sample | R (min−1) | ER (kJ mol−1) | D*/L2 (min−1) | ED (kJ mol−1) | β (min−1) | Eβ (kJ mol−1) |
---|---|---|---|---|---|---|
Bi2Ce2O7 | 1.8 × 102 | 150 | 0.07 (32%) | 80 | 0.012 | 80 |
Bi1.6Y0.4Ce2O7 | 1.8 × 102 | 150 | 0.11 (34%) | 80 | 0.017 | 80 |
Bi1.6Y0.4Ti2O7 | 1 × 10−5 | 100 | 4.7 × 10−7 (100%) | 72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bespalko, Y.; Eremeev, N.; Sadovskaya, E.; Krieger, T.; Bulavchenko, O.; Suprun, E.; Mikhailenko, M.; Korobeynikov, M.; Sadykov, V. Synthesis and Oxygen Mobility of Bismuth Cerates and Titanates with Pyrochlore Structure. Membranes 2023, 13, 598. https://doi.org/10.3390/membranes13060598
Bespalko Y, Eremeev N, Sadovskaya E, Krieger T, Bulavchenko O, Suprun E, Mikhailenko M, Korobeynikov M, Sadykov V. Synthesis and Oxygen Mobility of Bismuth Cerates and Titanates with Pyrochlore Structure. Membranes. 2023; 13(6):598. https://doi.org/10.3390/membranes13060598
Chicago/Turabian StyleBespalko, Yuliya, Nikita Eremeev, Ekaterina Sadovskaya, Tamara Krieger, Olga Bulavchenko, Evgenii Suprun, Mikhail Mikhailenko, Mikhail Korobeynikov, and Vladislav Sadykov. 2023. "Synthesis and Oxygen Mobility of Bismuth Cerates and Titanates with Pyrochlore Structure" Membranes 13, no. 6: 598. https://doi.org/10.3390/membranes13060598
APA StyleBespalko, Y., Eremeev, N., Sadovskaya, E., Krieger, T., Bulavchenko, O., Suprun, E., Mikhailenko, M., Korobeynikov, M., & Sadykov, V. (2023). Synthesis and Oxygen Mobility of Bismuth Cerates and Titanates with Pyrochlore Structure. Membranes, 13(6), 598. https://doi.org/10.3390/membranes13060598