Antimicrobial Activity of Polycaprolactone Nanofiber Coated with Lavender and Neem Oil Nanoemulsions against Airborne Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Test Organisms
2.2. Production of Polycaprolactone Nanofiber
2.3. Preparation of Nanoemulsion
2.4. Scanning Electron Microscopy (SEM) Characterization
2.5. Measurement of Nanoemulsion’s Physiochemical Properties
2.6. Emulsion Characterization
2.7. Antimicrobial Assay
2.8. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) Determination
2.9. Statistical Analyses
3. Results and Discussion
3.1. Physicochemical Characterization of Nanoemulsion
3.2. NanoEmulsion Droplet Size and Polydispersity Index
3.3. Nanoemulsion Color Measurement
3.4. Evaluation of Nanoemulsion’s Antimicrobial Activity
3.5. Bactericidal Effect of Nanoemulsion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, S.; Singh, N.; Devi, L.S.; Kumar, S.; Kamle, M.; Kumar, P.; Mukherjee, A. Neem oil and its nanoemulsion in sustainable food preservation and packaging: Current status and future prospects. J. Agric. Food Res. 2022, 7, 100254. [Google Scholar] [CrossRef]
- Safaya, M.; Rotliwala, Y. Neem oil based nano-emulsion formulation by low energy phase inversion composition method: Characterization and antimicrobial activity. Mater. Today Proc. 2022, 57, 1793–1797. [Google Scholar] [CrossRef]
- De Castro e Silva, P.; de Oliveira, A.C.; Pereira, L.A.; Valquíria, M.; Carvalho, G.R.; Miranda, K.W.; Oliveira, J.E. Development of Bio nanocomposites of pectin and nanoemulsions of carnauba wax and neem oil pectin/carnauba wax/neem oil composites. Polym. Compos. 2020, 41, 858–870. [Google Scholar] [CrossRef]
- Badr, M.M.; Badawy, M.E.; Taktak, N.E. Characterization, antimicrobial activity, and antioxidant activity of the nanoemulsions of Lavandula spica essential oil and its main monoterpenes. J. Drug Deliv. Sci. Technol. 2021, 65, 102732. [Google Scholar] [CrossRef]
- Mossa, A.T.H.; Mohamed, R.I.; Mohafrash, S.M. Development of a ‘green’nanoformulation of neem oil-based nanoemulsion for controlling mosquitoes in the sustainable ecosystem. Biocatal. Agric. Biotechnol. 2022, 46, 102541. [Google Scholar] [CrossRef]
- Atanase, L.I.; Larraya, C.; Tranchant, J.F.; Save, M. Rational design of tetrahydrogeraniol-based hydrophobically modified poly (acrylic acid) as emulsifier of terpene-in-water transparent nanoemulsions. Eur. Polym. J. 2017, 94, 248–258. [Google Scholar] [CrossRef]
- Uhljar, L.E.; Ambrus, R. Electrospinning of Potential Medical Devices (Wound Dressings, Tissue Engineering Scaffolds, Face Masks) and Their Regulatory Approach. Pharmaceutics 2023, 15, 417. [Google Scholar] [CrossRef]
- Pertegal, V.; Riquelme, E.; Lozano-Serra, J.; Canizares, P.; Rodrigo, M.A.; Saez, C.; Lacasa, E. Cleaning technologies integrated in duct flows for the inactivation of pathogenic microorganisms in indoor environments: A critical review of recent innovations and future challenges. J. Environ. Manag. 2023, 345, 118798. [Google Scholar] [CrossRef]
- Nair, A.; Mallya, R.; Suvarna, V.; Khan, T.A.; Momin, M.; Omri, A. Nanoparticles—Attractive carriers of antimicrobial essential oils. Antibiotics 2022, 11, 108. [Google Scholar] [CrossRef] [PubMed]
- Hernández-García, E.; Vargas, M.; González-Martínez, C.; Chiralt, A. Biodegradable antimicrobial films for food packaging: Effect of antimicrobials on degradation. Foods 2012, 10, 1256. [Google Scholar] [CrossRef]
- Asghari, F.; Samiei, M.; Adibkia, K.; Akbarzadeh, A.; Davaran, S. Biodegradable and biocompatible polymers for tissue engineering application: A review. Artifi. Cells Nanomed. Biotechnol. 2017, 45, 185–192. [Google Scholar] [CrossRef]
- Baghi, F.; Gharsallaoui, A.; Dumas, E.; Ghnimi, S. Advancements in biodegradable active films for food packaging: Effects of nano/microcapsule incorporation. Foods 2022, 11, 760. [Google Scholar] [CrossRef]
- Khandaker, M.; Progri, H.; Arasu, D.T.; Nikfarjam, S.; Shamim, N. Use of polycaprolactone electrospun nanofiber mesh in a face mask. Materials 2021, 14, 4272. [Google Scholar] [CrossRef] [PubMed]
- Paudel, S.K.; Bhargava, K.; Kotturi, H. Antimicrobial activity of cinnamon oil nanoemulsion against Listeria monocytogenes and Salmonella spp. on melons. LWT 2019, 111, 682–687. [Google Scholar] [CrossRef]
- Duan, J.; Nie, R.; Du, J.; Sun, H.; Liu, G. Effect of Nanoemulsion Containing Enterocin GR17 and Cinnamaldehyde on Microbiological, Physicochemical and Sensory Properties and Shelf Life of Liquid-Smoked Salmon Fillets. Foods 2022, 12, 78. [Google Scholar] [CrossRef] [PubMed]
- Kotturi, H.; Lopez-Davis, C.; Nikfarjam, S.; Kedy, C.; Byrne, M.; Barot, V.; Khandaker, M. Incorporation of Mycobacteriophage Fulbright into Polycaprolactone Electrospun Nanofiber Wound Dressing. Polymers 2022, 14, 1948. [Google Scholar] [CrossRef]
- Sun, H.; Ma, Y.; Huang, X.; Song, L.; Guo, H.; Sun, X.; Qiao, M. Stabilization of flaxseed oil nanoemulsions based on flaxseed gum: Effects of temperature, pH and NaCl on stability. LWT 2023, 176, 114512. [Google Scholar] [CrossRef]
- Benelli, G.; Pavoni, L.; Zeni, V.; Ricciardi, R.; Cosci, F.; Cacopardo, G.; Lucchi, A. Developing a highly stable Carlina acaulis essential oil nanoemulsion for managing Lobesia botrana. Nanomaterials 2020, 10, 1867. [Google Scholar] [CrossRef]
- Kengne, L.G.; Nyegue, M.A.; Del, E.; Ndedi, F.M.; Etoa, F.X. Antibacterial activity of selected plant essential oils on airborne bacteria and mode of action on membrane integrity. Am. J. Essent. 2019, 7, 28–35. [Google Scholar]
- Parvekar, P.; Palaskar, J.; Metgud, S.; Maria, R.; Dutta, S. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomater. Invest. Dent. 2020, 7, 105–109. [Google Scholar] [CrossRef]
- Liu, L.; Niu, J.; Wu, J.Y. Ultrasonication for preparing high-performance phase change material nano-emulsions: Optimization and characterization. J. Mol. Liq. 2023, 380, 121776. [Google Scholar] [CrossRef]
- Elkalla, E.; Khizar, S.; Tarhini, M.; Lebaz, N.; Zine, N.; Jaffrezic-Renault, N.; Elaissari, A. Core-shell micro/nanocapsules: From encapsulation to applications. J. Microencapsul. 2023, 40, 125–156. [Google Scholar] [CrossRef]
- Ali, E.O.M.; Shakil, N.A.; Rana, V.S.; Sarkar, D.J.; Majumder, S.; Kaushik, P.; Kumar, J. Antifungal activity of nano emulsions of neem and citronella oils against phytopathogenic fungi, Rhizoctonia solani and Sclerotium rolfsii. Ind. Crops Prod. 2017, 108, 379–387. [Google Scholar]
- Ozogul, Y.; Karsli, G.T.; Durmuş, M.; Yazgan, H.; Oztop, H.M.; McClements, D.J.; Ozogul, F. Recent developments in industrial applications of nanoemulsions. Adv. Colloid Interface Sci. 2022, 304, 102685. [Google Scholar] [CrossRef] [PubMed]
- Cesa, S.; Sisto, F.; Zengin, G.; Scaccabarozzi, D.; Kokolakis, A.K.; Scaltrito, M.M.; Basilico, N. Phytochemical analyses and pharmacological screening of Neem oil. S. Afr. J. Bot. 2019, 120, 331–337. [Google Scholar] [CrossRef]
- Evrendilek, G.A. Empirical prediction and validation of antibacterial inhibitory effects of various plant essential oils on common pathogenic bacteria. Int. J. Food Microbiol. 2015, 202, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Abd El Aty, A.A.; El-Bassyouni, G.T.; Abdel-Zaher, N.A.; Guirguis, O.W. Experimental study on antimicrobial activity of silk fabric treated with natural dye extract from neem (Azadirachta indica) leaves. Fibers Polym. 2018, 19, 1880–1886. [Google Scholar] [CrossRef]
- Predoi, D.; Groza, A.; Iconaru, S.L.; Predoi, G.; Barbuceanu, F.; Guegan, R.; Cimpeanu, C. Properties of basil and lavender essential oils adsorbed on the surface of hydroxyapatite. Materials 2018, 11, 652. [Google Scholar] [CrossRef] [PubMed]
- Cushnie, T.T.; Cushnie, B.; Echeverría, J.; Fowsantear, W.; Thammawat, S.; Dodgson, J.L.; Clow, S.M. Bioprospecting for antibacterial drugs: A multidisciplinary perspective on natural product source material, bioassay selection and avoidable pitfalls. Pharm. Res. 2020, 37, 125. [Google Scholar] [CrossRef] [PubMed]
- Gayatri, M.C.; Sudha, U.; Shubha, J.; Kavya, K. Evaluation of antibacterial activity of Lavandula stoechas L. essential oil. J. Spices Aromat. Crops. 2013, 22, 188–193. [Google Scholar]
- Sohail, M.F.; Rehman, M.; Hussain, S.Z.; Huma, Z.E.; Shahnaz, G.; Qureshi, O.S.; Webster, T.J. Green synthesis of zinc oxide nanoparticles by Neem extract as multi-facet therapeutic agents. J. Drug Deliv. Sci. Technol. 2020, 59, 101911. [Google Scholar] [CrossRef]
Samples | pH | Viscosity (cP) | Water Absorption (%) |
---|---|---|---|
5% neem oil | 5.9 ± 0.09 | 2.101 ± 0.03 | 14.14 ± 0.63 |
10% neem oil | 6.3 ± 0.11 | 1.807 ± 0.02 | 18.65 ± 0.99 |
15% neem oil | 6.5 ± 0.12 | 1.440 ± 0.01 | 20.00 ± 0.55 |
5% lavender oil | 5.8 ± 0.22 | 2.047 ± 0.05 | 23.15 ± 1.22 |
10% lavender oil | 6.2 ± 0.05 | 1.050 ± 0.03 | 28.07 ± 1.33 |
15% lavender oil | 6.3 ± 0.12 | 0.548 ± 0.02 | 31.45 ± 1.03 |
5% neem with lavender oil | 6.2 ± 0.20 | 1.840 ± 0.03 | 16.36 ± 0.88 |
10% neem with lavender oil | 6.5 ± 0.03 | 0.726 ± 0.01 | 21.53 ± 0.62 |
15% neem with lavender oil | 6.6 ± 0.05 | 0.372 ± 0.01 | 26.34 ± 1.32 |
Formulation | Droplet Size nm (4 °C) | Droplet Size nm (25 °C) | Droplet Size nm (37 °C) | % PDI (4 °C) | % PDI (25 °C) | % PDI (37 °C) |
---|---|---|---|---|---|---|
Control (5% T) | 81.47 ± 0.99 | 97.95 ± 0.63 | 105.52 ± 1.01 | 16.04 ± 0.13 | 16.09 ± 2.26 | 16.38 ± 1.22 |
Control (10% T) | 12.09 ± 0.06 | 15.01 ± 0.03 | 24.72 ± 0.23 | 11.69 ± 0.99 | 12.45 ± 1.10 | 12.20 ± 1.09 |
Control (15% T) | 9.04 ± 0.03 | 11.21 ± 0.02 | 9.83 ± 0.03 | 17.70 ± 1.01 | 18.02 ± 2.55 | 18.99 ± 1.26 |
Neem (5%) | 119.15 ± 1.08 | 132.57 ± 1.13 | 148.17 ± 1.11 | 11.73 ± 1.09 | 13.37 ± 1.02 | 14.81 ± 1.44 |
Neem (10%) | 28.84 ± 0.55 | 38.47 ± 0.92 | 46.99 ± 0.22 | 10.23 ± 0.88 | 11.01 ± 1.19 | 11.24 ± 1.05 |
Neem (15%) | 23.92 ± 0.23 | 43.61 ± 0.55 | 58.87 ± 0.55 | 10.04 ± 0.69 | 10.22 ± 0.98 | 10.73 ± 0.92 |
Lavender (5%) | 115.15 ± 0.66 | 121.48 ± 1.06 | 135.75 ± 1.03 | 7.16 ± 0.55 | 8.10 ± 0.82 | 8.78 ± 0.92 |
Lavender (10%) | 29.16 ± 0.22 | 36.12 ± 0.52 | 39.2 ± 0.22 | 10.27 ± 1.06 | 11.54 ± 1.10 | 12.33 ± 1.10 |
Lavender (15%) | 21.86 ± 0.09 | 52.78 ± 0.11 | 48.73 ± 0.11 | 7.47 ± 0.88 | 10.58 ± 1.22 | 11.10 ± 1.35 |
Neem + Lavender (5%) | 50.22 ± 0.08 | 48.78 ± 0.44 | 57.59 ± 0.10 | 9.52 ± 1.02 | 11.05 ± 1.31 | 9.98 ± 0.99 |
Neem + Lavender (10%) | 28.1 ± 0.33 | 41.9 ± 0.22 | 49.94 ± 0.15 | 12.11 ± 1.20 | 12.27 ± 1.01 | 13.17 ± 1.52 |
Neem + Lavender (15%) | 25.97 ± 0.69 | 36.0 ± 0.36 | 41.01 ± 0.12 | 15.63 ± 0.35 | 6.80 ± 0.60 | 7.98 ± 0.97 |
Samples | L* | a* | b* | ΔE | C | H |
---|---|---|---|---|---|---|
5% control | 42.91 ± 0.22 b | −7.58 ± 0.05 b | 17.15 ± 0.03 c | 46.82 ± 0.25 c | 18.75 ± 0.05 a | 113.8 ± 0.77 b |
10% control | 42.36 ± 0.11 d | −5.89 ± 0.06 a | 15.24 ± 0.02 b | 45.40 ± 0.19 a | 16.33 ± 0.03 d | 111.1 ± 0.55 a |
15% control | 44.14 ± 0.20 b | 8.12 ± 0.09 d | 9.99 ± 0.01 a | 45.97 ± 0.34 b | 12.87 ± 0.02 c | 50.8 ± 0.60 c |
5% neem oil | 79.67 ± 0.09 c | −0.22 ± 0.01 c | 7.70 ± 0.03 d | 80.0 ± 0.55 d | 7.70 ± 0.01 b | 91.6 ± 0.50 d |
10% neem oil | 78.22 ± 0.10 a | −0.64 ± 0.01 a | 7.33 ± 0.01 a | 78.56 ± 0.33 ab | 7.35 ± 0.01 b | 94.9 ± 0.50 bc |
15% neem oil | 79.60 ± 0.23 bc | −2.83 ± 0.02 b | 10.55 ± 0.01 bc | 80.34 ± 0.22 c | 10.92 ± 0.03 c | 105.0 ± 0.44 b |
5% lavender oil | 80.57 ± 0.15 d | −0.71 ± 0.01 c | 1.44 ± 0.01 d | 80.58 ± 0.45 b | 1.60 ± 0.01 ac | 116.2 ± 0.41 d |
10% lavender oil | 82.32 ± 0.11 a | −1.06 ± 0.02 a | 2.00 ± 0.02 c | 82.35 ± 0.41 d | 2.26 ± 0.01 d | 117.9 ± 0.60 a |
15% lavender oil | 74.39 ± 0.15 b | −2.15 ± 0.03 d | 2.64 ± 0.01 a | 74.46 ± 0.44 c | 3.40 ± 0.02 cd | 129.1 ± 0.50 a |
5% neem + lavender oil | 77.97 ± 0.23 d | 0.37 ± 0.01 bc | 3.31 ± 0.01 c | 78.04 ± 0.35 a | 3.33 ± 0.01 b | 83.6 ± 0.66 c |
10% neem + lavender oil | 81.13 ± 0.19 a | −2.47 ± 0.01 c | 6.47 ± 0.05 b | 81.42 ± 0.55 b | 6.92 ± 0.01 d | 110.8 ± 0.51 b |
15% neem + lavender oil | 78.63 ± 0.15 c | −4.20 ± 0.01 a | 12.22 ± 0.03 d | 79.68 ± 0.35 cd | 12.92 ± 0.03 a | 108.9 ± 0.55 d |
Samples | E. coli | S. aureus | B. subtilis |
---|---|---|---|
5% neem oil | +++ | +++ | +++ |
10% neem oil | +++ | --- | --- |
15% neem oil | --- | --- | --- |
5% lavender oil | +++ | --- | --- |
10% lavender oil | --- | --- | --- |
15% lavender oil | --- | --- | --- |
5% neem + lavender oil | --- | --- | --- |
10% neem + lavender oil | --- | --- | --- |
15% neem + lavender oil | --- | --- | --- |
Samples | E. coli | S. aureus | B. subtilis |
---|---|---|---|
5% neem oil | +++ | --- | --- |
10% neem oil | +++ | --- | --- |
15% neem oil | --- | --- | --- |
5% lavender oil | +++ | --- | --- |
10% lavender oil | --- | --- | --- |
15% lavender oil | --- | --- | --- |
5% neem + lavender oil | --- | --- | --- |
10% neem + lavender oil | --- | --- | --- |
15% neem + lavender oil | --- | --- | --- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.M.; Kotturi, H.; Nikfarjam, S.; Bhargava, K.; Ahsan, N.; Khandaker, M. Antimicrobial Activity of Polycaprolactone Nanofiber Coated with Lavender and Neem Oil Nanoemulsions against Airborne Bacteria. Membranes 2024, 14, 36. https://doi.org/10.3390/membranes14020036
Rahman MM, Kotturi H, Nikfarjam S, Bhargava K, Ahsan N, Khandaker M. Antimicrobial Activity of Polycaprolactone Nanofiber Coated with Lavender and Neem Oil Nanoemulsions against Airborne Bacteria. Membranes. 2024; 14(2):36. https://doi.org/10.3390/membranes14020036
Chicago/Turabian StyleRahman, Md Mahfuzur, Hari Kotturi, Sadegh Nikfarjam, Kanika Bhargava, Nagib Ahsan, and Morshed Khandaker. 2024. "Antimicrobial Activity of Polycaprolactone Nanofiber Coated with Lavender and Neem Oil Nanoemulsions against Airborne Bacteria" Membranes 14, no. 2: 36. https://doi.org/10.3390/membranes14020036
APA StyleRahman, M. M., Kotturi, H., Nikfarjam, S., Bhargava, K., Ahsan, N., & Khandaker, M. (2024). Antimicrobial Activity of Polycaprolactone Nanofiber Coated with Lavender and Neem Oil Nanoemulsions against Airborne Bacteria. Membranes, 14(2), 36. https://doi.org/10.3390/membranes14020036