Thermodynamic Considerations on the Biophysical Interaction between Low-Energy Electromagnetic Fields and Biosystems
Abstract
:1. Introduction
2. Materials and Methods
- : 150.0 mM extracellular, 15.0 mM intracellular;
- : 4.5 mM extracellular, 120.0 mM intracellular;
- : 116.0 mM extracellular, 20.0 mM intracellular;
- : 1.2 mM extracellular, mM intracellular.
- : mV;
- : mV;
- : mV;
- : mV.
3. Results
- The experimental results obtained were repeatable, and the cell’s behaviour was consistent;
- The cancer growth rate is reduced by electromagnetic waves at the cell’s thermal resonant frequency;
- The phenomenon is selective with respect to the frequencies used, as it must be for a resonant process.
Cell Line | Human Cancer | Frequency [Hz] | Growth Change [%] |
---|---|---|---|
A375P | melanoma cell line | 31 | |
HT-29 | colorectal adenocarcinoma | 24 | |
GTL16 | gastric cancer | 14 | |
MCF7 | breast cancer | 5 | |
SKBR3 | breast cancer | 8 | |
MDA-MB-231 | breast cancer | 6 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Center, N.G.R. Non-Ionizing Radiation Safety (Occupational Health Programs Manual—Chapter 10). Document No.: GLM-QS-1800.1.10, NASA, Cleveland. 2017. Available online: https://www1.grc.nasa.gov/wp-content/uploads/ohpm10.pdf (accessed on 19 July 2024).
- WHO. Exposure to Extremely Low Frequency Fields. Backgrounder, World Health Organisation, Cleveland. 2017. Available online: https://www.who.int/teams/environment-climate-change-and-health/radiation-and-health/non-ionizing/exposure-to-extremely-low-frequency-field (accessed on 19 July 2024).
- Sadafi, H.A.; Mehboodi, Z.; Sardari, D. A Review of the Mechanisms of Interaction Between the Extremely Low Frequency Electromagnetic Fields and Human Biology. In Proceedings of the Progress in Electromagnetics Research Symposium 2006, Tokyo, Japan, 26–29 March 2006. [Google Scholar]
- Ross, C.L.; Harrison, B.S. The Use of Magnetic Field for the Reduction of Inlammation: A Review of the History and therapeutic Results. Altern. Ther. 2013, 19, 47–54. [Google Scholar]
- Pasek, J.; Pasek, T.; Sieroń-Stołtny, K.; Cieślar, G.; Sieroń, A. Electromagnetic fields in medicine—The state of art. Electromagn. Biol. Med. 2016, 35, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Lucia, U.; Grisolia, G. How Life Works—A Continuous Seebeck-Peltier Transition in Cell Membrane? Entropy 2020, 22, 960. [Google Scholar] [CrossRef] [PubMed]
- Zwolińska, J.; Kasprzak, M.; Kielar, A.; Prokop, M. Positive and Negative Effects of Administering a Magnetic Field to Patients with Rheumatoid Arthritis (RA). J. Clin. Med. 2024, 13, 1619. [Google Scholar] [CrossRef]
- Liboff, A.R. Geomagnetic Cyclotron Resonance in Living Cells. J. Biol. Phys. 1985, 13, 99–102. [Google Scholar] [CrossRef]
- D’Angelo, C.; Costantini, E.; Kamal, M.A.; Reale, M. Experimental model for ELF-EMF exposure: Concern for human health. Saudi J. Biol. Sci. 2015, 22, 75–84. [Google Scholar] [CrossRef]
- Funk, R.H.; Monsees, T.; Ozkucur, H. Electromagnetic effects—From cell biology to medicine. Prog. Histochem. Cytochem. 2009, 43, 177–264. [Google Scholar] [CrossRef] [PubMed]
- Kovacic, P.; Somanathan, R. Electromagnetic fields: Mechanism, cell signaling, other bioprocesses, toxicity, radicals, antioxidants and beneficial effects. J. Recept. Signal Transduct. 2010, 30, 214–226. [Google Scholar] [CrossRef]
- Lucia, U.; Grisolia, G. Thermal resonance in living cells to control their heat exchange: Possible applications in cancer treatment. Int. Commun. Heat Mass Transf. 2022, 131, 105842. [Google Scholar] [CrossRef]
- Lucia, U.; Grisolia, G. Thermal Resonance and Cell Behavior. Entropy 2020, 22, 774. [Google Scholar] [CrossRef]
- Lucia, U.; Grisolia, G.; Ponzetto, A.; Bergandi, L.; Silvagno, F. Thermomagnetic resonance affects cancer growth and motility. R. Soc. Open Sci. 2020, 7, 200299. [Google Scholar] [CrossRef] [PubMed]
- Grassi, C.; D’Ascenzo, M.; Torsello, A.; Martinotti, G.; Wolf, F.; Cittadini, A.; Azzena, G.B. Effects of 50 Hz electromagnetic fields on voltage-gated Ca2+ channels and their role in modulation of neuroendocrine cell proliferation and death. Cell Calcium 2004, 35, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Pall, M.L. Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects. J. Cell. Mol. Med. 2013, 17, 958–965. [Google Scholar] [CrossRef]
- Rouleau, N.; Dotta, B.T. Electromagnetic fields as structure-function zeitgebers in biological systems: Environmental orchestrations of morphogenesis and consciousness. Front. Integr. Neurosci. 2014, 8, 84. [Google Scholar] [CrossRef] [PubMed]
- Cadossi, R.; Emilia, G.; Ceccherelli, G.; Torelli, G. Lymphocytes and pulsing magnetic fields. In Modern Bioelectricity; Marino, A.A., Ed.; CRC Press: Boca-Raton, FL, USA, 1988; pp. 451–496. [Google Scholar]
- Papatheofanis, F.J. Use of calcium channel antagonists as magnetoprotective agents. Radiat. Res. 1990, 122, 24–28. [Google Scholar] [CrossRef]
- Walleczek, J. Electromagnetic field effects on cells of the immune system: The role of calcium signaling. FASEB J. 1992, 6, 3177–3185. [Google Scholar] [CrossRef]
- Walleczek, J.; Liburdy, R.P. Nonthermal 60 Hz sinusoidal magnetic-field exposure enhances 45Ca2+ uptake in rat thymocytes: Dependence on mitogen activation. FEBS Lett. 1990, 271, 157–160. [Google Scholar] [CrossRef]
- Liburdy, R.P. Calcium signaling in lymphocytes and ELF fields. Evidence for an electric field metric and a site of interaction involving the calcium ion channel. FEBS Lett. 1992, 301, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Barbier, E.; Dufy, B.; Veyret, B. Stimulation of Ca2+ influx in rat pituitary cells under exposure to a 50 Hz magnetic field. Bioelectromagnetics 1996, 17, 303–311. [Google Scholar] [CrossRef]
- Onuma, E.K.; Hui, S.W. Electric field-directed cell shape changes, displacement, and cytoskeletal reorganization are calcium dependent. J. Cell Biol. 1988, 106, 2067–2075. [Google Scholar] [CrossRef]
- Kim, Y.V.; Conover, D.L.; Lotz, W.G.; Cleary, S.F. Electric field-induced changes in agonist-stimulated calcium fluxes of human HL-60 leukemia cells. Bioelectromagnetics 1998, 19, 366–376. [Google Scholar] [CrossRef]
- Binggelli, R.; Cameron, I.L. Cellular Potential of Normal and Cancerous Fibroblasts and Hepatocytes. Cancer Res. 1980, 40, 1830–1835. [Google Scholar]
- Bonora, M.; Bononi, A.; Marchi, E.D.; Giorgi, C.; Lebiedzinska, M.; Marchi, S.; Patergnani, S.; Rimessi, A.; Suski, J.M.; Wojtala, A.; et al. Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition. Cell Cycle 2013, 12, 674–683. [Google Scholar] [CrossRef]
- Šileikytė, J.; Forte, M. The Mitochondrial Permeability Transition in Mitochondrial Disorders. Oxidative Med. Cell. Longev. 2019, 2019, 3403075. [Google Scholar] [CrossRef]
- Bonora, M.; Wieckowski, M.R.; Chinopoulos, C.; Kepp, O.; Kroemer, G.; Galluzzi, L.; Pinton, P. Molecular mechanisms of cell death: Central implication of ATP synthase in mitochondrial permeability transition. Oncogene 2015, 34, 1475–1486. [Google Scholar] [CrossRef] [PubMed]
- Rizzuto, R.; Marchi, S.; Bonora, M.; Aguiari, P.; Bononi, A.; Stefani, D.D.; Giorgi, C.; Leo, S.; Rimessi, A.; Siviero, R.; et al. Ca2+ transfer from the ER to mitochondria: When, how and why. Biochim. Biophys. Acta 2009, 1787, 1342–1351. [Google Scholar] [CrossRef] [PubMed]
- Berridge, M.J.; Bootman, M.D.; Roderick, H.L. Calcium signalling: Dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 2003, 4, 517–529. [Google Scholar] [CrossRef]
- Giorgi, C.; Missiroli, S.; Patergnani, S.; Duszynski, J.; Wieckowski, M.R.; Pinton, P. Mitochondria-associated membranes: Composition, molecular mechanisms, and physiopathological implications. Antioxid. Redox Signal. 2015, 22, 995–1019. [Google Scholar] [CrossRef]
- Pinton, P.; Ferrari, D.; Rapizzi, E.; Virgilio, F.D.; Pozzan, T.; Rizzuto, R. The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: Significance for the molecular mechanism of Bcl-2 action. EMBO 2001, 20, 2690–2701. [Google Scholar] [CrossRef]
- Pinton, P.; Ferrari, D.; Magalhaes, P.; Schulze-Osthoff, K.; Virgilio, F.D.; Pozzan, T.; Rizzuto, R. Reduced loading of intracellular Ca2+ stores and downregulationof capacitative Ca2+ influx in Bcl-2-overexpressing cells. J. Cell Biol. 2000, 148, 857–862. [Google Scholar] [CrossRef]
- Foyouzi-Youssefi, R.; Arnaudeau, S.; Borner, C.; Kelley, W.L.; Tschopp, J.; Lew, D.P.; Demaurex, N.; Krause, K.H. Bcl-2 decreases the free Ca2+ concentration within the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 2000, 97, 5723–5728. [Google Scholar] [CrossRef] [PubMed]
- Akl, H.; Vervloessem, T.; Kiviluoto, S.; Bittremieux, M.; Parys, J.B.; Smedt, H.D.; Bultynck, G. A dual role for the anti-apoptotic Bcl-2 protein in cancer: Mitochondria versus endoplasmic reticulum. Biochim. Biophys. Acta 2014, 1843, 2240–2252. [Google Scholar] [CrossRef] [PubMed]
- Akl, H.; Bultynck, G. Altered Ca2+ signaling in cancer cells: Proto-oncogenes and tumor suppressors targeting IP3 receptors. Biochim. Biophys. Acta 2013, 1835, 180–193. [Google Scholar] [CrossRef]
- Marchi, S.; Marinello, M.; Bononi, A.; Bonora, M.; Giorgi, C.; Rimessi, A.; Pinton, P. Selective modulation of subtype III IP3R by Akt regulates ER Ca2+ releaseand apoptosis. Cell Death Dis. 2012, 3, e304. [Google Scholar] [CrossRef]
- Giorgi, C.; Ito, K.; Lin, H.K.; Santangelo, C.; Wieckowski, M.R.; Lebiedzinska, M.; Bononi, A.; Bonora, M.; Duszynski, J.; Bernardi, R.; et al. PML regulates apoptosis at endoplasmic reticulum by modulating calcium release. Science 2019, 330, 1247–1251. [Google Scholar] [CrossRef]
- Stewart, T.A.; Yapa, K.T.; Monteith, G.R. Altered calcium signaling in cancer cells. Biochim. Biophys. Acta 2015, 1848, 2502–2511. [Google Scholar] [CrossRef] [PubMed]
- Bononi, A.; Bonora, M.; Marchi, S.; Missiroli, S.; Poletti, F.; Giorgi, C.; Pandolfi, P.P.; Pinton, P. Identification of PTEN at the ER and MAMs and its regulation of Ca2+ signaling and apoptosis in a protein phosphatase-dependent manner. Cell Death Differ. 2013, 20, 1631–1643. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, C.; Bonora, M.; Sorrentino, G.; Missiroli, S.; Poletti, F.; Suski, J.M.; Galindo Ramirez, F.; Rizzuto, R.; Di Virgilio, F.; Zito, E.; et al. p53 at the endoplasmic reticulum regulates apoptosis in a Ca2+-dependent manner. Proc. Natl. Acad. Sci. USA 2015, 112, 1779–1784. [Google Scholar] [CrossRef]
- Giorgi, C.; Bonora, M.; Missiroli, S.; Poletti, F.; Ramirez, F.G.; Morciano, G.; Morganti, C.; Pandolfi, P.P.; Mammano, F.; Pinton, P. Intravital imaging reveals p53-dependent cancer cell death induced by phototherapy via calcium signaling. Oncotarget 2015, 6, 1435–1445. [Google Scholar] [CrossRef]
- Rimessi, A.; Marchi, S.; Patergnani, S.; Pinton, P. H-Ras-driven tumoral main-tenance is sustained through caveolin-1-dependent alterations in calcium signaling. Oncogene 2014, 33, 2329–2340. [Google Scholar] [CrossRef]
- Lucia, U.; Grisolia, G. Constructal law and ion transfer in normal and cancer cells. Proc. Rom. Acad. Ser. A 2018, 19, 213–218. [Google Scholar]
- Lucia, U.; Grisolia, G. Non-Equilibrium Thermodynamic Approach to Ca2+-Fluxes in Cancer. Appl. Sci. 2020, 10, 6737. [Google Scholar] [CrossRef]
- Lucia, U.; Deisboeck, T.S. The importance of ion fluxes for cancer proliferation and metastasis: A thermodynamic analysis. J. Theor. Biol. 2018, 445, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Leo, M.; Argalski, S.; Schäfers, M.; Hagenacker, T. Modulation of Voltage-Gated Sodium Channels by Activation of Tumor Necrosis Factor Receptor-1 and Receptor-2 in Small DRG Neurons of Rats. Mediat. Inflamm. 2015, 2015, 24942. [Google Scholar] [CrossRef] [PubMed]
- Foster, K.R. Mechanisms of Interaction of Extremly Low Frequency Electric Fields and Biological Systems. Radiat. Prot. Dosim. 2003, 106, 301–310. [Google Scholar] [CrossRef]
- Lucia, U. Statistical approach of the irreversible entropy variation. Physica A 2008, 387, 3454–3460. [Google Scholar] [CrossRef]
- Lucia, U.; Grisolia, G. Constructal law analysis of ion transfer in living cells: Normal and cancer behaviour. In Constructal Law & Second Law Conference, CLC2017; Morega, A.M., Lorente, S., Eds.; The Publishing House of the Romanian Academy: Bucharest, Romania, 2017; pp. 348–369. [Google Scholar]
- Atkins, P.; Paula, J.D. Physical Chemistry for Life Sciences; Oxford University Press: New York, NY, USA, 2006. [Google Scholar]
- Ashrafuzzaman, M.; Tuszynski, J. Membrane Biophysics; Springer: Berlin, Germany, 2013. [Google Scholar]
- Feynman, R.P.; Leighton, R.B.; Sands, M. The Feynman Lectures on Physics, Volume II; Addison-Wesley Publishing Company: Boston, MA, USA, 1963. [Google Scholar]
- Lucia, U. Thermodynamic approach to nano-properties of cell membrane. Physica A 2014, 407, 185–191. [Google Scholar] [CrossRef]
- Lucia, U.; Grisolia, G.; Ponzetto, A.; Silvagno, F. An engineering thermodynamic approach to select the electromagnetic wave effective on cell growth. J. Theor. Biol. 2017, 429, 181–189. [Google Scholar] [CrossRef]
- Bejan, A. Heat Transfer; Wiley: New York, NY, USA, 2011. [Google Scholar]
- Bejan, A. Shape and Structure, from Engineering to Nature; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Lucia, U.; Grisolia, G.; Ponzetto, A.; Deisboeck, T.S. Thermodynamic considerations on the role of heat and mass transfer in biochemical causes of carcinogenesis. Physica A 2018, 490, 1164–1170. [Google Scholar] [CrossRef]
- Lucia, U.; Bergandi, L.; Grisolia, G.; Fino, D.; Mareschi, K.; Marini, E.; Banche Niclot, A.G.S.; Tirtei, E.; Asaftei, S.D.; Fagioli, F.; et al. The exposure to extremely low frequency electromagnetic-fields inhibits the growth and potentiates the sensitivity to chemotherapy of bidimensional and tridimensional human osteosarcoma models. Biomed. Pharmacother. 2024, 177, 117162. [Google Scholar] [CrossRef]
- Bergandi, L.; Lucia, U.; Grisolia, G.; Salaroglio, I.C.; Gesmundo, I.; Granata, R.; Borchiellini, R.; Ponzetto, A.; Silvagno, F. Thermomagnetic Resonance Effect of the Extremely Low Frequency Electromagnetic Field on Three-Dimensional Cancer Models. Int. J. Mol. Sci. 2022, 23, 7955. [Google Scholar] [CrossRef] [PubMed]
- Bergandi, L.; Lucia, U.; Grisolia, G.; Granata, R.; Gesmundo, I.; Ponzetto, A.; Paolucci, E.; Borchiellini, R.; Ghigo, E.; Silvagno, F. The extremely low frequency electromagnetic stimulation selective for cancer cells elicits growth arrest through a metabolic shift. BBA Mol. Cell Res. 2019, 1866, 1389–1397. [Google Scholar] [CrossRef] [PubMed]
- Tesla, N. High Frequency Oscillators for Electro-Therapeutic and Other Purposes. Electr. Eng. 1898, XXVI, 477–481. [Google Scholar] [CrossRef]
- Valone, T.F. Bioelectromagnetic Healing, its History and a Rationale for its Use. In Proceedings of the Whole Person Healing Conference; Iuniverse Inc.: Bethesda, MD, USA, 2003; Available online: https://www.pecfund.com/ioe/pdf/BEMsHealingRationale.PDF (accessed on 19 July 2024).
- Manning, C.A.; Vanrenen, L.J. Bioenergetic Medicines East and West; North Atlantic Books: Berkeley, CA, USA, 1988. [Google Scholar]
- Douglass, W.C. Into the Light—The Exciting Story of the Life-Saving Breakthrough Therapy of the Age; Second Opinion Pub.: Atlanta, GA, USA, 1996. [Google Scholar]
- Lakhovsky, G. Curing Cancer with Ultra Radio Frequencies. Radio News 1925, 1282–1283. [Google Scholar]
- Liboff, A.R. Electric-field Ion Cyclotron Resonance. BioElectroMagnetics 1998, 18, 85–87. [Google Scholar] [CrossRef]
- Arango-Restrepo, A.; Rubi, J.M. Predicting cancer stages from tissue energy dissipation. Sci. Rep. 2023, 13, 15894. [Google Scholar] [CrossRef] [PubMed]
- Lucia, U.; Sciubba, E. From Lotka to the entropy generation approach. Physica A 2013, 392, 3634–3639. [Google Scholar] [CrossRef]
- Lucia, U.; Ponzetto, A.; Deisboeck, T.S. A thermodynamic approach to the ‘mitosis/apoptosis’ ratio in cancer. Physica A 2015, 436, 246–255. [Google Scholar] [CrossRef]
- Lucia, U. Thermodynamics and cancer stationary states. Physica A 2013, 392, 3648–3653. [Google Scholar] [CrossRef]
- Cone, C.D. Electroosmotic interactions accompanying mitosis initiation in sarcoma cells in vitro. Trans. N. Y. Acad. Sci. 1969, 31, 404–427. [Google Scholar] [CrossRef]
- Cone, C.D. Variation of the transmembrane potential level as a basic mechanism of mitosis control. Oncology 1970, 24, 438–470. [Google Scholar] [CrossRef] [PubMed]
- Cone, C.D. Unified theory on the basic mechanism of normal mitotic control and oncogenesis. J. Theor. Biol. 1971, 30, 151–181. [Google Scholar] [CrossRef] [PubMed]
- Markov, M.S. Expanding use of pulsed electromagnetic field therapies. Electromagn. Biol. Med. 2007, 26, 257–274. [Google Scholar] [CrossRef]
- Salvatore, J.R.; Harrington, J.; Kummet, T. Phase I clinical study of a static magnetic field combined with anti-neoplastic chemotherapy in the treatment of human malignancy: Initial safety and toxicity data. Bioelectromagnetics 2003, 24, 524–527. [Google Scholar] [CrossRef]
- Salzberg, M.H.; Kirson, E.H.; Palti, Y.H.; Rochlitz, C.H. A pilot study with very lowintensity, intermediate-frequency electric fields in patients with locally advanced and/or metastatic solid tumours. Onkologie 2008, 31, 362–365. [Google Scholar] [CrossRef]
- Jimenez-Garcia, M.N.; Arellanes-Robledo, J.; Aparicio Bautista, D.I.; Rodriguez-Segura, M.A.; Villa-Trevino, S.; Godina-Nava, J.J. Anti-proliferative effect of an extremely low frequency electromagnetic field on preneoplastic lesions formation in the rat liver. BMC Cancer 2010, 24, 159. [Google Scholar] [CrossRef] [PubMed]
- Costa, F.P.; de Oliveira, A.C.; Meirelles, R.; Machado, M.C.; Zanesco, T.; Surjan, R.; Chammas, M.C.; de Souza Rocha, M.; Morgan, D.; Cantor, A.; et al. Treatment of advanced hepatocellular carcinoma with very low levels of amplitude-modulated electromagnetic fields. Br. J. Cancer 2011, 105, 640–648. [Google Scholar] [CrossRef]
- Barbault, A.; Costa, F.P.; Bottger, B.; Munden, R.F.; Bomholt, F.; Kuster, N.; Pasche, B. Amplitude-modulated electromagnetic fields for the treatment of cancer: Discovery of tumour-specific frequencies and assessment of a novel therapeutic approach. J. Exp. Clin. Cancer Res. 2009, 28, 51. [Google Scholar] [CrossRef]
- Ronchetto, F.; Barone, D.; Cintorino, M.; Berardelli, M.; Lissolo, S.; Orlassino, R.; Ossola, P.; Tofani, S. Extremely low frequency-modulated static magnetic fields to treat cancer: A pilot study on patients with advanced neoplasm to assess safety and acute toxicity. Bioelectromagnetics 2004, 25, 563–571. [Google Scholar] [CrossRef]
- Strelczyk, D.; Eichhorn, M.E.; Luedemann, S.; Brix, G.; Dellian, M.; Berghaus, A.; Strieth, S. Static magnetic fields impair angiogenesis and growth of solid tumours in vivo. Cancer Biol. Ther. 2009, 8, 756–762. [Google Scholar] [CrossRef]
- Strieth, S.; Strelczyk, D.; Eichhorn, M.E.; Dellian, M.; Luedemann, S.; Griebel, J.; Bellemann, M.; Berghaus, A.; Brix, G. Static magnetic fields induce blood flow decrease and platelet adherence in tumour microvessels. Cancer Biol. Ther. 2008, 7, 814–819. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.D.; Markov, M.S.; Hardman, W.E.; Cameron, I.L. Therapeutic electromagnetic field effects on angiogenesis and tumour growth. Anticancer Res. 2001, 21, 3887–3892. [Google Scholar] [CrossRef]
- Chen, W.F.; Qi, H.; Sun, R.G.; Liu, Y.; Zhang, K.; Liu, J.Q. Static magnetic fields enhanced the potency of cisplatin on K562 cells. Cancer Biother. Radiopharm. 2010, 25, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Gray, J.R.; Frith, C.H.; Parker, J.D. In vivo enhancement of chemotherapy with static electric or magnetic fields. Bioelectromagnetics 2000, 21, 575–583. [Google Scholar] [CrossRef]
- Janigro, D.; Perju, C.; Fazio, V.; Hallene, K.; Dini, G.; Agarwal, M.K.; Cucullo, L. Alternating current electrical stimulation enhanced chemotherapy: A novel strategy to bypass multidrug resistance in tumour cells. BMC Cancer 2006, 17, 6–72. [Google Scholar] [CrossRef]
- Hirata, M.; Kuzuzaki, K.; Takeshita, H.; Hashiguchi, S.; Hirasawa, Y.; Ashihara, T. Drug resistance modification using pulsing electromagnetic field stimulation for multidrug resistant mouse osteosarcoma cell line. Anticancer Res. 2001, 21, 317–320. [Google Scholar]
- Rossi, E.; Corsetti, M.T.; Sukkar, S.; Poggi, C. Extremely Low Frequency Electromagnetic Fields Prevents Chemotherapy Induced Myelotoxicity. BMC Cancer 2007, 26, 277–281. [Google Scholar] [CrossRef]
- Sun, C.T.; Yu, H.M.; Wang, X.W.; Han, J.Q. A pilot study of extremely low frequency magnetic fields in advanced non-small cell lung cancer. Effects on survival and palliation of general symptoms. Oncol. Lett. 2012, 4, 1130–1134. [Google Scholar] [CrossRef] [PubMed]
- Ross, C.L.; Teli, T.; Harrison, B.S. Electromagnetic Field Devices and Their Effects on Nociception and Peripheral Inflammatory Pain Mechanisms. Altern. Ther. Health Med. 2016, 22, 52–64. [Google Scholar]
- Patruno, A.; Amerio, P.; Pesce, M.; Vianale, G.; Di Luzio, S.; Tulli, A.; Franceschelli, S.; Grilli, A.; Muraro, R.; Reale, M. Extremely low frequency electromagnetic fields modulate expression of inducible nitric oxide synthase, endothelial nitric oxide synthase and cyclooxygenase-2 in the human keratinocyte cell line HaCaT: Potential therapeutic effects in wound healing. Br. J. Dermatol. 2010, 162, 258–266. [Google Scholar] [CrossRef]
- Hiemer, B.; Ziebart, J.; Jonitz-Heincke, A.; Grunert, P.C.; Su, Y.; Hansmann, D.; Bader, R. Magnetically induced electrostimulation of human osteoblasts results in enhanced cell viability and osteogenic differentiation. Int. J. Mol. Med. 2016, 38, 57–64. [Google Scholar] [CrossRef]
- Atalay, Y.; Gunes, N.; Guner, M.D.; Akpolat, V.; Celik, M.S.; Guner, R. Pentoxifylline and electromagnetic field improved bone fracture healing in rats. Drug Des. Dev. Ther. 2016, 9, 5195–5201. [Google Scholar] [CrossRef] [PubMed]
- Pilla, A.A. Nonthermal electromagnetic fields: From first messenger to therapeutic applications. Electromagn. Biol. Med. 2013, 32, 123–136. [Google Scholar] [CrossRef]
- Ross, C.L.; Syed, I.; Smith, T.L.; Harrison, B.S. The regenerative effects of electromagnetic field on spinal cord injury. Electromagn. Biol. Med. 2016, 36, 74–87. [Google Scholar] [CrossRef]
- Vianale, G.; Reale, M.; Amerio, P.; Stefanachi, M.; Di Luzio, S.; Muraro, R. Extremely low frequency electromagnetic field enhances human keratinocyte cell growth and decreases proinflammatory chemokine production. Br. J. Dermatol. 2008, 158, 1189–1196. [Google Scholar] [CrossRef]
- Ganesan, K.; Gengadharan, A.C.; Balachandran, C.; Manohar, B.M.; Puvanakrishnan, R. Low frequency pulsed eletromagnetic field—A viable alternative for arthritis. Indian J. Exp. Biol. 2009, 47, 939–948. [Google Scholar] [PubMed]
- Lee, P.B.; Kim, Y.C.; Lim, Y.J.; Lee, C.J.; Choi, S.S.; Park, S.H.; Lee, J.G.; Lee, S.C. Efficacy of pulsed electromagnetic therapy for chronic lower back pain: A randomized, double-blind, placebo-controlled study. J. Int. Med. Res. 2006, 34, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Weintraub, M.; Cole, S. A randomized controlled trial of the effects of a combination of static and dynamic fields on carpal tunnel syndrome. J. Exp. Clin. Cancer Res. 2008, 9, 493–504. [Google Scholar] [CrossRef]
Disease | Frequency [Hz] | Key Finding | Ref. |
---|---|---|---|
Arthritis | 60 | Reduction in pain and inflammation | [99] |
Back pain | 64 | Statistically significant for reducing pain | [100] |
Cancer | 0.1–() | Significant decrease in size of tumour | [81] |
Carpal tunnel | 20 | Statistically significant pain reduction | [101] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucia, U.; Grisolia, G. Thermodynamic Considerations on the Biophysical Interaction between Low-Energy Electromagnetic Fields and Biosystems. Membranes 2024, 14, 179. https://doi.org/10.3390/membranes14080179
Lucia U, Grisolia G. Thermodynamic Considerations on the Biophysical Interaction between Low-Energy Electromagnetic Fields and Biosystems. Membranes. 2024; 14(8):179. https://doi.org/10.3390/membranes14080179
Chicago/Turabian StyleLucia, Umberto, and Giulia Grisolia. 2024. "Thermodynamic Considerations on the Biophysical Interaction between Low-Energy Electromagnetic Fields and Biosystems" Membranes 14, no. 8: 179. https://doi.org/10.3390/membranes14080179
APA StyleLucia, U., & Grisolia, G. (2024). Thermodynamic Considerations on the Biophysical Interaction between Low-Energy Electromagnetic Fields and Biosystems. Membranes, 14(8), 179. https://doi.org/10.3390/membranes14080179