Recent Developments in Electrospun Nanofiber-Based Triboelectric Nanogenerators: Materials, Structure, and Applications
Abstract
:1. Introduction
2. Basic Foundation of Electrospun Nanofiber-Based TENGs
2.1. Principle of Electrospun Nanofibers
2.2. Principle of Triboelectricity
3. Materials for Nanofiber-Based Triboelectric Nanogenerators
3.1. Positive Triboelectric Layer Materials for Nanofiber-Based TENGs
3.2. Negative Triboelectric Layer Materials for Nanofiber-Based TENGs
4. Structure Design
4.1. Fiber Structure
4.2. Bionic Structure
4.3. Multilayer Structure
5. Applications
5.1. Self-Powered Devices
5.1.1. Humidity Sensor
5.1.2. Photodetection Devices
5.1.3. Smart Home Systems
5.1.4. Personal Health Management
5.2. Environmental Energy Harvesting
5.2.1. Acoustic Energy Harvesting
5.2.2. Wind Energy Harvesting
5.2.3. Water Energy Harvesting
5.3. Wearable Devices
5.3.1. Breath Monitoring
5.3.2. Human Motion Detection
6. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ji, H.J.; Lee, W.; Yun, J.S. Book-shaped all-in-one piezo-triboelectric energy harvester module with enhanced current characteristics as an eco-friendly energy source. J. Eur. Ceram. Soc. 2021, 42, 1414–1424. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Qahtan, T.F.; Owolabi, T.O.; Agunloye, A.O.; Rashid, M.; Ali, M.S.F. Waste to sustainable energy based on TENG technology: A comprehensive review. J. Clean. Prod. 2024, 448, 141354. [Google Scholar] [CrossRef]
- Khandelwal, G.; Min, G.; Karagiorgis, X.; Dahiya, R. Aligned PLLA electrospun fibres based biodegradable triboelectric nanogenerator. Nano Energy 2023, 110, 108325. [Google Scholar] [CrossRef]
- Ra, Y.; Kim, J.W.; You, I.; Jang, S.; Cho, S.; Gwon, G.; Kam, D.; Lee, D.; Ahmad, A.; Karim, M.R.; et al. Direct electrospinning of reconstructable PVDF-TrFE nanofibrous mat onto conductive cement nanocomposite for triboelectricity-assisted net zero energy structure. Chem. Eng. J. 2024, 485, 149662. [Google Scholar] [CrossRef]
- Tao, R.; Mao, Y.; Gu, C.; Hu, W. Integrating all-yarn-based triboelectric nanogenerator/supercapacitor for energy harvesting, storage and sensing. Chem. Eng. J. 2024, 496, 154358. [Google Scholar] [CrossRef]
- Shi, L.; Jin, H.; Dong, S.; Huang, S.Y.; Kuang, H.; Xu, H.S.; Chen, J.K.; Xuan, W.P.; Zhang, S.M.; Li, S.J.; et al. High-performance triboelectric nanogenerator based on electrospun PVDF-graphene nanosheet composite nanofibers for energy harvesting. Nano Energy 2021, 80, 105599. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, S.; Luo, Y.; Tian, S.S.; Tang, J.; Xiong, J.Q. Advances in electrospun nanofibers for triboelectric nanogenerators. Nano Energy 2022, 104, 107884. [Google Scholar] [CrossRef]
- Cheon, S.; Kang, H.; Kim, H.; Son, Y.; Lee, J.Y.; Shin, H.J.; Kim, S.W.; Cho, J.H. High-performance triboelectric nanogenerators based on electrospun polyvinylidene fluoride-silver nanowire composite nanofibers. Adv. Funct. Mater. 2018, 28, 1703778. [Google Scholar] [CrossRef]
- Wang, D.F.; Wang, C.; Bi, Z.J.; Zhou, B.K.; Wang, L.X.; Li, Q.; Turng, L.S. Expanded polytetrafluoroethylene/poly(3-hydroxybutyrate) (ePTFE/PHB) triboelectric nanogenerators and their potential applications as self-powered and sensing vascular grafts. Chem. Eng. J. 2023, 455, 140494. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, Y.; Li, Y.; Wang, P. High-performance friction nanogenerators based on electrospun poly (vinylidene fluoride) loaded with microbead structures. ACS Appl. Polym. Mater. 2024, 6, 11722–11732. [Google Scholar] [CrossRef]
- Mahanty, B.; Ghosh, S.K.; Lee, D.W. High-performance polyaniline-coated electrospun P(VDF-TrFE)/BaTiO3 nanofiber-based flexible piezoelectric nanogenerator. Mater. Today Nano 2023, 24, 100421. [Google Scholar] [CrossRef]
- Tao, X.J.; Zhou, Y.M.; Qi, K.; Guo, C.Z.; Dai, Y.L.; He, J.X.; Dai, Z. Wearable textile triboelectric generator based on nanofiber core-spun yarn coupled with electret effect. J. Colloid Sci. 2022, 608, 23392346. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Xu, B.G.; Gao, Y.T.; Li, Z.H.; Tan, D.; Li, M.Q.; Liu, Y.F.; Huang, J.X. Ultrastrong-polar polyacrylonitrile organic-inorganic architected nanogenerators with synergistic triboelectric behavior for efficient biomechanical energy harvesting and self-powered sensing. Nano Energy 2022, 103, 107833. [Google Scholar] [CrossRef]
- Min, G.; Pullanchiyodan, A.; Dahiya, A.S.; Hosseinil, E.S.; Xu, Y.; Mulvihill, D.M.; Dahiya, R. Ferroelectric-assisted high-performance triboelectric nanogenerators based on electrospun P(VDF-TrFE) composite nanofibers with barium titanate nanofillers. Nano Energy 2021, 90, 106600. [Google Scholar] [CrossRef]
- Venkatesan, M.; Chandrasekar, J.; Liang, F.-C.; Lin, W.C.; Chen, W.-C.; Cho, C.-J.; Chen, Y.-T.; Lee, Y.-W.; Su, C.; Zhou, Y.; et al. Surface-enhanced fully nanofiber-based self-cleanable ultraviolet resistive triboelectric energy harvester for wearable smart garments. Nano Energy 2023, 113, 108556. [Google Scholar] [CrossRef]
- Tran, D.H.; Veeralingam, H.; Kim, J.-W. Self-repairing thermoplastic polyurethane-based triboelectric nanogenerator with molybdenum disulfide charge-trapping for advanced wearable devices. Nano Energy 2024, 127, 109174. [Google Scholar] [CrossRef]
- Yang, T.; Xu, K.K.; Zhu, G.Y.; Zhang, Y.F.; Zhu, X.J.; Li, X.; Shan, J.; Zhu, J.T.; Zhang, M.M.; He, X.J.; et al. Hierarchically structured poly(lactic acid) nanofibers by organic–inorganic nanohybridization strategy towards efficient PM removal and respiratory monitoring. Sep. Purif. Technol. 2024, 354, 128886. [Google Scholar] [CrossRef]
- Jiang, L.; Zhu, X.J.; Li, J.Q.; Shao, J.; Zhang, Y.; Zhu, J.T.; Li, S.H.; Zheng, L.N.; Li, X.P.; Zhang, S.H.; et al. Electroactive and breathable protective membranes by surface engineering of dielectric nanohybrids at poly(lactic acid) nanofibers with excellent self-sterilization and photothermal properties. Sep. Purif. Technol. 2024, 339, 126708. [Google Scholar] [CrossRef]
- Graham, S.A.; Patnam, H.; Manchi, P.; Paranjape, M.Y.; Kurakula, A.; Yu, J.S. Biocompatible electrospun fibers-based triboelectric nanogenerators for energy harvesting and healthcare monitoring. Nano Energy 2022, 100, 107455. [Google Scholar]
- Zhang, H.; Zhang, X.X.; Qiu, C.K.; Jia, P.L.; An, F.; Zhou, L.N.; Zhu, L.; Zhang, D.Z. Polyaniline/ZnO heterostructure-based ammonia sensor self-powered by electrospinning of PTFE-PVDF/MXene piezo-tribo hybrid nanogenerator. Chem. Eng. J. 2024, 496, 154226. [Google Scholar] [CrossRef]
- Li, X.X.; Ji, D.X.; Yu, B.X.; Ghosh, R.; He, J.H.; Qin, X.H.; Ramakrishna, S. Boosting piezoelectric and triboelectric effects of PVDF nanofiber through carbon-coated piezoelectric nanoparticles for highly sensitive wearable sensors. Chem. Eng. J. 2021, 426, 130345. [Google Scholar] [CrossRef]
- Alam, M.M.; Lee, S.; Kim, M.J.; Han, K.S.; Cao, V.A.; Nah, J. Ultra-flexible Nanofiber-Based Multifunctional Motion Sensor. Nano Energy 2020, 72, 104672. [Google Scholar] [CrossRef]
- Zhao, L.L.; Guo, X.; Pan, Y.S.; Jia, S.C.; Liu, L.Q.; Daoud, W.A.; Poechmueller, P.; Yang, X.Y. Triboelectric gait sensing analysis system for self-powered IoT-based human motion monitoring. InfoMat 2024, 6, e12520. [Google Scholar] [CrossRef]
- Ge, X.; Hu, N.; Yan, F.; Wang, Y. Development and applications of electrospun nanofiber-based triboelectric nanogenerators. Nano Energy 2023, 112, 108444. [Google Scholar] [CrossRef]
- Ghorbanzadeh, S.; Zhang, W. Advances in MXene-based triboelectric nanogenerators. Nano Energy 2024, 125, 109558. [Google Scholar] [CrossRef]
- Zhang, X.; Lv, S.; Lu, X.C.; Yu, H.; Huang, T.; Zhang, Q.H.; Zhu, M.F. Synergistic enhancement of coaxial nanofiber-based triboelectric nanogenerator through dielectric and dispersity modulation. Nano Energy 2020, 75, 104894. [Google Scholar] [CrossRef]
- Wang, L.Y.; Bian, Y.; Lim, C.K.; Niu, Z.L.; Lee, P.K.; Chen, C.; Zhang, L.; Daoud, W.A.; Zi, Y.L. Tribo-charge enhanced hybrid air filter masks for efficient particulate matter capture with greatly extended service life. Nano Energy 2021, 85, 106015. [Google Scholar] [CrossRef]
- Babu, A.; Aazem, I.; Walden, R.; Bairagi, S.; Mulvihill, D.M.; Pillai, S.C. Electrospun nanofiber based TENGs for wearable electronics and self-powered sensing. Chem. Eng. J. 2022, 452, 139060. [Google Scholar] [CrossRef]
- Bindhu, A.; Arun, A.P.; Pathak, M. Review on polyvinylidene fluoride-based triboelectric nanogenerators for applications in health monitoring and energy harvesting. ACS Appl. Electron. Mater. 2024, 6, 47–72. [Google Scholar] [CrossRef]
- Cui, X.J.; Wu, H.G.; Wang, R. Fibrous triboelectric nanogenerators: Fabrication, integration. and application. J. Mater. Chem. A 2022, 10, 15881–15905. [Google Scholar] [CrossRef]
- Reneker, D.H.; Chun, I. Nanometre diameter fibres of Polym, produced by electrospinning. Nanotechnology 1996, 7, 216223. [Google Scholar] [CrossRef]
- Dani, S.S.; Sundaray, B.; Nayak, S.K.; Mohanty, S. Electrospun PVDF and composite nanofiber: Current status and future prescription towards hybrid Piezoelectric nanogenerators. Mater. Today Commun. 2024, 38, 107661. [Google Scholar] [CrossRef]
- Zhang, M.D.; Liu, C.K.; Li, B.Y.; Shen, Y.T.; Wang, H.; Ji, K.Y.; Mao, X.; Wei, L.; Sun, R.J.; Zhou, F.L. Electrospun PVDF-based piezoelectric nanofibers: Materials, structures. and applications. Nanoscale Adv. 2023, 5, 1043–1059. [Google Scholar] [CrossRef]
- Rafiq, M.; Khan, R.S.; Wani, T.U.; Rather, A.H.; Amna, T.; Hassan, M.S.; Rather, S.; Sheikh, F.A. Improvisations to electrospinning techniques and ultrasonication process to nanofibers for high porosity: Ideal for cell infiltration and tissue integration. Mater. Today Commun. 2023, 35, 105695. [Google Scholar] [CrossRef]
- Xue, J.J.; Wu, T.; Dai, Y.Q.; Xia, Y.N. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [CrossRef]
- Ren, K.L.; Shen, Y.; Wang, Z.L. Piezoelectric properties of electrospun polymer nanofibers and related energy harvesting applications. Macromol. Mater. Eng. 2024, 309, 2300307. [Google Scholar] [CrossRef]
- Shi, F.L.; Wei, X.; Wang, H.C.; Wu, W.Q. Electrospun polyimide nanofiber-based triboelectric nanogenerator for harvesting energy at elevated temperatures. ACS Appl. Electron. Mater. 2022, 4, 4569–4575. [Google Scholar] [CrossRef]
- Gunasekhar, R.; Reza, M.S.; Kim, J.K.; Prabu, A.A.; Kim, H. Electrospun PVDF/aromatic HBP of 4th gen based fexible and self-powered TENG for wearable energy harvesting and health monitoring. Sci. Rep. 2023, 13, 22645. [Google Scholar] [CrossRef]
- Ye, Q.K.; Wu, Y.Z.; Qi, Y.Y.; Shi, L.; Huang, S.Y.; Zhang, L.; Li, M.L.; Li, W.; Zeng, X.Y.; Wo, H.L.; et al. Effects of liquid metal particles on performance of triboelectric nanogenerator with electrospun polyacrylonitrile fiber films. Nano Energy 2019, 61, 381–388. [Google Scholar] [CrossRef]
- Guo, Y.C.; Zhang, H.N.; Zhong, Y.M.; Shi, S.W.; Wang, Z.Z.; Wang, P.L.; Zhao, Y. Triboelectric nanogenerator-based near-field electrospinning system for optimizing PVDF fibers with high piezoelectric performance. ACS Appl. Mater. Interfaces 2023, 15, 5242–5252. [Google Scholar] [CrossRef]
- Kim, Y.; Wu, X.; Oh, J.H. Fabrication of triboelectric nanogenerators based on electrospun polyimide nanofibers membrane. Sci. Rep. 2020, 10, 2742. [Google Scholar] [CrossRef] [PubMed]
- Lopez, A.V.; Ao, X.; Saez, J.S.; Wang, D.Y. Triboelectric nanogenerator (TENG) enhanced air filtering and face masks: Recent advances. Nano Energy 2023, 114, 108635. [Google Scholar] [CrossRef]
- Kim, Y.J.; Wu, X.W.; Lee, C.; Oh, J.H. Characterization of PI/PVDF-TrFE composite nanofiber-based triboelectric nanogenerators depending on the type of the electrospinning system. ACS Appl. Mater. Interfaces 2021, 13, 36967–36975. [Google Scholar] [CrossRef] [PubMed]
- Bairagi, S.; Shahid-Ul-Islam, C.; Kumar, C.; Babu, A.; Aliyana, A.K.; Stylios, G.; Pillai, S.C.; Mulvihill, D.M. Wearable nanocomposite textile-based piezoelectric and triboelectric nanogenerators: Progress and perspectives. Nano Energy 2023, 118, 108962. [Google Scholar] [CrossRef]
- Jang, S.; Kim, Y.; Lee, S.; Oh, J.H. Optimization of electrospinning parameters for electrospun nanofiber-based triboelectric nanogenerators. Int. J. Precis. Eng. Manuf.-Green Technol. 2019, 6, 731–739. [Google Scholar] [CrossRef]
- He, Y.L.; Goay, A.C.Y.; Yuen, A.C.Y.; Mishra, D.; Zhou, Y.; Lu, T.; Wang, D.Y.; Liu, Y.; Boyer, Y.; Wang, C.H.; et al. Bulk schottky junctions-based flexible triboelectric nanogenerators to power backscatter communications in green 6g networks. Adv. Mater. 2024, 11, 2305829. [Google Scholar] [CrossRef]
- Niranjana, V.S.; Yoon, J.U.; Woo, I.; Gajula, P.; Bae, J.W.; Prabu, A.A. Exploring a new class of PVDF/3-aminopro-pyltriethoxysilane (core) and 2,2-bis(hydroxymethyl)butyric acid (monomer)-based hyperbra-nched polyester hybrid fibers by electrospinning technique for enhancing triboel-ectric performance. Adv. Sustain. Syst. 2024, 8, 2400311. [Google Scholar] [CrossRef]
- Bai, M.N.; Woo, I.; Subramanian, N.V.; Yoon, J.U.; Gajula, P.; Bae, J.W.; Arun, A.P. Influence of pentaerythritol core and dimethyl-ol butanoic acid monomer-based aliphatic hyperbranc hed polyester on the tribonegative perfo-rmance of polyvinylidene fluoride. ACS Appl. Electron. Mater. 2024, 6, 5586–5598. [Google Scholar]
- He, Y.L.; Ni, H.R.; Mishra, P.; Peng, S.H.; Phan, H.P.; Boyer, C.; Wang, C.H.; Zhang, J. Advancing triboelectric human machine interfaces with core-sheath nanocomposite fibres: Enhanced flexibility and motion identification via machine learning. Nano Energy 2024, 127, 109731. [Google Scholar] [CrossRef]
- Zhi, C.W.; Shi, S.; Meng, S.; Wu, H.B.; Si, Y.F.; Zhang, K.; Zhang, S.; Hu, J.L. A biocompatible and antibacterial all-textile structured triboelectric nanogenerator for self-powered tactile sensing. Nano Energy 2023, 115, 108734. [Google Scholar] [CrossRef]
- Venkatesan, H.M.; Arun, A.P. Nickel-oxide-doped polyvinylidene fluoride nanofiber-based flexible triboelectric nanogenerator for energy harvesting and healthcare monitoring applications. ACS Appl. Electron. Mater. 2024, 6, 1161–1173. [Google Scholar] [CrossRef]
- Pu, X.; Zha, J.W.; Zhao, C.L.; Gong, S.B.; Gao, J.F.; Li, R.K.Y. Flexible PVDF/nylon-11 electrospun fibrous membranes with aligned ZnO nanowires as potential triboelectric nanogenerators. Chem. Eng. J. 2020, 398, 125526. [Google Scholar] [CrossRef]
- Dani, S.S.; Sundaray, B.; Nayak, S.K.; Mohanty, S. Flexible tribo-Enhanced piezoelectric nanogenerator based on aluminium ferrite electrospun hybrid nanofibers for energy harvesting and patient rehabilitation application. Adv. Sens. Res. 2024, 38, 107661. [Google Scholar]
- Mahanty, B.; Ghosh, S.K.; Lee, D.W. Advancements in polymer nanofiber-based piezoelectric nanogenerators: Revolutionizing self-powered wearable electronics and biomedical applications. Chem. Eng. J. 2024, 495, 153481. [Google Scholar] [CrossRef]
- Purushothaman, S.M.; Tronco, M.F.; Kottathodi, B.; Royaud, I.; Ponçot, M.; Kalarikkal, N.; Thomas, S.; Rouxel, D. A review on electrospun PVDF-based nanocomposites: Recent trends and developments in energy harvesting and sensing applications. Polymer 2023, 283, 126179. [Google Scholar] [CrossRef]
- He, Y.L.; Wang, H.Y.; Sha, Z.; Boyer, C.; Wang, C.H.; Zhang, J. Enhancing output performance of PVDF-HFP fiber-based nanogenerator by hybridizing silver nanowires and perovskite oxide nanocrystals. Nano Energy 2022, 98, 107343. [Google Scholar] [CrossRef]
- Wang, S.; Tian, M.H.; Hu, S.Y.; Zhai, W.; Zheng, G.Q.; Liu, C.T.; Shen, C.Y.; Dai, K. Hierarchical nanofibrous mat via water-assisted electrospinning for self-powered ultrasensitive vibration sensors. Nano Energy 2022, 97, 107149. [Google Scholar] [CrossRef]
- Chang, K.B.; Parashar, P.; Shen, L.C.; Chen, A.R.; Huang, Y.T.; Pal, A.; Lim, K.C.; Wei, P.H.; Kao, F.C.; Hu, J.J.; et al. A triboelectric nanogenerator-based tactile sensor array system for monitoring pressure distribution inside prosthetic limb. Nano Energy 2023, 111, 108397. [Google Scholar] [CrossRef]
- Zhi, C.W.; Shi, S.; Wu, H.B.; Si, Y.S.; Zhang, S.; Lei, L.Q.; Hu, J.L. Emerging trends of nanofibrous piezoelectric and triboelectric applications: Mechanisms. electroactive materials, and designed architectures. Adv. Mater. 2024, 36, 2401264. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Z.; Zhang, Q.; Wang, X.X.; Lu, Y.; Li, W.B.; Peng, Q.Y.; Xu, F.Y. review of electrospinning in the fabrication of nanogenerators. ACS Appl. Nano Mater. 2024, 7, 4630–4652. [Google Scholar] [CrossRef]
- Yang, Z.Q.; Zhang, X.; Deng, T.J.; Deng, T.J.; Xiang, G. Mechanically robust and electrically stable high-performance triboelectric nanogenerator based on fluffy-free EC/Nylon-11 and PTFE/PVDF nanofibers. ACS Appl. Mater. Interfaces 2023, 15, 52696–52704. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Wang, G.-G.; Zhao, H.X.; Cai, Y.W.; Li, J.-Z.; Li, G.-Z.; Zhang, X.-N.; Wang, B.-L.; Han, J.-C.; Wang, Y.-H.; et al. Waterproof. breathable and washable triboelectric nanogenerator based on electrospun nanofiber films for wearable electronics. Nano Energy 2021, 90, 106639. [Google Scholar] [CrossRef]
- Rana, S.M.L.; Rahman, M.T.; Sharma, S.; Salauddin, M.; Yoon, S.H.; Park, C.; Maharjan, P.; Bhatta, T.; Park, J.Y. Cation functionalized nylon composite nanofibrous mat as a highly positive friction layer for robust, high output triboelectric nanogenerators and self-powered sensors. Nano Energy 2021, 88, 106300. [Google Scholar] [CrossRef]
- Yang, J.Y.; Hong, K.K.; Hao, Y.J.; Zhu, X.P.; Su, J.Y.; Su, W.; Zhang, H.K.; Qin, Y.; Zhang, C.G.; Li, X.H. Mica/nylon composite nanofiber film based wearable triboelectric sensor for object recognition. Nano Energy 2024, 129, 110056. [Google Scholar] [CrossRef]
- Zhang, C.G.; Liu, H.P.; Hao, Y.J.; Yang, J.Y.; Qiao, W.Y.; Qin, Y.; Su, W.; Zhang, H.K.; Wang, J.; Li, X. Triboelectric nanogenerator for self-powered musical instrument sensing based on the Ion-Electricfield-Migration Nylon/Na2SO4 nanofiber film. Chem. Eng. J. 2024, 489, 151274. [Google Scholar] [CrossRef]
- Huang, J.; Hao, Y.; Zhao, M.; Li, W.; Huang, F.L.; Wei, Q.F. All-fiber-structured triboelectric nanogenerator via one-pot electrospinning for self-powered wearable sensors. ACS Appl. Mater. Interfaces 2021, 13, 2477424784. [Google Scholar] [CrossRef] [PubMed]
- Yar, A.; Kınas, Z.; Karabiber, A.; Ozen, A.; Okbaz, A.; Ozel, F. Enhanced performance of triboelectric nanogenerator based on polyamide-silver antimony sulfide nanofibers for energy harvesting. Renew. Energy 2021, 179, 1781–1792. [Google Scholar] [CrossRef]
- Choi, G.J.; Sohn, S.H.; Park, I.K. Diminish charge loss by mica incorporation into nylon nanofibers for performance enhancement of triboelectric nanogenerators operating in harsh ambient. Chem. Eng. J. 2024, 493, 152314. [Google Scholar] [CrossRef]
- Prasad, G.; Graham, S.A.; Yu, J.S.; Kim, H.D.; Lee, D.-W. Investigated a PLL surface-modified Nylon 11 electrospun as a highly tribo-positive frictional layer to enhance output performance of triboelectric nanogenerators and self-powered wearable sensors. Nano Energy 2023, 108, 108178. [Google Scholar] [CrossRef]
- Roy, S.; Ghosh, B.D.; Mishra, S.; Goh, K.L.; Kim, J. Customized extrusion nozzle assisted robust Nylon 6/MWCNT nanocomposite based triboelectric nanogenerators for advanced smart wearables. Chem. Eng. J. 2024, 493, 152598. [Google Scholar] [CrossRef]
- Matrhew, D.T.; Sunil, M.; Joseph, N.; Raj, H.M.; Mayeen, A.; Mano, N.; Sagar, P.; John, H. High-performance self-cleaning triboelectric mini humidity sensor enabled by facet engineered titania nanocrystals adorned nylon- 6, 6 electrospun nanofibers. ACS Appl. Eng. Mater. 2024, 2, 1845–1856. [Google Scholar] [CrossRef]
- Gajula, P.; Yoon, J.U.; Woo, I.; Oh, S.-J.; Bae, J.W. Triboelectric touch sensor array system for energy generation and self-powered human-machine interfaces based on chemically functionalized. electrospun rGO/Nylon-12 and micro-patterned Ecoflex/MoS2 films. Nano Energy 2024, 121, 109278. [Google Scholar] [CrossRef]
- Yin, J.; Wang, J.; Ramakrishna, S.; Xu, L. All-electrospun triboelectric nanogenerator incorporating carbon-black-loaded nanofiber membranes for self-powered wearable sensors. ACS Appl. Nano Mater. 2023, 6, 15416–15425. [Google Scholar] [CrossRef]
- Yan, J.; Lv, M.; Qin, Y.; Wang, B.J.; Kang, W.M.; Li, Y.F.; Yang, G. Triboelectric nanogenerators based on membranes comprised of polyurethane fibers loaded with ethyl cellulose and barium titanate nanoparticles. ACS Appl. Nano Mater. 2023, 6, 5675–5684. [Google Scholar] [CrossRef]
- Li, W.; Lu, L.; Yan, F.; Palasantzas, G.; Loos, K.; Pei, Y.; Peia, Y. High-performance triboelectric nanogenerators based on TPU/mica nanofiber with enhanced tribo-positivity. Nano Energy 2023, 114, 108629. [Google Scholar] [CrossRef]
- Tabassian, R.; Rajabi-Abhari, A.; Mahato, M.; Yoo, H.; Yoon, H.Y.; Park, J.Y.; Oh, I.K. Metal-organic framework-based nanofibrous film for two different modes of triboelectric nanogenerators. SmartMat 2024, 5, e1270. [Google Scholar] [CrossRef]
- Yar, A.; Karabiber, A.; Ozen, A.; Ozel, F.; Coskun, S. Flexible nanofiber based triboelectric nanogenerators with high power conversion. Renew. Energy 2020, 162, 1428–1437. [Google Scholar] [CrossRef]
- Kınas, Z.; Karabiber, A.; Yar, A.; Ozen, A.; Ozel, F.; Ersöz, M.; Okbaz, A. High-performance triboelectric nanogenerator based on carbon nanomaterials functionalized polyacrylonitrile nanofibers. Energy 2022, 239, 122369. [Google Scholar] [CrossRef]
- Sardana, S.; Kaur, H.; Arora, B.; Aswal, D.K.; Mahajan, A. Self-Powered Monitoring of Ammonia Using an MXene/TiO2/Cellulose Nanofiber Heterojunction-Based Sensor Driven by an Electrospun Triboelectric Nanogenerator. ACS Sens. 2022, 7, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Jo, H.; Park, D.; Joo, M.; Choi, D.; Kang, J.S.; Ha, J.-M.; Kim, K.H.; Kim, K.H.; An, S. Performance-enhanced eco-friendly triboelectric nanogenerator via wettability manipulation of lignin. EcoMat 2023, 5, e12413. [Google Scholar] [CrossRef]
- Wang, L.X.; Sun, X.; Wang, D.F.; Wang, C.; Bi, Z.J.; Zheng, L.; Zhou, B.K.; Niu, H.B.; Wang, J.; Cui, P.Y.; et al. Construction of stretchable and large deformation green triboelectric nanogenerator and its application in technical action monitoring of racket sports. ACS Sustain. Chem. Eng. 2023, 11, 7102–7114. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, J.; Zou, J.; Xu, A.; Wei, Y.; Zhang, W.; Li, D. Electrospun PAN/BaTiO3/MXene nanofibrous membrane with significantly improved piezoelectric property for self-powered wearable sensor. Chem. Eng. J. 2024, 489, 151495. [Google Scholar] [CrossRef]
- Yar, A. Enhanced output performance of tetraethyl orthosilicate and graphene nanoplates-decorated nanofiber-based triboelectric nanogenerators. Colloids Surf. A 2021, 631, 127670. [Google Scholar] [CrossRef]
- Pandey, P.; Jung, D.H.; Choi, G.J.; Seo, M.K.; Lee, S.; Kim, J.M.; Park, I.K.; Sohn, J.I. Nafion-mediated barium titanate-polymer composite nanofibers-based triboelectric nanogenerator for self-powered smart street and home control system. Nano Energy 2023, 107, 108134. [Google Scholar] [CrossRef]
- Singh, S.K.; Kumar, P.; Magdum, R.; Khandelwal, U.; Deswal, S.; More, Y.; Muduli, S.; Boomishankar, R.; Pandit, S.; Ogale, S. Seed power: Natural seed and electrospun poly(vinyl difluoride) (PVDF) nanofiber based triboelectric nanogenerators with high output power density. ACS Appl. Bio Mater. 2019, 2, 3164–3170. [Google Scholar] [CrossRef] [PubMed]
- Lv, C.; Zhou, Z.; Li, Y.; Lu, S.; Bai, Y. Multi-responsive shape memory porous composites for self-powered sensors and self-sensing actuators. Chem. Eng. J. 2023, 477, 147059. [Google Scholar] [CrossRef]
- Li, L.; Zhang, J.; Wang, M.; Zhang, J.; Zeng, X.F.; Wang, J.X.; Le, Y. Electrospun hydrolyzed collagen from tanned leather shavings for bio-triboelectric nanogenerators. Mater. Adv. 2022, 3, 5080–5086. [Google Scholar] [CrossRef]
- Venkatesan, H.M.; Mohammad, S.R.; Ponnan, S.; Kim, K.J.; Gajula, P.; Kim, H.; Arun, A.P. Cobalt ferrite-embedded polyvinylidene fluoride electrospun nanocomposites as flexible triboelectric sensors for healthcare and polysomnographic monitoring applications. Nano Energy 2024, 129, 110003. [Google Scholar] [CrossRef]
- Choi, G.-J.; Baek, S.-H.; Lee, S.-S.; Khan, F.; Kim, J.H.; Park, I.-K. Performance enhancement of triboelectric nanogenerators based on polyvinylidene fluoride/graphene quantum dot composite nanofibers. J. Alloys Compd. 2019, 797, 945–951. [Google Scholar] [CrossRef]
- Gunasekhar, R.; Prabu, A.A. Polyvinylidene fluoride/aromatic hyperbranched polyester 2nd generation based triboelectric sensor for polysomnographic and health monitoring applications. Sens. Actuators A Phys. 2023, 355, 114311. [Google Scholar] [CrossRef]
- Li, X.; Wang, W.; Cai, W.H.; Liu, H.; Liu, H.H.; Han, N.; Zhang, X.X. MXene/Multiwalled carbon nanotube/polymer hybrids for tribopiezoelectric nanogenerators. ACS Appl. Nano Mater. 2022, 5, 12836–12847. [Google Scholar] [CrossRef]
- Xie, Y.R.; Ma, Q.L.; Qi, H.N.; Liu, X.N.; Chen, X.Y.; Jin, Y.; Li, D.; Yu, W.S.; Dong, X.T. A fluorescent triboelectric nanogenerator manufactured with a flexible janus nanobelt array concurrently acting as a charge-generating layer and charge-trapping layer. Nanoscale 2021, 13, 19144–19154. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-H.; Zhou, Z.; Li, J.; Shen, B.Z.; Zhu, T.S.; Gao, X.X.; Tao, R.W.; Guo, X.; Hu, X.P.; Shi, Y.; et al. Coupling enhanced performance of triboelectric-piezoelectric hybrid nanogenerator based on nanoporous film of Poly(vinylidene fluoride)/BaTiO3 composite electrospun fibers. ACS Mater. Lett. 2022, 4, 847–852. [Google Scholar] [CrossRef]
- Rahman, M.T.; Rana, S.S.; Zahed, M.A.; Lee, S.; Yoon, E.-S.; Park, J.Y. Metal-organic framework-derived nanoporous carbon incorporated nanofibers for high-performance triboelectric nanogenerators and self-powered sensors. Nano Energy 2022, 94, 106921. [Google Scholar] [CrossRef]
- Bhatta, T.; Maharjan, P.; Cho, H.; Park, C.; Yoon, S.H.; Sharma, S.; Salauddin, M.; Rahman, M.T.; Rana, S.S.; Park, J.Y. High-performance triboelectric nanogenerator based on MXene functionalized polyvinylidene fluoride composite nanofibers. Nano Energy 2021, 81, 105670. [Google Scholar] [CrossRef]
- Banerjee, S.; Bairagi, S.; Ali, S.W. A lead-free flexible piezoelectric-triboelectric hybrid nanogenerator composed of uniquely designed PVDF/KNN-ZS nanofibrous web. Energy 2022, 244, 123102. [Google Scholar] [CrossRef]
- Yin, H.; Zheng, Z.P.; Yu, D.; Chen, Y.J.; Liu, H.Z.; Guo, Y.P. Natural sepiolite modified PVDF electrospun films for mechanically robust and high-performance triboelectric nanogenerators. Appl. Clay Sci. 2023, 233, 106819. [Google Scholar] [CrossRef]
- Sim, D.J.; Choi, G.J.; Sohn, S.H.; Park, I.-K. Electronegative polyvinylidene fluoride/C60 composite nanofibers for performance enhancement of triboelectric nanogenerators. J. Alloys Compd. 2022, 898, 162805. [Google Scholar] [CrossRef]
- Ekbote, G.; Khalifa, M.; Perumal, V.; Anandan, S. A new multifunctional energy harvester based on mica nanosheet-dispersed PVDF nanofabrics featuring piezo-capacitive, piezoelectric and triboelectric effects. RSC Appl. Polym. 2023, 1, 266280. [Google Scholar] [CrossRef]
- Luo, C.; Shao, Y.; Yu, H.; Ma, H.-Z.; Zhang, Y.-H.; Gu, L.; Yin, B.; Yang, M.-B. Preparation and application of high performance PVDF/PS electrospinning film-based triboelectric nanogenerator. Chem. Phys. Lett. 2023, 813, 140276. [Google Scholar] [CrossRef]
- Bano, S.; Gupta, B.; Sharma, S.K.; Singh, R. Coupling of triboelectric and piezoelectric effects in nafion-containing polyvinylidene fluoride, lead zirconium titanate nanofiber-based nanogenerators for self-powered systems. ACS Appl. Nano Mater. 2024, 7, 15425–15437. [Google Scholar] [CrossRef]
- Sim, D.-J.; Choi, G.-J.; Sohn, S.-H.; Park, I.-K. Multifunctional PVDF film embedded with surfactant assisted-graphene with excellent piezo-capacitance. piezoelectric and triboelectric properties for various applications. Polymer 2023, 286, 126383. [Google Scholar]
- Rastegardoost, M.M.; Tafreshi, O.A.; Saadatnia, Z.; Ghaffari-Mosanenzadeh, S.; Serles, P.; Filleter, T.; Park, C.B.; Naguib, H.E. Highly durable triboelectric nanogenerators based on fibrous fluoropolymer composite mats with enhanced mechanical and dielectric properties. Mater. Today Energy 2023, 38, 101431. [Google Scholar] [CrossRef]
- Rana, S.M.S.; Rahman, M.T.; Salauddin, M.; Sharma, S.; Maharjan, P.; Bhatta, T.; Cho, H.; Park, C.; Park, J.Y. Electrospun PVDF-TrFE/MXene nanofiber mat-based triboelectric nanogenerator for smart home appliances. ACS Appl. Mater. Interfaces 2021, 13, 4955–4967. [Google Scholar] [CrossRef]
- Kim, S.-R.; Yoo, J.H.; Park, J.W. Using electrospun AgNW/P(VDF-TrFE) composite nanofibers to create transparent and wearable single-electrode triboelectric nanogenerators for self-powered touch panels. ACS Appl. Mater. Interfaces 2019, 11, 15088–15096. [Google Scholar] [CrossRef]
- Bharti, D.K.; Veeralingam, S.; Badhulika, S. An ultra high performance. lead-free Bi2WO6, P(VDF-TrFE)-based triboelectric nanogenerator for self-powered sensors and smart electronic applications. Mater. Horiz. 2022, 9, 663–674. [Google Scholar] [CrossRef]
- Hu, H.F.; Shang, S.L.; Liu, J.; Zhu, P. Silk fibroin based flexible and self-powered sensor for real-time monitoring of abdominal respiration. Int. J. Biol. Macromol. 2024, 254, 127723. [Google Scholar] [CrossRef]
- Fan, C.H.; Long, Z.; Zhang, Y.X.; Mensah, A.; He, H.F.; Wei, Q.F.; Lv, P.F. Robust integration of energy harvesting with daytime radiative cooling enables wearing thermal comfort self-powered electronic devices. Nano Energy 2023, 116, 108842. [Google Scholar] [CrossRef]
- Wang, S.Q.; Tong, W.W.; Li, Y.N.; Zhang, P.P.; Liu, Y.L.; Chen, Y.Y.; Zhang, Y.H. Contributions of piezoelectricity and triboelectricity to a hydroxyapatite/ PVDF-HFP fiber-film nanogenerator. Nano Energy 2023, 105, 108026. [Google Scholar] [CrossRef]
- Xi, B.B.; Wang, L.L.; Yang, B.; Xia, Y.F.; Chen, D.L.; Wang, X. Boosting output performance of triboelectric nanogenerator based on BaTiO3: La embedded nanofiber membrane for energy harvesting and wireless power transmission. Nano Energy 2023, 110, 108385. [Google Scholar] [CrossRef]
- Deswal, S.; Arab, S.; He, N.; Gao, W.; Lee, B.; Misra, V. Triboelectric nanogenerator based on electrospun molecular ferroelectric composite nanofibers for energy harvesting. RSC Appl. Polym. 2024, 2, 634–641. [Google Scholar] [CrossRef]
- Lin, M.F.; Chang, K.W.; Lee, C.H.; Wu, X.X.; Huang, Y.C. Electrospun P3HT/PVDF-HFP semiconductive nanofibers for triboelectric nanogenerators. Sci. Rep. 2022, 12, 14842. [Google Scholar] [CrossRef]
- Sha, Z.; Boyer, C.; Li, G.; Yu, Y.Y.; Allioux, F.-M.; Kalantar-Zadeh, K.; Wang, C.-H.; Zhang, J. Electrospun liquid metal/PVDF-HFP nanofiber membranes with exceptional triboelectric performance. Nano Energy 2021, 92, 106713. [Google Scholar] [CrossRef]
- Sardana, S.; Sharma, V.; Beepat, K.G.; Sharma, D.P.; Chawla, A.K.; Mahajan, A. Flexible humidity- and contamination-resistant superhydrophobic MXene-based electrospun triboelectric nanogenerators for distributed energy harvesting applications. Nanoscale 2023, 15, 19369–19380. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Wang, K.B.; Wang, Y.Q.; Lv, M.D.; Yang, G. Polyimide nanofiber-based triboelectric nanogenerators using piezoelectric carbon nanotube@barium titanate nanoparticles. ACS Appl. Nano Mater. 2024, 7, 13156–13165. [Google Scholar] [CrossRef]
- Xie, Y.; Ma, Q.; Yue, B.; Chen, X.; Jin, Y.; Qi, H.; Hu, Y.; Yu, W.; Dong, X.; Jiang, H. Triboelectric nanogenerator based on flexible Janus nanofiber membrane with simultaneous high charge generation and charge capturing abilities. Chem. Eng. J. 2022, 452, 139393. [Google Scholar] [CrossRef]
- Li, X.; Yu, W.; Gao, X.; Han, N.; Zhang, X. PVDF microspheres@PLLA nanofibers-based hybrid tribo/piezoelectric nanogenerator with excellent electrical output properties. Mater. Adv. 2021, 2, 6011–6019. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Y.; Zheng, Y.; Li, Z.; Fan, J.; Wang, L.; Liu, X.; Liu, J.; Shou, W. Enhanced energy harvesting ability of ZnO/PAN hybrid piezoelectric nanogenerators. ACS Appl. Mater. Interfaces 2020, 12, 54936–54945. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Yang, T.; Jin, L.; Yan, C.; Huang, H.; Chu, X.; Wang, Z.; Xiong, D.; Tian, G.; Zhang, H.; et al. Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures. Nano Energy 2019, 55, 516–525. [Google Scholar] [CrossRef]
- Li, L.; Peng, F.; Zheng, G.; Dai, K.; Liu, C.; Shen, C. Electrospun core-sheath PVDF piezoelectric fiber for sensing application. ACS Appl. Mater. Interfaces 2023, 15, 15938–15945. [Google Scholar] [CrossRef]
- Wang, N.; Wang, X.; Yan, K.; Song, W.; Fan, Z.; Yu, M.; Long, Y.Z. Anisotropic triboelectric nanogenerator based on ordered electrospinning. ACS Appl. Mater. Interfaces 2020, 12, 46205–46211. [Google Scholar] [CrossRef] [PubMed]
- Sagar Sardana, I.; Mahajan, A. Controlling electrospun nanofibers surface morphology using relative humidity for enhancing triboelectric nanogenerator performance. Chem. Phys. Lett. 2024, 844, 141289. [Google Scholar]
- Zhou, L.N.; Wu, J.P.; Song, W.Z.; Wang, X.X.; Wang, N.; Yu, M.; Fan, Z.Y.; Ramakrishna, S.; Long, Y.Z. High output achieved by sliding electrification of an electrospun nano-grating. Nanoscale 2021, 13, 17417–17427. [Google Scholar] [CrossRef]
- Li, H.; Meng, Z.; Wang, D.; Lu, Y.; Jiang, L.; Zhang, L.; Wang, H.; Wang, X. Application of different fiber structures and arrangements by electrospinning in triboelectric nanogenerators. Chin. J. Chem. Eng. 2024, 69, 177–191. [Google Scholar] [CrossRef]
- Li, J.; Zhao, Y.; Zhao, X.; Zhai, W.; Dai, K.; Liu, C.; Shen, C. Liquid metal-facilitated flexible electrospun thermoplastic polyurethane fibrous mats with aligned wavelike structure for strain and triboelectric double-mode sensing. Compos. Part A Appl. Sci. Manuf. 2024, 179, 108031. [Google Scholar] [CrossRef]
- Ding, Z.; Tian, Z.; Ji, X.; Wang, D.; Ci, X.; Shao, X.; Rojas, O. Cellulose-based superhydrophobic wrinkled paper and electrospinning film as green tribolayer for water wave energy harvesting. Int. J. Biol. Macromol. 2023, 234, 122903. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Tao, X.; Wang, Z.; An, M.; Qi, K.; Qu, K.; He, J.; Wang, R.; Chen, X.; Dai, Z. Electret-doped polarized nanofiber triboelectric nanogenerator with enhanced electrical output oerformance based on a micro-waveform structure. ACS Appl. Electron. Mater. 2022, 4, 24732480. [Google Scholar] [CrossRef]
- Haghayegh, M.; Cao, R.; Zabihi, F.; Bagherzadeh, R.; Miao, Y.; Yang, S.; Zhu, M. Hierarchically spring nanofibrous and wrinkledstructured electrode for highly comfortable wearable triboelectric nanogenerators. J. Mater. Chem. A 2023, 11, 2544125454. [Google Scholar] [CrossRef]
- Linarts, A.; Sherrell, P.C.; Malnieks, K.; Elis, A.V.; Sutka, A. Electrospinning triboelectric laminates: A pathway for scaling energy harvesters. Small 2023, 19, 2205563. [Google Scholar] [CrossRef] [PubMed]
- Rastegardoost, M.M.; Tafreshi, O.A.; Saadatnia, Z.; Mosanenzadeh, S.G.; Park, C.B.; Naguib, H.E. Porous PVDF mats with significantly enhanced dielectric properties and novel dipole arrangement for high-performance triboelectric nanogenerators. Appl. Mater. Today 2023, 30, 101732. [Google Scholar] [CrossRef]
- Syu, M.H.; Guan, Y.J.; Lo, W.C.; Fuh, Y.K. Biomimetic and porous nanofiber-based hybrid sensor for multifunctional pressure sensing and human gesture identification via deep learning method. Nano Energy 2020, 76, 105029. [Google Scholar] [CrossRef]
- Min, L.; Pan, H.; Chen, S.; Wang, C.; Wang, N.; Zhang, J.; Cao, Y.; Chen, X.; Hou, X. Recent progress in bio-inspired electrospun materials. Compos. Commun. 2019, 11, 1220. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, Y.; Zhang, J.; Zhang, D.; Zhou, X.; Xiong, J. Breathable metal−organic framework enhanced humidity-responsive nanofiber actuator with autonomous triboelectric perceptivity. ACS Nano 2023, 17, 17920–17930. [Google Scholar] [CrossRef]
- Yu, B.; Yu, H.; Huang, T.; Wang, H.; Zhu, M. A biomimetic nanofiber-based triboelectric nanogenerator with an ultrahigh transfer charge density. Nano Energy 2018, 48, 464–470. [Google Scholar] [CrossRef]
- Zhao, Q.; Jiang, Y.; Duan, Z.; Yuan, Z.; Zha, J.; Wu, Z.; Huang, Q.; Zhou, Z.; Li, H.; He, F.; et al. A Nb2CTx/sodium alginate-based composite film with neuron-like network for self-powered humidity sensing. Chem. Eng. J. 2022, 438, 135588. [Google Scholar] [CrossRef]
- Zhang, J.H.; Li, Y.; Hao, X. A high-performance triboelectric nanogenerator with improved output stability by construction of biomimetic superhydrophobic nanoporous fibers. Nanotechnology 2020, 31, 215401. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, J.; Lu, X.; Wang, C. An all-nanofibrous Janus textile with directional perspiration for triboelectric nanogenerator and self-powered e-skin sensor. Nano Energy 2023, 117, 108852. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhu, W.; Lu, X.; Wang, C. Mechanically robust, stretchable, autonomously adhesive, and environmentally tolerant triboelectric electronic skin for self-powered healthcare monitoring and tactile sensing. Nano Energy 2022, 102, 107636. [Google Scholar] [CrossRef]
- Miao, L.; Wan, J.; Song, Y.; Guo, H.; Chen, H.; Cheng, X.; Zhang, H. Skin-inspired humidity and pressure sensor with wrinkle-on-sponge structure. ACS Appl. Mater. Interfaces 2019, 11, 39219–39227. [Google Scholar] [CrossRef]
- Pan, J.; Sun, W.; Li, X.; Hao, Y.; Bai, Y.; Nan, D. A noval transparent triboelectric nanogenerator as electronic skin for real-time breath monitoring. J. Colloid Sci. 2024, 671, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Dong, K.; Ye, C.; Jiang, Y.; Zhai, S.; Cheng, R.; Liu, D.; Gao, X.; Wang, J.; Wang, Z.L. A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci. Adv. 2020, 6, eaba9624. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.H.; Li, Y.; Du, J.; Hao, X.; Wang, Q. Bio-inspired hydrophobic/cancellous/hydrophilic Trimurti PVDF mat-based wearable triboelectric nanogenerator designed by self-assembly of electro-pore-creating. Nano Energy 2019, 61, 486–495. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, S.; Zhang, X.; Jia, P.; Tian, S.; Pan, C.; Zeng, F.; Chen, D.; Chen, Y.; Tang, J.; et al. Silk inspired in-situ interlocked superelastic microfibers for permeable stretchable triboelectric nanogenerator. Nano Energy 2022, 98, 107347. [Google Scholar] [CrossRef]
- Zhang, Z.; Yuan, W. Highly biomimetic triboelectric-generating soft actuator with a hollow bilayer structure for sensing, temperature-sensitive switching and high-temperature alarm. Compos. Sci. Technol. 2023, 242, 110185. [Google Scholar] [CrossRef]
- Zhang, J.H.; Hao, X. Enhancing output performances and output retention rates of triboelectric nanogenerators via a design of composite inner-layers with coupling effect and self-assembled outer-layers with superhydrophobicity. Nano Energy 2020, 76, 105074. [Google Scholar] [CrossRef]
- Lee, C.; Cho, C.; Oh, J.H. Highly flexible triboelectric nanogenerators with electrospun PVDF-TrFE nanofibers on MWCNTs/PDMS/AgNWs composite electrodes. Compos. Part B 2023, 255, 110622. [Google Scholar] [CrossRef]
- Su, M.; Kim, B. Silk fibroin-carbon nanotube composites based fiber substrated wearable triboelectric nanogenerator. ACS Appl. Nano Mater. 2020, 3, 9759–9770. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, L.; Wang, N.; Li, C. Highly stretchable and transparent triboelectric nanogenerator based on multilayer structured stable electrode for self-powered wearable sensor. Nano Energy 2020, 78, 105385. [Google Scholar] [CrossRef]
- Bairagi, S.; Khandelwal, G.; Karagiorgis, X.; Gokhool, S.; Kumar, C.; Min, G.; Mulvihill, D.M. High-performance triboelectric nanogenerators based on commercial textiles: Electrospun Nylon 66 nanofibers on silk and PVDF on polyester. ACS Appl. Mater. Interfaces 2022, 14, 44591–44603. [Google Scholar] [CrossRef]
- Wang, H.; Sakamoto, H.; Asai, H.; Zhang, J.H.; Meboso, T.; Uchiyama, Y.; Kobayashi, E.; Takamura, E.; Suye, S. An all-fibrous triboelectric nanogenerator with enhanced outputs depended on the polystyrene charge storage layer. Nano Energy 2021, 90, 106515. [Google Scholar] [CrossRef]
- Mousa, H.M.; Arafat, A.G.; Omran, A.N.M.; Jaber, G.T.A. A hybrid triboelectric and piezoelectric nanogenerator with alpha-Al2O3 NPs/Doku and PVDF/SWCNTs nanofibers. Colloids Surf. A 2023, 656, 130403. [Google Scholar] [CrossRef]
- Chen, Q.; Cao, Y.; Lu, Y.; Akram, W.; Ren, S.; Niu, L.; Sun, Z.; Fang, J. Hybrid piezoelectric/triboelectric wearable nanogenerator based on stretchable PVDF−PDMS composite films. ACS Appl. Mater. Interfaces 2024, 16, 6239–6249. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Kulkarni, N.D.; Saha, A.; Kumari, P. Using multi-criteria decision-making approach for material alternatives in TiO2/P(VDF-TrFE)/PDMS based hybrid nanogenerator as a wearable device. Sens. Actuators A Phys. 2024, 372, 115331. [Google Scholar] [CrossRef]
- Mirjalali, S.; Bagherzadeh, R.; Abrishami, S.; Asadnia, M.; Huang, S.; Michael, A.; Peng, S.; Wang, C.H.; Wu, S. Multilayered electrospun/electrosprayed polyvinylidene fluoride+zinc oxide nanofiber mats with enhanced piezoelectricity. Macromol. Mater. Eng. 2023, 308, 2300009. [Google Scholar] [CrossRef]
- Wang, X.; Tong, W.; Chen, Y.; Li, Y.; Wang, Z.; Cao, T.; Wang, X.; Zhang, Y. Effective mechanical energy harvesting from PVDF multilayers by head-to-head parallel assembly. ACS Appl. Energy Mater. 2021, 4, 11133–11143. [Google Scholar] [CrossRef]
- Shrestha, K.; Pradhan, G.B.; Bhatta, T.; Sharma, S.; Lee, S.; Song, H.; Jeong, S.; Park, J.Y. Intermediate nanofibrous charge trapping layer-based wearable triboelectric self-powered sensor for human activity recognition and user identification. Nano Energy 2023, 108, 108180. [Google Scholar] [CrossRef]
- Shrestha, K.; Sharma, S.; Pradhan, G.B.; Bhatta, T.; Rana, S.S.; Lee, S.; Seonu, S.; Shin, Y.; Park, J.Y. A triboelectric driven rectification free self-charging supercapacitor for smart IoT applications. Nano Energy 2022, 102, 107713. [Google Scholar] [CrossRef]
- Huang, M.; Liu, C.; Zhang, Z.; Wang, J.; Zu, Q.; Zhou, L.; Zhou, X.; Yu, L.; Guo, S. Dual-mode electromagnetic-triboelectric-piezoelectric multifunctional self-charging energy system for efficient capture of kinetic energy. Nano Energy 2024, 128, 109819. [Google Scholar] [CrossRef]
- Zhu, M.; Yi, Z.; Yang, B.; Lee, C. Making use of nanoenergy from human Nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems. Nano Today 2021, 36, 101016. [Google Scholar] [CrossRef]
- Singh, V.; Rana, S.; Bokolia, R.; Panwar, A.K.; Meena, R.; Singh, B. Electrospun PVDF-MoSe2 nanofibers based hybrid triboelectric nanogenerator for self-powered water splitting system. J. Alloys Compd. 2024, 978, 173416. [Google Scholar] [CrossRef]
- Yin, J.; Li, J.; Ramakrishna, S.; Xu, L. Hybrid-structured electrospun nanofiber membranes as triboelectric nanogenerators for self-powered wearable electronics. ACS Sustain. Chem. Eng. 2023, 11, 14020–14030. [Google Scholar] [CrossRef]
- Wang, J.; He, T.; Lee, C. Development of neural interfaces and energy harvesters towards self-powered implantable systems for healthcare monitoring and rehabilitation purposes. Nano Energy 2019, 65, 104039. [Google Scholar] [CrossRef]
- Varghese, H.; Hakkeem, H.M.A.; Chauhan, K.; Thouti, E.; Pillai, E.; Chandran, A. A high-performance flexible triboelectric nanogenerator based on cellulose acetate nanofibers and micropatterned PDMS films as mechanical energy harvester and self-powered vibrational sensor. Nano Energy 2022, 98, 107339. [Google Scholar] [CrossRef]
- Chen, J.; Wen, X.; Liu, X.; Cao, J.; Ding, Z.; Du, Z. Flexible hierarchical helical yarn with broad strain range for self-powered motion signal monitoring and human-machine interactive. Nano Energy 2021, 80, 105446. [Google Scholar] [CrossRef]
- Sardana, S.; Singh, Z.; Sharma, A.K.; Kaur, N.; Pati, P.K.; Mahajan, A. Self-powered biocompatible humidity sensor based on an electrospun anisotropic triboelectric nanogenerator for non-invasive diagnostic applications. Sens. Actuators B Chem. 2022, 371, 132507. [Google Scholar] [CrossRef]
- Rasel, M.S.; Maharjan, P.; Rahman, M.T.; Salauddin, M.; Rana, S.M.S.; Lee, S.; Park, J.Y. Highly responsive and robust micro-/nano-textured self-powered triboelectric humidity sensor. ACS Appl. Electron. Mater. 2021, 3, 4376–4387. [Google Scholar] [CrossRef]
- Zhou, M.; Xu, F.; Ma, L.; Luo, Q.; Ma, W.; Wang, R.; Lan, C.; Pu, X.; Qin, X. Continuously fabricated nano/micro aligned fiber based waterproof and breathable fabric triboelectric nanogenerators for self-powered sensing systems. Nano Energy 2022, 104, 107885. [Google Scholar] [CrossRef]
- Ippili, S.; Jella, V.; Thomas, A.M.; Yoon, C.; Jung, J.-S.; Yoon, S.-G. ZnAl–LDH-induced electroactive b-phase and controlled dielectrics of PVDF for a high-performance triboelectric nanogenerator for humidity and pressure sensing applications. J. Mater. Chem. A 2021, 9, 15993–16005. [Google Scholar] [CrossRef]
- Das, N.K.; Nanda, P.; Badhulika, S. Electrospun vanadium oxide hollow nanofibers based supercapacitor inspired triboelectric nanogenerator as self-powered visible-blind ultraviolet photodetector. J. Power Sources 2024, 602, 234303. [Google Scholar] [CrossRef]
- Sohn, S.H.; Choi, G.J.; Park, I.K. Metal-organic frameworks-induced Self-Poling effect of polyvinylidene fluoride nanofibers for performance enhancement of triboelectric nanogenerator. Chem. Eng. J. 2023, 475, 145860. [Google Scholar] [CrossRef]
- Mohamadbeigi, N.; Shooshtari, L.; Fardindoost, S.; Vafaiee, M.; Zad, A.I.; Mohammadpour, R. Self-powered triboelectric nanogenerator sensor for detecting humidity level and monitoring ethanol variation in a simulated exhalation environment. Sci. Rep. 2024, 14, 1562. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhang, Z.; Gao, F.; Zhao, X.; Xun, X.; Kang, Z.; Liao, Q.; Zhang, Y. Self-powered ultrasensitive pulse sensors for noninvasive multi-indicators cardiovascular monitoring. Nano Energy 2021, 81, 105614. [Google Scholar] [CrossRef]
- Tang, Q.; Ke, Q.; Chen, Q.; Zhang, X.; Su, J.; Ning, C.; Fang, L. Flexible, breathable, and self-powered patch assembled of electrospun polymer triboelectric layers and polypyrrole-coated electrode for infected chronic wound healing. ACS Appl. Mater. Interfaces 2023, 15, 17641–17652. [Google Scholar] [CrossRef]
- Su, L.; Zhao, Z.X.; Li, H.Y.; Yuan, J.; Wang, Z.L.; Cao, G.Z.; Zhu, G. High-performance organolead halide perovskite-based self-powered triboelectric photodetector. ACS Nano 2015, 9, 11310. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Yang, H.; Soin, N.; Chen, L.; Black, N.; Xu, N.; Xu, K.; Sharma, P.K.; Tsonos, C.; Kumar, A.; et al. Bismuth oxyhalide based photo-enhanced triboelectric nanogenerators. Nano Energy 2021, 89, 106419. [Google Scholar] [CrossRef]
- Pandey, P.; Thapa, K.; Ojha, G.P.; Seo, M.K.; Shin, K.H.; Kim, S.W.; Sohn, J.I. Metal-organic frameworks-based triboelectric nanogenerator powered visible light communication system for wireless human-machine interactions. Chem. Eng. J. 2023, 452, 139209. [Google Scholar] [CrossRef]
- Yan, J.; Wang, H.; Wang, X.; Yang, G. High-performance triboelectric nanogenerators with laser-induced graphene pattern for efficient charge transfer. Appl. Surf. Sci. 2024, 661, 160034. [Google Scholar] [CrossRef]
- Bhatta, T.; Sharma, S.; Shrestha, K.; Shin, Y.; Seonu, S.; Lee, S.; Kim, D.; Sharifuzzaman, M.; Rana, S.M.S.; Park, J.Y. Siloxene/PVDF composite nanofibrous membrane for high-performance triboelectric nanogenerator and self-powered static and dynamic pressure sensing applications. Adv. Funct. Mater. 2022, 32, 2202145. [Google Scholar] [CrossRef]
- Gao, L.; Hu, D.; Qi, M.; Gong, J.; Zhou, H.; Chen, X.; Chen, J.; Cai, J.; Wu, L.; Hu, N.; et al. A double-helix-structured triboelectric nanogenerator enhanced with positive charge traps for self-powered temperature sensing and smart-home control systems. Nanoscale 2018, 10, 19781–19790. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Suo, H.; Xie, G.; Lyu, Q.; Mo, M.; Xie, Z.; Zhou, N.; Zhang, L.; Tao, J.; Zhu, J. Self-powered and photothermal electronic skin patches for accelerating wound healing. Nano Energy 2022, 93, 106906. [Google Scholar] [CrossRef]
- Su, Y.; Wang, J.; Wang, B.; Yang, T.; Yang, B.; Xie, G.; Zhou, Y.; Zhang, S.; Tai, H.; Cai, Z.; et al. Alveolus-inspired active membrane sensors for self-powered wearable chemical sensing and breath analysis. ACS Nano 2020, 14, 6067–6075. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Xiao, X.; Chen, J. Triboelectric nanogenerators for self-powered breath monitoring. ACS Appl. Energy Mater. 2022, 5, 3952–3965. [Google Scholar] [CrossRef]
- Su, Y.; Chen, G.; Chen, C.; Gong, Q.; Xie, G.; Yao, H.; Tai, H.; Jiang, Y.; Chen, J. Self-powered respiration monitoring enabled by a triboelectric nanogenerator. Adv. Mater. 2021, 33, 2101262. [Google Scholar] [CrossRef]
- Cai, J.; Zhang, Z.X. An origami structure triboelectric nanogenerator based on PVDF/BaTiO3 for muscle strain monitoring in running sports. Curr. Appl. Phys. 2024, 64, 61–67. [Google Scholar] [CrossRef]
- Yuan, M.; Li, C.; Liu, H.; Xu, Q.; Xie, Y. A 3D-printed acoustic triboelectric nanogenerator for quarter-wavelength acoustic energy harvesting and self-powered edge sensing. Nano Energy 2021, 85, 105962. [Google Scholar] [CrossRef]
- Zeng, Q.; Wu, Y.; Tang, Q.; Liu, W.; Wu, J.; Zhang, Y.; Yin, G.; Yang, H.; Yuan, S.; Tan, D.; et al. A high-efficient breeze energy harvester utilizing a full-packaged triboelectric nanogenerator based on flow-induced vibration. Nano Energy 2020, 70, 104524. [Google Scholar] [CrossRef]
- Yu, Z.; Chen, M.; Wang, Y.; Zheng, J.; Zhang, Y.; Zhou, H.; Li, D. Nanoporous PVDF hollow fiber employed piezo−tribo nanogenerator for effective acoustic harvesting. ACS Appl. Mater. Interfaces 2021, 13, 26981–26988. [Google Scholar] [CrossRef]
- Nayeem, M.O.G.; Lee, S.; Jin, H.; Matsuhisa, N.; Jinno, H.; Miyamoto, A.; Yokota, T.; Someya, T. All-nanofiber–based, ultrasensitive, gas-permeable mechanoacoustic sensors for continuous long-term heart monitoring. Proc. Natl. Acad. Sci. USA 2020, 117, 7063–7070. [Google Scholar] [CrossRef]
- Qiu, W.; Feng, Y.; Luo, N.; Chen, S.; Wang, D. Sandwich-like sound-driven triboelectric nanogenerator for energy harvesting and electrochromic based on Cu foam. Nano Energy 2020, 70, 104543. [Google Scholar] [CrossRef]
- Chen, F.; Wu, Y.; Ding, Z.; Xia, X.; Li, S.; Zheng, H.; Diao, C.; Yue, G.; Zi, Y. A novel triboelectric nanogenerator based on electrospun polyvinylidene fluoride nanofibers for effective acoustic energy harvesting and self-powered multifunctional sensing. Nano Energy 2019, 56, 241251. [Google Scholar] [CrossRef]
- Sun, W.; Ji, G.; Chen, J.; Sui, D.; Zhou, J.; Huber, J. Enhancing the acoustic-to-electrical conversion efficiency of nanofibrous membrane-based triboelectric nanogenerators by nanocomposite composition. Nano Energy 2023, 108, 1082548. [Google Scholar] [CrossRef]
- Xu, W.; Guo, J.; Wen, H.; Meng, X.; Hong, H.; Yuan, J.; Gao, J.; Liu, D.; Ran, Q.; Wang, Y.; et al. Laminated triboelectric acoustic energy harvester based on electrospun nanofiber towards real-time noise decibel monitoring. Nano Energy 2022, 99, 107348. [Google Scholar] [CrossRef]
- Yang, D.; Feng, Y.; Wang, B.; Liu, Y.; Zheng, Y.; Sun, X.; Peng, J.; Feng, M.; Wang, D. An asymmetric AC electric field of triboelectric nanogenerator for efficient water/oil emulsion separation. Nano Energy 2021, 90, 106641. [Google Scholar] [CrossRef]
- Li, Y.; Xiong, J.; Lv, J.; Chen, J.; Gao, D.; Zhang, X.; Lee, P.S. Mechanically interlocked stretchable nanofibers for multifunctional wearable triboelectric nanogenerator. Nano Energy 2020, 78, 105358. [Google Scholar] [CrossRef]
- Kang, T.; Ma, W.; Guo, Y.; Zhou, J.; Zhang, Y.; Ji, T.; Zhang, W.; Gong, W. Multi-weather full-body triboelectric garments for personalized moisture management and water energy acquisition. Nano Energy 2023, 110, 108359. [Google Scholar] [CrossRef]
- Gu, J.; Lee, D.; Park, H.; Kim, K. Flutter-driven piezoelectric wind energy harvesting system basedon PVDF nanofiber for low power applications. Int. J. Precis. Eng. Manuf.-Green Technol. 2024, 11, 1545–1556. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, Y.; Zhang, B.; Yuan, W.; He, L.; Wei, X.; Wang, J.; Wang, Z.L. Harvesting wind energy by a triboelectric nanogenerator for an intelligent high-speed train system. ACS Energy Lett. 2021, 6, 1490–1499. [Google Scholar] [CrossRef]
- He, L.; Zhang, C.; Zhang, B.; Yang, W.; Zhou, L.; Zhao, Z.; Wu, Z.; Wang, J.; Wang, Z.L. A dual-mode triboelectric nanogenerator for wind energy harvesting and self-powered wind speed monitoring. ACS Nano 2022, 16, 6244–6254. [Google Scholar] [CrossRef]
- Shi, B.; Wang, Q.; Su, H.; Li, J.; Xie, B.; Wang, P.; Qiu, J.; Wu, C.; Zhang, Y.; Zhou, X.; et al. Progress in recent research on the design and use of triboelectric nanogenerators for harvesting wind energy. Nano Energy 2023, 116, 108789. [Google Scholar] [CrossRef]
- Li, X.; Jiang, C.; Zhao, F.; Lan, L.; Yao, Y.; Yu, Y.; Ping, J.; Ying, Y. Fully stretchable triboelectric nanogenerator for energy harvesting and selfpowered sensing. Nano Energy 2019, 61, 78–85. [Google Scholar] [CrossRef]
- Zhi, C.; Wu, H.; Hu, J. In-situ welding and thermal activation enabled robust nanofibers based triboelectric nanogenerator for sustainable energy harvesting. Nano Energy 2024, 127, 109705. [Google Scholar] [CrossRef]
- Ren, X.; Fan, H.; Wang, C.; Ma, J.; Li, H.; Zhang, M.; Lei, S.; Wang, W. Wind energy harvester based on coaxial rotatory freestanding triboelectric nanogenerators for self-powered water splitting. Nano Energy 2018, 50, 562–570. [Google Scholar] [CrossRef]
- Das, N.K.; Chahal, S.; Badhulika, S. Highly electronegative borophene/PVDF composite hybrid nanofibers based triboelectric nanogenerator for self-powered sensor for human motion monitoring and energy harvesting from rain. Mater. Sci. Semicond. Process. 2024, 180, 108555. [Google Scholar] [CrossRef]
- Cheng, B.; Niu, S.; Xu, Q.; Wen, J.; Bai, S.; Qin, Y. Gridding triboelectric nanogenerator for raindrop energy harvesting. ACS Appl. Mater. Interfaces 2021, 13, 59975–59982. [Google Scholar] [CrossRef] [PubMed]
- Hao, C.; He, J.; Zhai, C.; Jia, W.; Song, L.; Cho, J.; Chou, X.; Xue, C.; Cho, J. Two-dimensional triboelectric-electromagnetic hybrid nanogenerator for wave energy harvesting. Nano Energy 2019, 58, 147–157. [Google Scholar] [CrossRef]
- Chen, X.; Xiong, J.; Parida, K.; Guo, M.; Wang, C.; Wang, C.; Li, X.; Shao, J.; Lee, P. Transparent and stretchable bimodal triboelectric nanogenerators with hierarchical micro-nanostructures for mechanical and water energy harvesting. Nano Energy 2019, 64, 103904. [Google Scholar] [CrossRef]
- Mirjalali, S.; Varposhti, A.M.; Abrishami, S.; Bagherzadeh, R.; Asadnia, A.; Bagherzadeh, R.; Asadnia, M.; Huang, S.; Peng, S.; Wang, C.H.; et al. A review on wearable electrospun polymeric piezoelectric sensors and energy harvesters. Macromol. Mater. Eng. 2023, 308, 2200442. [Google Scholar] [CrossRef]
- Wu, Y.; Qu, J.; Daoud, W.A.; Wang, L.; Qi, T. Flexible composite-nanofiber based piezo-triboelectric nanogenerators for wearable electronics. J. Mater. Chem. A 2019, 7, 13347–13355. [Google Scholar] [CrossRef]
- Wu, X.X.; Zhang, J.J.; Lee, C.H.; Lin, M.F. Enhanced triboelectric properties of Eu2O3-doped BaTiO3/PVDF-HFP nanofibers. Nanoscale 2023, 15, 3823. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Wang, F.; Cui, X.; Zhu, Y. Recent progress in textile-based triboelectric force sensors for wearable electronics. Adv. Compos. Hybrid Mater. 2023, 6, 70. [Google Scholar] [CrossRef]
- Indumathy, B.; Prabu, A.A. Electrospun PVDF/Si-HBP of 3rd gen based nanoweb as flexible and self-powered TENG for real-time energy harvesting. Mater. Sci. Eng. B 2024, 302, 117216. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, Y.; Huang, J.; Li, S.; Meng, Z.; Cai, W.; Lai, Y. Electrospun nanocomposite Fibrous Membranes for Sustainable Face Mask Based on Triboelectric Nanogenerator with High Air Filtration Efficiency. Adv. Fiber Mater. 2023, 5, 1505–1518. [Google Scholar] [CrossRef]
- Lan, X.; Chen, X.; Luo, Y.; Lai, X.; Bao, Y.; Chen, X.; Liu, Y.; Zheng, H.; Wang, H.; Tang, Y. A versatile nanofibrous facemask filter for triboelectric nanogenerator-based self-powered respiratory monitoring with efficient filtration and excellent antibacterial capacities. Chem. Eng. Sci. 2023, 279, 118949. [Google Scholar] [CrossRef]
- Yi, F.; Zhang, Z.; Kang, Z.; Liao, Q.; Zhang, Y. Recent advances in triboelectric nanogenerator-based health monitoring. Adv. Funct. Mater. 2019, 29, 1808849. [Google Scholar] [CrossRef]
- Meena, J.S.; Khanh, T.D.; Jung, S.B.; Kim, J.W. Self-Repairing and energy-harvesting triboelectric sensor for tracking limb motion and identifying breathing patterns. ACS Appl. Mater. Interfaces 2023, 15, 2948629498. [Google Scholar] [CrossRef]
- Kisomi, M.K.; Seddighi, S.; Mohammadpour, R.; Rezaniakolaei, A. Enhancing air filtration efficiency with triboelectric nanogenerators in face masks and industrial filters. Nano Energy 2023, 112, 108514. [Google Scholar] [CrossRef]
- Fu, Q.; Liu, Y.; Liu, T.; Mo, J.; Zhang, W.; Zhang, S.; Luo, B.; Wang, J.; Qin, Y.; Wang, S.; et al. Air-permeable cellulosic triboelectric materials for self-powered healthcare products. Nano Energy 2022, 102, 107739. [Google Scholar] [CrossRef]
- He, H.; Guo, J.; Illes, B.; Geczy, A.; Istok, B.; Hliva, V.; Torok, D.; Kovacs, J.G.; Harmati, I.; Molnar, K. Monitoring multi-respiratory indices via a smart nanofibrous mask filter based on a triboelectric nanogenerator. Nano Energy 2021, 89, 106418. [Google Scholar] [CrossRef]
- Jiang, C.; Wu, C.; Li, X.; Yao, Y.; Lan, L.; Zhao, F.; Ye, Z.; Ying, Y.; Ping, J. All-electrospun flexible triboelectric nanogenerator based on metallic MXene nanosheets. Nano Energy 2019, 59, 268276. [Google Scholar] [CrossRef]
- Gunasekhar, R.; Bindhu, A.; Reza, M.S.; Arun, A.P.; Kim, K.J.; Kim, H. Piezoelectric and triboelectric contributions by aromatic hyperbranched polyesters of second-generation/PVDF nanofiber-based nanogenerators for energy harvesting and wearable electronics. ACS Appl. Electron. Mater. 2024, 6, 5036–5049. [Google Scholar] [CrossRef]
- Lopez, A.V.; Saez, J.S.D.R.; Vega, J.D.L.; Ao, X.; Wang, D.Y. All-fabric triboelectric nanogenerator (AF-TENG) smart face mask: Remote long-rate breathing monitoring and apnea alarm. ACS Sens. 2023, 8, 1684–1692. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chu, L.; Meng, S.; Yang, M.; Yu, Y.; Deng, X.; Qi, C.; Kong, T.; Liu, Z. Scalable and ultra-sensitive nanofibers coaxial yarn-woven triboelectric nanogenerator textile sensors for real-time gait analysis. Adv. Sci. 2024, 11, 2401436. [Google Scholar] [CrossRef]
- Guan, X.; Xu, B.; Wu, B.; Jing, T.; Yang, Y.; Gao, Y. Breathable, washable and wearable woven-structured triboelectric nanogenerators utilizing electrospun nanofibers for biomechanical energy harvesting and self-powered sensing. Nano Energy 2021, 80, 105549. [Google Scholar] [CrossRef]
- Busolo, T.; Szewczyk, P.K.; Nair, M.; Stachewicz, U.; Narayan, S. Triboelectric yarns with electrospun functional polymer coatings for highly durable and washable smart textile applications. ACS Appl. Mater. Interfaces 2021, 13, 16876–16886. [Google Scholar] [CrossRef]
- Sun, N.; Zhang, X.N.; Li, J.Z.; Cai, Y.W.; Wei, Z.; Ding, L.; Wang, G.G. Waterproof, breathable, and UV-protective nanofiber-based triboelectric nanogenerator for self-powered sensors. ACS Sustain. Chem. Eng. 2023, 11, 5608–5616. [Google Scholar] [CrossRef]
- Bai, Y.; Zhou, Z.; Zhu, Q.; Lu, S.; Li, Y.; Ionow, L. Electrospun cellulose acetate nanofibrous composites for multi-responsive shape memory actuators and self-powered pressure sensors. Carbohydr. Polym. 2023, 313, 120868. [Google Scholar] [CrossRef]
- Xiao, Y.; Xu, B.; Bao, Q.; Lam, Y. Wearable triboelectric nanogenerators based on polyamide composites doped with 2D graphitic carbon nitride. Polymers 2022, 14, 3029. [Google Scholar] [CrossRef]
- Chen, W.; Fan, W.; Wang, Q.; Yu, X.; Luo, Y.; Wang, W.; Lei, R.; Li, Y. A nano-micro structure engendered abrasion resistant, superhydrophobic, wearable triboelectric yarn for self-powered sensing. Nano Energy 2022, 103, 107769. [Google Scholar] [CrossRef]
- Zhou, H. A triboelectric nanogenerator based on TPU/PVDF electrospinning for mechanical energy harvesting and monitoring running step rate. AIP Adv. 2024, 14, 065229. [Google Scholar] [CrossRef]
- Wang, C.; Feng, L.; Xu, S.; Zhao, Y.; Yao, L.; Ge, J.; Sun, T.; Pan, G. Fabrication of reusable bioprotective nanofabric with passive nano-Ag/Joule thermal disinfection properties for real-time wireless fine biomotion and gesture sensing. Nano Energy 2024, 124, 109525. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Dai, X.; Zhou, Y.; Shao, J.X.; Zhao, L.P.; Wang, T.S.; Liu, F.M.; Yan, X.; Yang, M.D.; Sun, P.Y.; et al. Ultra-thin and sensitive pressure sensor based on MXene/PVDF-HFP composite fiber TENG for self-diagnosis of ligament injuries. Nano Energy 2024, 132, 2211–2855. [Google Scholar] [CrossRef]
Materials | Electrode | Voltage | Current | Power | Application | Year | Reference |
---|---|---|---|---|---|---|---|
P: Mica/Nylon N: FEP | Al | 400 V | 40 μA | 11.82 W/m2 | Intelligent triboelectric wearable sensor | 2024 | [64] |
P: Nylon/Na2SO4 N: FEP | Cu | 494 V | 30 μA | 9.52 W/m2 | Intelligent musical instrument | 2024 | [65] |
P: Mica/Nylon N: PTFE | Al | 629 V | 5.36 mW/cm2 | Energy harvesting | 2024 | [68] | |
P: EC/PA6 N: PVDF/MXene | Cu | 290 mW/m2 | Monitoring human movements as a self-powered sensor | 2021 | [66] | ||
P: Nylon 6/MWCNT N: PTFE | Ag | 105.7 V | 10.55 μA | 465 mW/m2 | Self-powered sensors | 2024 | [70] |
P: Nylon-6,6/TiO2 N: Cu | Cu | 130 mA/m2 | 5 W/m2 | Self-powered humidity sensors | 2024 | [71] | |
P: AgSbS2@ Nylon 6.6 N: PAN | Al | 546 V | 6.81 W/m2 | Energy harvesting | 2021 | [67] | |
P: PA66/MWCNTs N: PVDF | Conductive fabric | 142 V | 15.5 μA | 1.30 W/m2 | Wearable electronics | 2021 | [62] |
P: PLL/Nylon 11 N: Ecoflex | Al | 137 V | 3.4 μA | Self-powered wearable sensors | 2023 | [69] | |
P: EC/Nylon-11 N: PTFE/PVDF | 212 V | 18.5 μA | 1.76 W/m2 | Durable, wearable, and self-powered sensors | 2023 | [61] | |
P: poly-DADMAC/Nylon-11 N: PVDF-TrFE | Conductive fabrics | 380 V | 80 μA | 7.6 W/m2 | Self-powered sensors | 2021 | [63] |
P: A-rGO/Nylon12 N: MoS2/Ecoflex | Al | 451 V | 13.3 μA | 1.3 W/m2 | Self-powered human–machine interfaces | 2024 | [72] |
P: TPU/mica N: MXene/PVDF | Al | 224 V | 3.72 μA | 1458 mW/m2 | Body motion monitor | 2023 | [75] |
P: PCA PNFMs N: TPU/CB BNFM | Conductive fabric | 24.45 V | Biocompatibility, human motion detection | 2023 | [73] | ||
P: EC/TPU/BTO N: PP | Cu | 125.8 V | 34.1 μA | 1.68 W/m2 | Self-powered sensors | 2023 | [74] |
P: TPU N: FEP/MoS2 | 300 V | 30 μA | 4.2 W/m2 | Wearable devices | 2024 | [16] | |
P: PAN/FCNT N: PVDF/PDMS/TiO2 | Copper–nickel | 2088 V | 7.2 W/m2 | Self-powered sensing fields | 2022 | [13] | |
P: ZIF-8/PAN N: PTFE | Al | 178 V | 7.5 μA | 204.8 mW/m2 | Energy harvesting | 2024 | [76] |
P: PAN/B(OH)3 N: PVB | Al | 200 V | 45 μA | 6.67 W/m2 | Energy harvesting | 2020 | [77] |
P: CNT/PAN N: PVP/EC | Al | 960 V | 14.6 W/m2 | Energy harvesting | 2022 | [78] | |
P: CA NFs N: MXene NFs | Al | 140 V | 92 μA | 1361 mW/m2 | Self-powered sensors | 2022 | [79] |
P: lignin/polycapro-lactone N: Teflon | Cu | 96 V | 157 mw/m2 | Energy-harvesting | 2023 | [80] | |
P: PHB/PLCL N: ePTFE | Cu | 460.63 V | 25.49 mA/m2 | Self-motivated sensor | 2023 | [81] | |
P: nickel-copper N: PAN/BaTiO3/MXene | Cu | 11.3 V | 300 nA | 3.4 mW/m2 | Self-powered wearable sensor | 2024 | [82] |
P: GNP/TEOS/PVB N: PAN | Al | 810 V | 263 μA | 20 W/m2 | Wearable electronics | 2021 | [83] |
Materials | Electrode | Voltage | Current | Power | Application | Year | Reference |
---|---|---|---|---|---|---|---|
P: Nylon-ZnO NWs N: PVDF-ZnO NWs | Al | 330 V | 10 μA | 3.0 W/m2 | Potent and sustainable power source for portable electronic devices | 2020 | [52] |
P: Nylon-11 N: Co-NPC/PVDF | Al | 710 V | 210.96 mA/m2 | 19.71 W/m2 | Energy harvesting and human motion monitoring. | 2022 | [94] |
P: Nylon 6/6 N: PVDF/MXene | Cu | 724 V | 163.6 μA | 11.213 W/m2 | Self-powered foot motion sensor | 2021 | [95] |
P: Al N: PVDF/HBP-G1 | Al | 65 V | 1.76 μA | Energy harvesting | 2024 | [48] | |
P: Al N: PVDF/Si-HBP-G2 | Al | 130 V | 3.5 μA | 0.2 W/m2 | Energy harvesting | 2024 | [47] |
P: Al N: PVDF-Sep | Al | 740 V | 60 mA/m2 | 94.08 W/m 2 | Energy harvesting | 2023 | [97] |
P: Al N: PVDF/C60 | Al | 282 μW | Energy harvesting | 2022 | [98] | ||
P: Al N: PVDF/GQD | Al | 97 μW | Wearable mechanical energy harvesting | 2019 | [89] | ||
P: Cu N: PVDF/MNS | Cu | 163 V | 585 μW/cm2 | Energy harvesting | 2023 | [99] | |
P: Cu N: PVDF/PS | Cu | 165.9 V | 11.1 μA | Mask filter layer | 2023 | [100] | |
P: copper tape N: BaTiO3/PVDF | Cu | 307 V | 1.8 μA/cm2 | 1.12 mW/cm2 | Energy harvesting performance and self-powered sensors | 2023 | [84] |
P: natural seeds N: PVDF | ITO Al | 126 V | 324 mw/m2 | Energy harvesting | 2019 | [85] | |
P: PVA/MWCNT N: PVDF | Cu | 26.5 V | 1.15 μA | 4.57 W/m2 | Self-powered sensors | 2023 | [86] |
P: PVA N: PVDF/PZT | Cu | 40 V | 7 μA | Energy harvesting and self-powered sensors | 2024 | [101] | |
P: collagen/PVA/ Ag NW N: PVDF | Al | 118 V | 3.8 nA | 21.06 mW/cm2 | Mechanical energy harvesting | 2022 | [87] |
P: TPU N: PVDF-CF | Ni-Cu | 5.8 V | Identifying sleeping disorders and respiratory monitoring | 2024 | [88] | ||
P: TPU N: P-Ar.HBP2 | Ni-Cu | 6.27 V | Polysomnographic and health monitoring | 2023 | [90] | ||
P: TPU N: NiO/PVDF | Ni-Cu | 252 V | 7.3 μA | 0.86 mW/m2 | Energy harvesting and healthcare monitoring | 2024 | [51] |
P: natural rubber N: BaTiO3/PVDF | Cu Ni | 444 V | 19.02 mA/m2 | Harvest biomechanical energy | 2022 | [93] | |
P: PLLA N: MXene/MWCNTs-COOH/PVDF | Cu-Ni | 124.23 V | 54.48 μA | 18.08 W/m2 | Wearable portable electronic devices | 2022 | [91] |
P: PTFE N: PVDF/KNN-ZS | Al | 25 V | 2.11 μA | Powering small-scale electronics | 2022 | [96] | |
P: JNA N: PVDF/PVP | Cu | 155 V | 6.20 μA | Energy harvesting | 2021 | [92] | |
P: Nylon-11 N: PVDF-TrFE/ MXene | Conductive fabrics | 270 V | 140 mA/m2 | 4.02 W/m2 | Actuators and sensors | 2021 | [104] |
P: Cu N: Bi2WO6/PVDF-TrEE | Cu Al | 205 V | 11.91 mA/m2 | Self-powered sensors and smart electronics | 2022 | [106] | |
P: Nitrile N: BaTiO3: La/PVDF-TrEE | Al | 245 V | 2.52 W/m2 | Energy harvesting and wireless power transmission | 2023 | [110] | |
P: PCL N: DIPAB/PVDF-TrFE | Conductive textile Cu | 203.8 V | 416.2 mW/m2 | Energy harvesting | 2024 | [111] | |
P: SF N: PVDF-HFP | Ag | 120 V | 0.33 μA | 40 μW/cm2 | Wearable devices and energy systems | 2024 | [107] |
P: skin, socks N: PVDF-HFP/ SiO2 | LM-Ag-SEBS | 114.5 V | 4.9 μA | 445 mW/m2 | Self-powered electronic devices and wearables | 2023 | [108] |
P: Kapton N: P3HT/PVDF-HFP | Al | 78 V | 7 μA | 0.55 mW | Self-powered sensors | 2022 | [112] |
P: TPU N: PVDF-HFP/LM | 1680 V | 24 W/m2 | Energy harvesting | 2021 | [113] | ||
P: PLA/TIO@ZIF N: conductive non-woven PLA fabrics | Conductive non-woven PLA fabrics | 17.9 V | 39.6 nA | Self-powered respiratory monitoring | 2024 | [17] | |
P: aPLLA N: PHB | Mg | 45 V | 9 μA | Energy harvesting | 2023 | [3] | |
P: silicone rubber N: modified-MXen-e/MoS2/CA | Cu | 140 V | 2975 mW/cm2 | Distributed energy harvesting | 2023 | [114] | |
P: Al N: PI/CNT@BTO | Al | 305 V | 104 μA | Energy-harvesting and self-powered sensing systems | 2024 | [115] | |
P: PMMA N: JNM | Cu | 353.5 V | 22.4 μA | Electronic skin or wearable devices | 2022 | [116] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Q.; Cao, Y.; Yang, X.; Jiao, G.; Qi, X.; Wen, G. Recent Developments in Electrospun Nanofiber-Based Triboelectric Nanogenerators: Materials, Structure, and Applications. Membranes 2024, 14, 271. https://doi.org/10.3390/membranes14120271
Wei Q, Cao Y, Yang X, Jiao G, Qi X, Wen G. Recent Developments in Electrospun Nanofiber-Based Triboelectric Nanogenerators: Materials, Structure, and Applications. Membranes. 2024; 14(12):271. https://doi.org/10.3390/membranes14120271
Chicago/Turabian StyleWei, Qinglong, Yuying Cao, Xiao Yang, Guosong Jiao, Xiaowen Qi, and Guilin Wen. 2024. "Recent Developments in Electrospun Nanofiber-Based Triboelectric Nanogenerators: Materials, Structure, and Applications" Membranes 14, no. 12: 271. https://doi.org/10.3390/membranes14120271
APA StyleWei, Q., Cao, Y., Yang, X., Jiao, G., Qi, X., & Wen, G. (2024). Recent Developments in Electrospun Nanofiber-Based Triboelectric Nanogenerators: Materials, Structure, and Applications. Membranes, 14(12), 271. https://doi.org/10.3390/membranes14120271