Tailoring the Performance of a Composite PEI Nanofiltration Membrane via Incorporating Activated PDA for Efficient Dye Sieving and Salt Separation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Membranes and Chemical Reagents
2.2. Membrane Modification
2.3. Assessment of Membrane Permeability and Retention Capabilities
2.4. Organic Fouling Experiments
2.5. Characterization of the Membranes
3. Results and Discussion
3.1. Optimization of the Co-Deposition Solution
3.2. Analysis of Membrane Surface Properties
3.2.1. Surface Texture and Roughness
3.2.2. Chemical Compositions of Membrane Surfaces
3.2.3. Surface Wettability and Charge
3.3. Membrane Filtration Efficacy
3.4. Anti-Fouling Performance of the Membranes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maurer, L.; Villette, C.; Reiminger, N.; Jurado, X.; Laurent, J.; Nuel, M.; Mosé, R.; Wanko, A.; Heintz, D. Distribution and degradation trend of micropollutants in a surface flow treatment wetland revealed by 3D numerical modelling combined with LC-MS/MS. Water Res. 2021, 190, 116672. [Google Scholar] [CrossRef]
- Zhi, Y.; Zhao, X.; Qian, S.; Faria, A.F.; Lu, X.; Wang, X.; Li, W.; Han, L.; Tao, Z.; He, Q.; et al. Removing emerging perfluoroalkyl ether acids and fluorotelomer sulfonates from water by nanofiltration membranes: Insights into performance and underlying mechanisms. Sep. Purifi. Technol. 2022, 298, 121648. [Google Scholar] [CrossRef]
- Zhou, Z.G.; Du, H.-M.; Dai, Z.; Mu, Y.; Tong, L.L.; Xing, Q.J.; Liu, S.-S.; Ao, Z.; Zou, J.P. Degradation of organic pollutants by peroxymonosulfate activated by MnO2 with different crystalline structures: Catalytic performances and mechanisms. Chem. Eng. J. 2019, 374, 170–180. [Google Scholar] [CrossRef]
- Ng, L.Y.; Mohammad, A.W.; Leo, C.P.; Hilal, N. Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review. Desalination 2013, 308, 15–33. [Google Scholar] [CrossRef]
- Adityawarman, D.; Lugito, G.; Kawi, S.; Wenten, I.G.; Khoiruddin, K. Advancements and future trends in nanostructured membrane technologies for seawater desalination. Desalination 2025, 597, 118390. [Google Scholar] [CrossRef]
- Cheng, S.; Oatley, D.L.; Williams, P.M.; Wright, C.J. Characterisation and application of a novel positively charged nanofiltration membrane for the treatment of textile industry wastewaters. Water Res. 2012, 46, 33–42. [Google Scholar] [CrossRef]
- Bunani, S.; Yörükoğlu, E.; Sert, G.; Yüksel, Ü.; Yüksel, M.; Kabay, N. Application of nanofiltration for reuse of municipal wastewater and quality analysis of product water. Desalination 2013, 315, 33–36. [Google Scholar] [CrossRef]
- Kang, X.; Ge, Q. A critical review on the mechanism, progress and challenge of electrochemically assisted membrane cleaning in water treatment. Desalination 2025, 597, 118350. [Google Scholar] [CrossRef]
- Casetta, J.; Ortiz, D.G.; Pochat-Bohatier, C.; Bechelany, M.; Miele, P. Atomic layer deposition of TiO2 on porous polysulfone hollow fibers membranes for water treatment. Sep. Purifi. Technol. 2023, 312, 123377. [Google Scholar] [CrossRef]
- Li, X.; Nayak, K.; Stamm, M.; Tripathi, B.P. Zwitterionic silica nanogel-modified polysulfone nanoporous membranes formed by in-situ method for water treatment. Chemosphere 2021, 280, 130615. [Google Scholar] [CrossRef]
- Niestroj-Pahl, R.; te Brinke, E.; Roth, H.; Dähne, L.; de Vos, W.M. Symmetric and asymmetric ceramic-supported polyelectrolyte multilayer nanofiltration membranes. J. Membr. Sci. 2025, 713, 123366. [Google Scholar] [CrossRef]
- Niu, J.; Yan, T.; Xiong, Q.; Lei, Y.; Zheng, F.; Patabendige, A.; Pan, Z.; Han, G. Cation-modulated permselectivity regulation of polyelectrolyte nanofiltration membranes for water purification. Sep. Purifi. Technol. 2025, 355, 129656. [Google Scholar] [CrossRef]
- Cheng, W.; Liu, C.; Tong, T.; Epsztein, R.; Sun, M.; Verduzco, R.; Ma, J.; Elimelech, M. Selective removal of divalent cations by polyelectrolyte multilayer nanofiltration membrane: Role of polyelectrolyte charge, ion size, and ionic strength. J. Membr. Sci. 2018, 559, 98–106. [Google Scholar] [CrossRef]
- Feng, X.; Wang, X.; Lin, X.; Chen, Y.; Qi, H. Mussel-inspired sulfated nanocellulose-mediated conductive nanofiber for thermoelectric and humidity sensing multifunctional applications. Chem. Eng. J. 2022, 450, 138345. [Google Scholar] [CrossRef]
- Dai, F.; Qian, G.; Ke, Z.; Xu, K.; Wang, M.; Li, D.; Deng, Z.; Yu, Y.; Chen, C. Antifouling polyphenylene sulfone tight-ultrafiltration membrane by co-depositing dopamine and zwitterionic polymer for efficient dye/salt separation. Sep. Purifi. Technol. 2024, 345, 127403. [Google Scholar] [CrossRef]
- Lin, G.; Bai, Z.; Liu, C.; Liu, S.; Han, M.; Huang, Y.; Liu, X. Mechanically robust, nonflammable and surface cross-linking composite membranes with high wettability for dendrite-proof and high-safety lithium-ion batteries. J. Membr. Sci. 2022, 647, 120262. [Google Scholar] [CrossRef]
- Gu, G.; Yang, X.; Li, Y.; Guo, J.; Huang, J.; Nxumalo, E.N.; Mamba, B.B.; Shao, L. Advanced zwitterionic polymeric membranes for diverse applications beyond antifouling. Sep. Purifi. Technol. 2025, 356, 129848. [Google Scholar] [CrossRef]
- Liu, H.; Xie, J.; Zhao, J.; Wang, R.; Qi, Y.; Sun, S. Temperature and photo sensitive PVDF-g-PNIPAAm/BN@PDA-Ag nanocomposite membranes with superior wasterwater separation and light-cleaning capabilities. Sep. Purifi. Technol. 2024, 331, 125692. [Google Scholar] [CrossRef]
- Wen, Y.; Wang, J.; Wang, F.; Wu, H.; Zhou, J.; Dai, Z.; Guo, H. Recent advances in membranes modified with plant polyphenols in wastewater treatment: A review. Sep. Purifi. Technol. 2024, 334, 125861. [Google Scholar] [CrossRef]
- Pilařová, V.; Plachká, K.; Gazárková, T.; Švec, F.; Garrigues, J.-C.; Nováková, L. Using artificial neural networks to elucidate retention interactions on stationary phases with amine moieties dedicated to supercritical fluid chromatography. Sep. Purifi. Technol. 2025, 356, 129965. [Google Scholar] [CrossRef]
- Li, S.; Zheng, C.; Tu, L.; Cai, D.; Huang, Y.; Gao, C.; Lu, Y.; Xue, L. Construction of PDA-PEI/ZIF-L@PE tight ultra-filtration (TUF) membranes on porous polyethylene (PE) substrates for efficient dye/salt separation. J. Hazard. Mater. 2024, 468, 133727. [Google Scholar] [CrossRef]
- Jiang, H.; Yang, N.; Hao, Y.; Zhang, L.; Xiao, X.; Sun, Y.; Jiang, B.; Zhang, L. Highly permeable polyamide nanofiltration membranes fabricated via the construction of anionic covalent organic frameworks/polydopamine composite interlayer. Sep. Purifi. Technol. 2024, 347, 127590. [Google Scholar] [CrossRef]
- Al Shaeli, M.; Orhun Teber, O.; Al Juboori, R.A.; Khataee, A.; Koyuncu, I.; Vatanpour, V. Inorganic layered polymeric membranes: Highly-ordered porous ceramics for surface engineering of polymeric membranes. Sep. Purifi. Technol. 2024, 350, 127925. [Google Scholar] [CrossRef]
- Ma, C.; Chen, C.; Nikiforov, A.; Kajtazi, A.; An, M.; Gutierrez, L.; D’Haese, A.; Leus, K.; Van Der Voort, P.; Lynen, F.; et al. Plasma-aerosol-assisted interface engineering of nanofiltration membranes to improve removal of organic pollutants from water. Chem. Eng. J. 2024, 496, 153755. [Google Scholar] [CrossRef]
- Choi, Y.J.; Saeed, G.; Lee, D.; Kwon, S.H.; Kim, K.H. Enhanced electrochemical performance of flexible carbon substrates via carbonized layer of oxidant-induced polydopamine for high-performance supercapacitors. J. Ind. Eng. Chem. 2024, 145, 395–402. [Google Scholar] [CrossRef]
- Zhu, Z.; Gao, Q.; Long, Z.; Huo, Q.; Ge, Y.; Vianney, N.; Daliko, N.A.; Meng, Y.; Qu, J.; Chen, H.; et al. Polydopamine/poly(sulfobetaine methacrylate) Co-deposition coatings triggered by CuSO4/H2O2 on implants for improved surface hemocompatibility and antibacterial activity. Bioact. Mater. 2021, 6, 2546–2556. [Google Scholar] [CrossRef]
- Zhang, W.; Liao, Z.; Meng, X.; Ai Niwaer, A.E.; Wang, H.; Li, X.; Liu, D.; Zuo, F. Fast coating of hydrophobic upconversion nanoparticles by NaIO4-induced polymerization of dopamine: Positively charged surfaces and in situ deposition of Au nanoparticles. Appl. Surf. Sci. 2020, 527, 146821. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Q. Oxidant-induced plant phenol surface chemistry for multifunctional coatings: Mechanism and potential applications. J. Membr. Sci. 2019, 570–571, 176–183. [Google Scholar] [CrossRef]
- Huangfu, C.; Liu, Z.; Lu, X.; Liu, Q.; Wei, T.; Fan, Z. Strong oxidation induced quinone-rich dopamine polymerization onto porous carbons as ultrahigh-capacity organic cathode for sodium-ion batteries. Energy Storage Mater. 2021, 43, 120–129. [Google Scholar] [CrossRef]
- Bao, Y.; Xu, W.; Zhang, J.; Yang, Q.; Wang, Z. Anti-fouling ampholytic polymer membrane with super-wetting surfaces for efficient oil-water emulsion separation. Desalination 2024, 585, 117745. [Google Scholar] [CrossRef]
- Baig, N.; Salhi, B.; Ali, S.; Khan, S.A.; Mansha, M.; Khan, N.A.; Abdulazeez, I.; Kammakakam, I. Synthesis of a novel polymer and design of carboxylate-terminated hyperbranched PEI-incorporated PVDF membranes for efficient oil-in-water emulsion separation. Sep. Purifi. Technol. 2025, 354, 128628. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, W.; Wen, S.; Wang, L.; Wang, S.; Wang, Y.; Lu, J.; Ma, J.; Cheng, W. Rapid co-deposition of dopamine and polyethyleneimine triggered by CuSO4/H2O2 oxidation to fabricate nanofiltration membranes with high selectivity and antifouling ability. Sep. Purifi. Technol. 2023, 305, 122409. [Google Scholar] [CrossRef]
- Wu, W.; Wang, Q.; Li, W.; Liu, W.; Wang, D.; Fu, J.; Zhang, J.; Li, Y.; Wang, H.; Lu, S.; et al. Investigation of the influence of amino trimethylene phosphonic acid on oxygen reduction reaction on platinum catalyst. Chem. Eng. J. 2024, 502, 158164. [Google Scholar] [CrossRef]
- Lv, Y.; Du, Y.; Chen, Z.-X.; Qiu, W.-Z.; Xu, Z.-K. Nanocomposite membranes of polydopamine/electropositive nanoparticles/polyethyleneimine for nanofiltration. J. Membr. Sci. 2018, 545, 99–106. [Google Scholar] [CrossRef]
- Chen, G.; Jin, B.; Zhao, J.; Li, Y.; He, Y.; Luo, J. Efficient one-pot synthesis of mussel-inspired Cu-doped polydopamine nanoparticles with enhanced lubrication under heavy loads. Chem. Eng. J. 2021, 426, 131287. [Google Scholar] [CrossRef]
- Wang, L.; Fang, F.; Liu, Y.; Li, J.; Huang, X. Facile preparation of heparinized polysulfone membrane assisted by polydopamine/polyethyleneimine co-deposition for simultaneous LDL selectivity and biocompatibility. Appl. Surf. Sci. 2016, 385, 308–317. [Google Scholar] [CrossRef]
- Shi, H.; Xue, L.; Gao, A.; Fu, Y.; Zhou, Q.; Zhu, L. Fouling-resistant and adhesion-resistant surface modification of dual layer PVDF hollow fiber membrane by dopamine and quaternary polyethyleneimine. J. Membr. Sci. 2016, 498, 39–47. [Google Scholar] [CrossRef]
- Lv, Q.; Cai, Y.; Yang, R.; Zhang, L.; Han, Y.; Marfavi, Z.; Barazandeh, M.; Xu, M.; Zhang, G.; Zhang, W.; et al. Efficient penetration and in situ polymerization of dopamine in biofilms for the eradication. Chem. Eng. J. 2025, 503, 158562. [Google Scholar] [CrossRef]
- Nie, Z.; Liu, C.; Jiang, X.; Zhou, Y.; Lin, X.; Zhao, X.; He, Q.; Chai, H.; Pang, X.; Ma, J. Dopamine-triggered one-step codeposition of zwitterionic surfactants for anti-fouling polyethersulfone ultrafiltration membrane modification. Appl. Surf. Sci. 2022, 598, 153871. [Google Scholar] [CrossRef]
- Deng, L.; Li, S.; Qin, Y.; Zhang, L.; Chen, H.; Chang, Z.; Hu, Y. Fabrication of antifouling thin-film composite nanofiltration membrane via surface grafting of polyethyleneimine followed by zwitterionic modification. J. Membr. Sci. 2021, 619, 118564. [Google Scholar] [CrossRef]
- Bera, P.; Trivedi, J.S.; Jewrajka, S.K. Low fouling/scaling double network thin film composite nanofiltration membranes with improved desalination performance. Desalination 2023, 564, 116813. [Google Scholar] [CrossRef]
- Jiang, J.; Zhu, L.; Zhu, L.; Zhu, B.; Xu, Y. Surface Characteristics of a Self-Polymerized Dopamine Coating Deposited on Hydrophobic Polymer Films. Langmuir 2011, 27, 14180–14187. [Google Scholar] [CrossRef]
- Bandehali, S.; Parvizian, F.; Hosseini, S.M.; Matsuura, T.; Drioli, E.; Shen, J.; Moghadassi, A.; Adeleye, A.S. Planning of smart gating membranes for water treatment. Chemosphere 2021, 283, 131207. [Google Scholar] [CrossRef]
- Liu, G.; Matindi, C.N.; Pu, Z.; Kadanyo, S.; Cui, Z.; Yang, J.; Li, J. Preparation of novel zwitterionic polysulfone ultrafiltration membranes for the dual-enhanced antifouling and antibacterial properties by in-situ one pot crosslinking reaction. J. Membr. Sci. 2024, 701, 122731. [Google Scholar] [CrossRef]
- Li, Z.; Hu, K.; Feng, X. Co-depositing polyvinylamine and dopamine to enhance membrane performance for concentration of KAc solutions via sweeping air pervaporation. J. Membr. Sci. 2022, 656, 120664. [Google Scholar] [CrossRef]
- Chen, L.; Ren, X.; Li, Y.; Hu, D.; Feng, X.; Li, W. Enhancing interface compatibility of UiO-66-NH2 and polyamide by incorporating dopamine into thin film nanocomposite membranes. J. Membr. Sci. 2022, 654, 120565. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Y.; Goh, K.; Tan, C.H.; Wang, R. Dopamine-intercalated polyelectrolyte multilayered nanofiltration membranes: Toward high permselectivity and ion-ion selectivity. J. Membr. Sci. 2022, 648, 120337. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Y.; Li, F.; Chen, Y.; Mojallali Rostami, S.M.; Hosseini, S.S.; Shao, L. Mussel-inspired polyphenol/polyethyleneimine assembled membranes with highly positive charged surface for unprecedented high cation perm-selectivity. J. Membr.Sci. 2022, 658, 120703. [Google Scholar] [CrossRef]
- Lv, Y.; Yang, H.-C.; Liang, H.-Q.; Wan, L.-S.; Xu, Z.-K. Nanofiltration membranes via co-deposition of polydopamine/polyethylenimine followed by cross-linking. J. Membr. Sci. 2015, 476, 50–58. [Google Scholar] [CrossRef]
- Xiang, J.; Zhu, R.; Lang, S.; Yan, H.; Liu, G.; Peng, B. Mussel-inspired immobilization of zwitterionic silver nanoparticles toward antibacterial cotton gauze for promoting wound healing. Chem. Eng. J. 2021, 409, 128291. [Google Scholar] [CrossRef]
- Ni, X.X.; Li, J.H.; Yu, L.P. A novel PVDF hybrid membrane with excellent active–passive integrated antifouling and antibacterial properties based on a PDA guiding effect: Electronic supplementary information (ESI) available. Mater. Adv. 2021, 2, 3300–3314. [Google Scholar] [CrossRef]
- Feng, X.; Peng, D.; Zhu, J.; Wang, Y.; Zhang, Y. Recent advances of loose nanofiltration membranes for dye/salt separation. Sep. Purifi. Technol. 2022, 285, 120228. [Google Scholar] [CrossRef]
- Li, Q.; Sun, W.; Shang, B.; Zhang, N.; Zhao, L.; Deng, H.; Du, P.; Qiao, M.; Lu, J.; Wang, Z. Lignin/mesoporous hollow silica nanosphere thin film nanocomposite loose nanofiltration membrane for dye/salt separation. Desalination 2024, 575, 117332. [Google Scholar] [CrossRef]
- Ward, L.M.; Martin, C.C.; Weinman, S.T. Pattern size relative to oil droplet size effect on oil fouling in nanofiltration. J. Membr. Sci. 2025, 715, 123457. [Google Scholar] [CrossRef]
- Qin, Y.; Qi, P.; Hao, S.; Shi, W.; Xiao, J.; Wang, J.; Hu, Y. Methylation of reverse osmosis membrane for superior anti-fouling performance via blocking carboxyl groups in polyamide. Nat. Water 2025, 3, 110–121. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, X.; Cheng, Z.; Lau, C.H.; Ma, J.; Shao, L. Surface manipulation for prevention of migratory viscous crude oil fouling in superhydrophilic membranes. Nat. Commun. 2023, 14, 2679. [Google Scholar] [CrossRef]
Membranes | KMnO4 | PEI | DA | Deposition Time |
---|---|---|---|---|
(g/L) | (g/L) | (g/L) | (h) | |
DE | - | 2 | 2 | 1 |
KD | 0.666 | 0 | 2 | 1 |
KDE2 | 0.666 | 2 | 2 | 1 |
KDE4 | 0.666 | 4 | 2 | 1 |
KDE8 | 0.666 | 8 | 2 | 1 |
KDE12 | 0.666 | 12 | 2 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Liu, J.; Wang, W.; Chen, S.; Jia, F.; Li, X.; Zhao, Y.; Zhang, W.; Song, D.; Ma, J. Tailoring the Performance of a Composite PEI Nanofiltration Membrane via Incorporating Activated PDA for Efficient Dye Sieving and Salt Separation. Membranes 2025, 15, 75. https://doi.org/10.3390/membranes15030075
Li W, Liu J, Wang W, Chen S, Jia F, Li X, Zhao Y, Zhang W, Song D, Ma J. Tailoring the Performance of a Composite PEI Nanofiltration Membrane via Incorporating Activated PDA for Efficient Dye Sieving and Salt Separation. Membranes. 2025; 15(3):75. https://doi.org/10.3390/membranes15030075
Chicago/Turabian StyleLi, Wanting, Jiaye Liu, Weifu Wang, Shichun Chen, Fengwei Jia, Xiang Li, Ying Zhao, Wenjuan Zhang, Dan Song, and Jun Ma. 2025. "Tailoring the Performance of a Composite PEI Nanofiltration Membrane via Incorporating Activated PDA for Efficient Dye Sieving and Salt Separation" Membranes 15, no. 3: 75. https://doi.org/10.3390/membranes15030075
APA StyleLi, W., Liu, J., Wang, W., Chen, S., Jia, F., Li, X., Zhao, Y., Zhang, W., Song, D., & Ma, J. (2025). Tailoring the Performance of a Composite PEI Nanofiltration Membrane via Incorporating Activated PDA for Efficient Dye Sieving and Salt Separation. Membranes, 15(3), 75. https://doi.org/10.3390/membranes15030075