Targeted Anthocyanin Enrichment of Cranberry Juice by Electrodialysis with Filtration Membranes: Impact of Filtration Membrane Physicochemical Properties and Predictive Statistical Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Cranberry Juice
2.1.2. Membranes and EDFM Configuration
2.2. Protocol: Membrane Property Characterization and EDFM Experiments
2.3. Analyses
2.3.1. Physicochemical Properties of FM
- Zeta potential
- Roughness
- Thickness
- Contact angle
- Conductivity
- Porosity, nature of pores and pore size distribution (PSD)
2.3.2. Juice Characterization
- pH
- Conductivity
- Degree Brix
- Anthocyanin content and migration rate
- Organic acid content and migration rate
- Proanthocyanidin content
- Juice color
2.4. Statistical Analyses
2.4.1. ANOVA
2.4.2. Redundancy Analyses and Predictive Statistical Models
3. Results
3.1. Physicochemical Properties of Filtration Membranes
3.2. Physicochemical Parameters of Cranberry Juices during EDFM
3.3. Anthocyanin, PAC and Organic Acid Migrations
3.3.1. Anthocyanin Migration
3.3.2. PAC Migration
3.3.3. Organic Acid Migration
3.4. Redundancy Analyses and Predictive Statistical Models
4. Discussion
4.1. Impact of FM Properties on Anthocyanin Migration
4.1.1. PES Membranes
4.1.2. PVDF Membranes
4.2. Impact of FM Properties on Organic Acid Migration
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clemente-Suárez, V.J.; Beltrán-Velasco, A.I.; Redondo-Flórez, L.; Martín-Rodríguez, A.; Tornero-Aguilera, J.F. Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review. Nutrients 2023, 15, 2749. [Google Scholar] [CrossRef] [PubMed]
- Ruel, G.; Couillard, C. Evidences of the Cardioprotective Potential of Fruits: The Case of Cranberries. Mol. Nutr. Food Res. 2007, 51, 692–701. [Google Scholar] [CrossRef] [PubMed]
- Del Bo’, C.; Bernardi, S.; Marino, M.; Porrini, M.; Tucci, M.; Guglielmetti, S.; Cherubini, A.; Carrieri, B.; Kirkup, B.; Kroon, P.; et al. Systematic Review on Polyphenol Intake and Health Outcomes: Is There Sufficient Evidence to Define a Health-Promoting Polyphenol-Rich Dietary Pattern? Nutrients 2019, 11, 1355. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Liska, D.; Talan, D.; Chung, M. Cranberry Reduces the Risk of Urinary Tract Infection Recurrence in Otherwise Healthy Women: A Systematic Review and Meta-Analysis. J. Nutr. 2017, 147, 2282–2288. [Google Scholar] [CrossRef]
- Messaoudene, M.; Pidgeon, R.; Richard, C.; Ponce, M.; Diop, K.; Benlaifaoui, M.; Nolin-Lapalme, A.; Cauchois, F.; Malo, J.; Belkaid, W.; et al. A Natural Polyphenol Exerts Antitumor Activity and Circumvents Anti–PD-1 Resistance through Effects on the Gut Microbiota. Cancer Discov. 2022, 12, 1070–1087. [Google Scholar] [CrossRef]
- Caillet, S.; Lorenzo, G.; Côté, J.; Doyon, G.; Sylvain, J.-F.; Lacroix, M. Cancer Chemopreventive Effect of Fractions from Cranberry Products. Food Res. Int. 2012, 45, 320–330. [Google Scholar] [CrossRef]
- Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. Molecules 2020, 25, 3809. [Google Scholar] [CrossRef] [PubMed]
- Blumberg, J.B.; Camesano, T.A.; Cassidy, A.; Kris-Etherton, P.; Howell, A.; Manach, C.; Ostertag, L.M.; Sies, H.; Skulas-Ray, A.; Vita, J.A. Cranberries and Their Bioactive Constituents in Human Health. Adv. Nutr. 2013, 4, 618–632. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Hao, W.; He, Z.; Kwek, E.; Zhu, H.; Ma, N.; Ma, K.Y.; Chen, Z.-Y. Blueberry and Cranberry Anthocyanin Extracts Reduce Bodyweight and Modulate Gut Microbiota in C57BL/6 J Mice Fed with a High-Fat Diet. Eur. J. Nutr. 2021, 60, 2735–2746. [Google Scholar] [CrossRef]
- Hair, R.; Sakaki, J.R.; Chun, O.K. Anthocyanins, Microbiome and Health Benefits in Aging. Molecules 2021, 26, 537. [Google Scholar] [CrossRef]
- Kapoor, P.; Tiwari, A.; Sharma, S.; Tiwari, V.; Sheoran, B.; Ali, U.; Garg, M. Effect of Anthocyanins on Gut Health Markers, Firmicutes-Bacteroidetes Ratio and Short-Chain Fatty Acids: A Systematic Review via Meta-Analysis. Sci. Rep. 2023, 13, 1729. [Google Scholar] [CrossRef] [PubMed]
- Alchera, F.; Ginepro, M.; Giacalone, G. Microwave-Assisted Extraction of Polyphenols from Blackcurrant By-Products and Possible Uses of the Extracts in Active Packaging. Foods 2022, 11, 2727. [Google Scholar] [CrossRef] [PubMed]
- Louli, V.; Ragoussis, N.; Magoulas, K. Recovery of Phenolic Antioxidants from Wine Industry By-Products. Bioresour. Technol. 2004, 92, 201–208. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Zhang, X.; Xu, H.; Xu, C.; Yuan, F.; Knez, Ž.; Novak, Z.; Gao, Y. Subcritical Water Extraction of Phenolic Compounds from Pomegranate (Punica granatum L.) Seed Residues and Investigation into Their Antioxidant Activities with HPLC–ABTS+ Assay. Food Bioprod. Process. 2012, 90, 215–223. [Google Scholar] [CrossRef]
- Ma, Y.-Q.; Chen, J.-C.; Liu, D.-H.; Ye, X.-Q. Simultaneous Extraction of Phenolic Compounds of Citrus Peel Extracts: Effect of Ultrasound. Ultrason. Sonochem. 2009, 16, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Soto, M.L.; Moure, A.; Domínguez, H.; Parajó, J.C. Recovery, Concentration and Purification of Phenolic Compounds by Adsorption: A Review. J. Food Eng. 2011, 105, 1–27. [Google Scholar] [CrossRef]
- Li, B.B.; Smith, B.; Hossain, M.M. Extraction of Phenolics from Citrus Peels. Sep. Purif. Technol. 2006, 48, 189–196. [Google Scholar] [CrossRef]
- Ignat, I.; Volf, I.; Popa, V.I. A Critical Review of Methods for Characterisation of Polyphenolic Compounds in Fruits and Vegetables. Food Chem. 2011, 126, 1821–1835. [Google Scholar] [CrossRef] [PubMed]
- Bleve, M.; Ciurlia, L.; Erroi, E.; Lionetto, G.; Longo, L.; Rescio, L.; Schettino, T.; Vasapollo, G. An Innovative Method for the Purification of Anthocyanins from Grape Skin Extracts by Using Liquid and Sub-Critical Carbon Dioxide. Sep. Purif. Technol. 2008, 64, 192–197. [Google Scholar] [CrossRef]
- Bazinet, L.; Doyen, A. Antioxidants, Mechanisms, and Recovery by Membrane Processes. Crit. Rev. Food Sci. Nutr. 2017, 57, 677–700. [Google Scholar] [CrossRef]
- Bazinet, L.; Cossec, C.; Gaudreau, H.; Desjardins, Y. Production of a Phenolic Antioxidant Enriched Cranberry Juice by Electrodialysis with Filtration Membrane. J. Agric. Food Chem. 2009, 57, 10245–10251. [Google Scholar] [CrossRef] [PubMed]
- Faucher, M.; Serre, É.; Langevin, M.-È.; Mikhaylin, S.; Lutin, F.; Bazinet, L. Drastic Energy Consumption Reduction and Ecoefficiency Improvement of Cranberry Juice Deacidification by Electrodialysis with Bipolar Membranes at Semi-Industrial Scale: Reuse of the Recovery Solution. J. Membr. Sci. 2018, 555, 105–114. [Google Scholar] [CrossRef]
- Pappas, E.; Schaich, K.M. Phytochemicals of Cranberries and Cranberry Products: Characterization, Potential Health Effects, and Processing Stability. Crit. Rev. Food Sci. Nutr. 2009, 49, 741–781. [Google Scholar] [CrossRef] [PubMed]
- Bazinet, L.; Brianceau, S.; Dubé, P.; Desjardins, Y. Evolution of Cranberry Juice Physico-Chemical Parameters during Phenolic Antioxidant Enrichment by Electrodialysis with Filtration Membrane. Sep. Purif. Technol. 2012, 87, 31–39. [Google Scholar] [CrossRef]
- Kadel, S.; Daigle, G.; Thibodeau, J.; Perreault, V.; Pellerin, G.; Lainé, C.; Bazinet, L. How Physicochemical Properties of Filtration Membranes Impact Peptide Migration and Selectivity during Electrodialysis with Filtration Membranes: Development of Predictive Statistical Models and Understanding of Mechanisms Involved. J. Membr. Sci. 2021, 619, 118175. [Google Scholar] [CrossRef]
- Wu, X.; Prior, R.L. Systematic Identification and Characterization of Anthocyanins by HPLC-ESI-MS/MS in Common Foods in the United States: Fruits and Berries. J. Agric. Food Chem. 2005, 53, 2589–2599. [Google Scholar] [CrossRef] [PubMed]
- Khanal, R.C.; Howard, L.R.; Brownmiller, C.R.; Prior, R.L. Influence of Extrusion Processing on Procyanidin Composition and Total Anthocyanin Contents of Blueberry Pomace. J. Food Sci. 2009, 74, H52–H58. [Google Scholar] [CrossRef] [PubMed]
- Blanchet, F.G.; Legendre, P.; Borcard, D. Forward Selection of Explanatory Variables. Ecology 2008, 89, 2623–2632. [Google Scholar] [CrossRef] [PubMed]
- Legendre, P.; Legendre, L. Complex Ecological Data Sets. In Developments in Environmental Modelling; Elsevier: Amsterdam, The Netherlands, 2012; Volume 24, pp. 1–57. ISBN 978-0-444-53868-0. [Google Scholar]
- Burchett, W.W.; Ellis, A.R.; Harrar, S.W.; Bathke, A.C. Nonparametric Inference for Multivariate Data: The R Package Npmv. J. Stat. Soft. 2017, 76, 1–18. [Google Scholar] [CrossRef]
- Belsley, D.A.; Kuh, E.; Welsch, R.E. Regression Diagnostics, 1st ed.; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 1980. [Google Scholar]
- Husson, E.; Araya-Farias, M.; Gagné, A.; Bazinet, L. Selective Anthocyanins Enrichment of Cranberry Juice by Electrodialysis with Filtration Membrane: Influence of Membranes Characteristics. J. Membr. Sci. 2013, 448, 114–124. [Google Scholar] [CrossRef]
- Cissé, M.; Vaillant, F.; Pallet, D.; Dornier, M. Selecting Ultrafiltration and Nanofiltration Membranes to Concentrate Anthocyanins from Roselle Extract (Hibiscus sabdariffa L.). Food Res. Int. 2011, 44, 2607–2614. [Google Scholar] [CrossRef]
- Serre, E.; Rozoy, E.; Pedneault, K.; Lacour, S.; Bazinet, L. Deacidification of Cranberry Juice by Electrodialysis: Impact of Membrane Types and Configurations on Acid Migration and Juice Physicochemical Characteristics. Sep. Purif. Technol. 2016, 163, 228–237. [Google Scholar] [CrossRef]
- Vernhet, A. Fouling of Organic Microfiltration Membranes by Wine Constituents: Importance, Relative Impact of Wine Polysccharides and Polyphenols and Incidence of Membrane Properties. J. Membr. Sci. 2002, 201, 103–122. [Google Scholar] [CrossRef]
- Susanto, H.; Feng, Y.; Ulbricht, M. Fouling Behavior of Aqueous Solutions of Polyphenolic Compounds during Ultrafiltration. J. Food Eng. 2009, 91, 333–340. [Google Scholar] [CrossRef]
- Cartalade, D.; Vernhet, A. Polar Interactions in Flavan-3-Ol Adsorption on Solid Surfaces. J. Agric. Food Chem. 2006, 54, 3086–3094. [Google Scholar] [CrossRef] [PubMed]
- Laborde, B.; Moine-Ledoux, V.; Richard, T.; Saucier, C.; Dubourdieu, D.; Monti, J.-P. PVPP−Polyphenol Complexes: A Molecular Approach. J. Agric. Food Chem. 2006, 54, 4383–4389. [Google Scholar] [CrossRef] [PubMed]
- Cassano, A.; De Luca, G.; Conidi, C.; Drioli, E. Effect of Polyphenols-Membrane Interactions on the Performance of Membrane-Based Processes. A Review. Coord. Chem. Rev. 2017, 351, 45–75. [Google Scholar] [CrossRef]
- Huang, J.; Huang, K.; Liu, S.; Luo, Q.; Xu, M. Adsorption Properties of Tea Polyphenols onto Three Polymeric Adsorbents with Amide Group. J. Colloid Interface Sci. 2007, 315, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishna, S.; Ma, Z.; Matsuura, T. Polymer Membranes in Biotechnology: Preparation, Functionalization and Application; World Scientific Publishing Company: Singapore, 2011; ISBN 978-1-911298-52-6. [Google Scholar]
- Bazinet, L.; Castaigne, F.; Pouliot, Y. Relative Contribution of Proteins to Conductivity Changes in Skim Milk during Chemical Acidification. Appl. Eng. Agric. 2005, 21, 455–464. [Google Scholar] [CrossRef]
- Pismenskaya, N.; Sarapulova, V.; Klevtsova, A.; Mikhaylin, S.; Bazinet, L. Adsorption of Anthocyanins by Cation and Anion Exchange Resins with Aromatic and Aliphatic Polymer Matrices. Int. J. Mol. Sci. 2020, 21, 7874. [Google Scholar] [CrossRef]
Colorimetry | |
L* | 28.03 ± 1.13 |
a* | 0.59 ± 0.55 |
b* | 0.90 ± 0.39 |
Total soluble solids (°Brix) | 8.2 ± 0.1 |
pH | 2.53 ± 0.02 |
Conductivity (mS/cm) | 2193 ± 47 |
Anthocyanins (mg/L) | |
Peonidin-3-galactoside | 68.56 ± 0.30 |
Cyanidin-3-galactoside | 46.32 ± 0.17 |
Peonidin-3-arabinoside | 28.15 ± 0.3 |
Cyanidin-3-arabinoside | 45.01 ± 0.28 |
Peonidin-3-glucoside | 7.87 ± 0.06 |
Cyanidin-3-glucoside | 1.54 ± 0.06 |
Proanthocyanidins (mg/L) | |
Monomers | 38.70 ± 1.55 |
2–3 m | 106.81 ± 0.885 |
4–5 m | 17.16 ± 0.15 |
6–7 m | 7.10 ± 0.35 |
>7 m | 0.00 ± 0.00 |
Organic Acid (mg/L) | |
Malic Acid | 7812.81 ± 85.76 |
Citric Acid | 15,294.36 ± 204.34 |
Quinic Acid | 12,412.19 ± 58.73 |
Constitutive Material | Backing Material | Cut-Off (kDa) | Suppliers | Origin |
---|---|---|---|---|
PES * | Polypropylene | 150 | Microdyn-Nadir (Sterlitech) | Auburn, WA, USA |
PES | Non-Woven Polyester | 200 | Synder | Vacaville, CA, USA |
PES | Non-Woven Polyester | 300 | Synder | Vacaville, CA, USA |
PVDF * | Non-Woven Polyester | 150 | Microdyn-Nadir (Sterlitech) | Auburn, WA, USA |
PVDF | Non-Woven Polyester | 250 | Synder | Vacaville, CA, USA |
PVDF | Non-Woven Polyester | 500 | Synder | Vacaville, CA, USA |
Membrane Properties | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Conductivity * (mS/cm) | Thickness ** (mm) | Zêta Potential (mV) | Contact Angle (◦) | Roughness (Ra, μm) | Roughness (Rz, μm) | % Hydrophilic Porosity | Volumetric Porosity (cm3/cm3) | Porosity of Mesopore (cm3/cm3) | % of Micropores in the Membranes | % of Mesopores in the Membranes | % of Macropores in the Membranes | ||
Membranes | PVDF 500 kDa | 12.2 ± 1.7 ab | 0.224 ± 0.005 a | −3.7 ± 0.7 bc | 65 ± 3 abc | 1.19 ± 0.10 a | 11.9 ± 2.0 b | 39 ± 7 c | 0.64 ± 0.00 a | 0.077 ± 0.012 ab | 0 b | 11.9 ± 1.9 ab | 88 ± 2 a |
PVDF 250 kDa | 12.8 ± 0.2 a | 0.218 ± 0.005 a | −0.5 ± 1.0 ab | 64 ± 7 bc | 0.83 ± 0.31 a | 8.6 ± 2.0 b | 51 ± 7 bc | 0.63 ± 0.02 a | 0.058 ± 0.011 bc | 0.331 ± 0.573 b | 9.3 ± 2.0 b | 90 ± 2 a | |
PVDF 150 kDa | 9.0 ± 0.3 ab | 0.228 ± 0.002 a | 3.4 ± 1.2 a | 78 ± 6 a | 1.27 ± 0.30 a | 11.3 ± 1.8 b | 60 ± 13 b | 0.65 ± 0.06 a | 0.049 ± 0.008 bc | 0 b | 7.5 ± 1.3 b | 93 ± 1 a | |
PES 300 kDa | 11.6 ± 0.6 ab | 0.193 ± 0.005 b | −11.1 ± 3.1 d | 57 ± 5 c | 1.13 ± 0.41 a | 11.3 ± 2.8 b | 99 ± 6 a | 0.65 ± 0.07 a | 0.048 ± 0.016 bc | 0 b | 7.5 ± 2.2 b | 93 ± 2 a | |
PES 200 kDa | 11.5 ± 0.4 ab | 0.181 ± 0.005 b | −5.2 ± 1.5 c | 72 ± 1 ab | 1.46 ± 0.53 a | 18.6 ± 3.7 a | 92 ± 1 a | 0.64 ± 0.03 a | 0.110 ± 0.030 a | 3.718 ± 0.829 a | 17.3 ± 5.2 a | 79 ± 6 b | |
PES 150 kDa | 7.6 ± 0.3 b | 0.224 ± 0.004 a | −10.3 ± 0.7 d | 61 ± 4 bc | 1.38 ± 0.36 a | 17.0 ± 2.2 a | 87 ± 4 a | 0.60 ± 0.02 a | 0.032 ± 0.000 c | 1.220 ± 0.625 b | 5.4 ± 0.5 b | 93 ± 1 a | |
p-value | p = 0.018 | p < 0.001 | p < 0.001 | p = 0.002 | p = 0.127 | p < 0.001 | p < 0.0001 | p = 0.887 | p = 0.001 | p < 0.0001 | p = 0.0015 | p = 0.003 |
R2 | ||||
---|---|---|---|---|
Peonidin-3-galactoside | 2.084389 | −9.440033 | −0.010597 | 0.4622338 |
Cyanidin-3-galactoside | 1.381813 | −6.378894 | −0.006691 | 0.4263189 |
Peonidin-3-arabinoside | 1.035268 | −4.949934 | −0.005111 | 0.4697571 |
Cyanidin-3-arabinoside | 1.391271 | −6.573328 | −0.006869 | 0.4615215 |
Peonidin-3-glucoside | 0.231830 | −0.967541 | −0.001180 | 0.4795030 |
Cyanidin-3-glucoside | 0.045675 | −0.138578 | −0.000302 | 0.4561404 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Revellat, E.; Bazinet, L. Targeted Anthocyanin Enrichment of Cranberry Juice by Electrodialysis with Filtration Membranes: Impact of Filtration Membrane Physicochemical Properties and Predictive Statistical Models. Membranes 2024, 14, 111. https://doi.org/10.3390/membranes14050111
Revellat E, Bazinet L. Targeted Anthocyanin Enrichment of Cranberry Juice by Electrodialysis with Filtration Membranes: Impact of Filtration Membrane Physicochemical Properties and Predictive Statistical Models. Membranes. 2024; 14(5):111. https://doi.org/10.3390/membranes14050111
Chicago/Turabian StyleRevellat, Eva, and Laurent Bazinet. 2024. "Targeted Anthocyanin Enrichment of Cranberry Juice by Electrodialysis with Filtration Membranes: Impact of Filtration Membrane Physicochemical Properties and Predictive Statistical Models" Membranes 14, no. 5: 111. https://doi.org/10.3390/membranes14050111
APA StyleRevellat, E., & Bazinet, L. (2024). Targeted Anthocyanin Enrichment of Cranberry Juice by Electrodialysis with Filtration Membranes: Impact of Filtration Membrane Physicochemical Properties and Predictive Statistical Models. Membranes, 14(5), 111. https://doi.org/10.3390/membranes14050111