Advancing Ceramic Membrane Technology for Sustainable Treatment of Mining Discharge: Challenges and Future Directions
Abstract
:1. Introduction
2. Overview of Ceramic Membrane Material and Configuration
3. Overview of Membrane Fouling
4. Application of Ceramic MF/UF Membrane for Treatment of Mining Effluent
5. Application of Ceramic NF Membrane for Treatment of Mining Effluent
Feed Source and Characteristics | Ceramic Membrane Characteristics | MWCO/Pore Size | Manufacturer | Operation Condition | Permeability (at Steady State) | Pre-Treatment | Rejection Efficiency | Ref. |
---|---|---|---|---|---|---|---|---|
AMD (opencast lignite mining) Fetotal: 220 mg/L Solid content: 0.3% | Material: α-Al2O3 compact rotating disk ID: 25 mm OD: 152 mm Thickness: 4.5 mm Clean water permeability: 1392 LMH/bar | 2.0 μm | Novoflow GmbH | Crossflow Feed flow: 3.38 L/min TMP: 1.2 bar pH: 2.5 T: 25 °C | 141.7 LMH/bar | Coating of membrane surface by a layer of iron hydroxide | 70.4% | [59] |
AMD (opencast lignite mining) Fetotal: 290 mg/L Solid content: 0.4% | Crossflow Feed flow: 3.42 L/min TMP: 1.2 bar pH: 6.0 T: 25 °C | 83.3 LMH/bar | 5% lime milk | Fe: >99.9% | ||||
AMD (opencast lignite mining) Fetotal: 330 mg/L Solid content: 0.4% | Crossflow Feed flow: 4.13 L/min TMP: 1.2 bar pH: 7.7 T: 25 °C | 491.7 LMH/bar | 5% lime milk + 0.1 w/w Koaret PA 3230 | Fe: >99.9% | ||||
AMD (opencast lignite mining) Fetotal: 5000 mg/L Solid content: 1.5% | Dead-end Feed flow: 0.30 L/min TMP: 1.9 bar pH: 7.8 T: 25 °C | 115.8 LMH/bar | 5% lime milk + 0.1 w/w Koaret PA 3230 + static thickening | Fe: >99.9% | ||||
Stone cutting mine wastewater TSS: 485 mg/L Turbidity: 365 NTU COD: 27 mg/L Ptotal: 0.3 mg/L Fetotal: 17.5 mg/L Mntotal: 0.7 mg/L | Material: Silica-modified Al2O3 Plate type | 0.1 μm | N/A | Crossflow CFV: 4.5 m/s TMP: 1.1 bar pH: 6.8 T: 20 °C | Steady state not reached | None | TSS: >99% Turbidity: >99.9% COD: <18 mg/L (DL) Ptotal: >99% Fetotal: >99.9% Mntotal: >90% | [5] |
127.3 LMH/bar | Biological treatment | |||||||
Material: ɣ-Al2O3 Plate type | 0.01 μm | 51.8 LMH/bar | None | TSS: >99% Turbidity: >99.8% COD: <18 mg/L (DL) Ptotal: >95% Fetotal: >99.8% Mntotal: >91% | ||||
AMD | Tubular ceramic membrane | 0.2 μm | N/A | Crossflow Feed flow: 38–1325 L/min CFV: 3 m/s TMP: 0.35 bar Operation pressure: 2.41 bar pH: 8.5–9.5 | N/A | NaOH addition + aeration | Turbidity: 0–2 NTU As: 66.4% Cd: >99.9% Ca: 78.3% Cr: >99.3% Cu: >99.9% Pb: >99.9% Mn: 99.8% Ni: 99.8% Ag: 99.8% Zn: >99.9% | [60] |
AMD : 645.9 mg/L Cl: 97.8 mg/L Na: 108.9 mg/L Ca: 151.8 mg/L Mg: 29.7 mg/L K: 4.3 mg/L Mn: 1.2 mg/L Fe: <0.02 mg/L Sr: 1.7 mg/L Ba: 76.7 μg/L Al: 50.5 μg/L Ni: 38.5 μg/L As: 70.0 μg/L Se: 55.2 μg/L | Material: fused Al2O3 with active surface layer of TiO2 Single channel tubular membrane ID: 6 mm Length: 500 mm | 500 Da (~1 nm) | Cerahelix | Crossflow Feed flow: 5.68 L/min CFV: 3.35 m/s TMP: 35 bar pH: 7.8 T: 25 °C | 0.8 LMH/bar | 20–24 h aeration + 0.22 um MF membrane | : 63% Cl: 7% Na: 36% Ca: 60% Mg: 68% K: 38% Mn: 65% Sr: 60% Ba: 56% Al: 42% Ni: 67% As: 20% Se: 46% | [4] |
Crossflow Feed flow: 5.68 L/min CFV: 3.35 m/s TMP: 35 bar pH: 4.0 T: 25 °C | 1.6 LMH/bar | : 68% Cl: 11% Na: 40% Ca: 63% Mg: 70% K: 45% Mn: 65% Sr: 62% Ba: 59% Al: 43% Ni: 67% As: 36% Se: 63% | ||||||
Crossflow Feed flow: 5.68 L/min CFV: 3.35 m/s TMP: 35 bar pH: 7.8 T: 25 °C Antiscalant: 15 mg/L | 0.4 LMH/bar | : 87% Cl: 26% Na: 66% Ca: 80% Mg: 85% K: 71% Mn: 80% Sr: 80% Ba: 78% Al: 45% Ni: 83% As: 60% Se: 70% | ||||||
Mine discharge Ca2+: 134.27 mg/L Mg2+: 130.38 mg/L Cl−:123.08 mg/L SO42−: 134.69 mg/L Nitrate: 108.06 mg/L As: 5 mg/L Cu: 5 mg/L Fe: 5 mg/L Ni: 5 mg/L Available particle sizes: 0: 0.5–1.2 mm I: 0.5–2.5 mm II: 2.0–4.5 mm III: 4.0–7.0 mm | Ceramic membrane (MF) MF Material: active layer of α-Al2O3 on a rigid porous base Resistant up to:150 °C pH range: 0.5–13.5 Shape: tubular form (inner diameter 7 mm, length 25 cm, and effective membrane area of 50 cm2) | 0.1–0.5 μm | Semidol Porosity: 14.4% Bulk density: 1.1–1.2 t.m−3 | Original pH: 7.18 conductivity: 693 mS.m−1 T: 10.5 °C After MF pH:6.40 conductivity: 756 mS.m−1 T: 20.5 °C After RO pH: 7.59 conductivity: 0 mS.m−1 T: 19.7 °C Remineralized pH: 8.72 conductivity: 0 mS.m−1 T: 19.7 °C | N/A | N/A | After treatment Ca2+: 32.06 mg/L Mg2+: 10.94 mg/L Cl−: 8.43 mg/L SO4 2−: 3.45 mg/L Nitrate: 0.84 mg/L As: 0 mg/L Cu: 0 mg/L Fe: 0 mg/L Ni: 0 mg/L | [62] |
Synthetic AMD CuCl2·2H2O: 50 mg/L Na2SO4: 1470 mg/L Supplemental mineral salt medium NH4Cl: 1.0 g/L KH2PO4: 0.5 g/L Na2SO4: 1.47 g/L CaCl2·2H2O: 0.1 g/L FeSO4·6H2O: 0.289 g/L Na3C6H5O7: 0.3 g/L EDTA: 0.3 g/L Yeast extract: 1.0 g/L | Membrane material: Kaolin: 14.45 wt% Quartz: 26.59 wt% Ball clay: 17.58 wt% Pyrophyllite: 14.73 wt% Feldspar: 5.6 wt% Effective membrane diameter: 42 mm Effective membrane thickness: 4 mm | 1.01 μm | Low-cost ceramic membrane prepared based on the composition reported by Monash and Pugazhenthi (2011) | Dead-end Microfiltration to obtain pure CuSNPs from the bio precipitate at a constant applied pressure (172 kPa) | N/A | Probe sonication: highest separation efficiency of CuSNPs (92%) Other pretreatment methods tested (more to less effective separation of CuSNPs): cell lysis using a French press, centrifugation and heating, bath sonication | N/A | [63] |
Recycle water from Canadian oil sands Cations Li+: 0.1–0.2 mg/L Na+: 220.0–360.0 mg/L K+: 11.8–18.6 mg/L Mg2+: 12.3–16.0 mg/L Ca2+: 25.1–34.1 mg/L Ba2+: 0.1–0.2 mg/L Anions F−: 1.3–3.3 mg/L HCO−3: 349.0–509.0 mg/L Cl−: 103.0–167.0 mg/L Br−: 0.2–0.4 mg/L SO2−4: 163.0–268.0 mg/L NO−3: 0.1–2.7 mg/L Components TSS: 13.0–305.0 mg/L TOC: 31.0–134.0 mg/L Hardness (as CaCO3): 72.0–151.0 mg/L Silica (SiO2): 2.7–20.5 mg/L Total Silicon, Si: 2.7–9.6 mg/L Total Boron, B: 1.3–2.4 mg/L Total Sulfur, S: 61.0–109.0 mg/L | Commercial titania Ceramic NF Membrane Unit Membrane surface area: 1.3 m2/element Pure water flux range (at 1 bar): 15–20 LMH Tmax 400 °C Pressure stability: ≥60 bar | Mean pore size: 0.9 nm MWCO: 450 Da | Inopor | Crossflow TMP (highest): 13.3 bar pH: 7.7–8.4 T: 6–36 °C Test condition: constant flow or constant TMP mode Operation: 50% stage cut for approximately 75 days (around 1800 h) Average recycle process water flow: 7.0 m3/h | 1–10 LMH/bar | N/A | Cations K+: 63% Na+: 62% Li+: 60% Ba+: 73% Ca2+: 68% Mg2+: 65% Anions Cl−:42% NO3−: Br−: 67% F−: 54% HCO3−:61% SO42−: 69% Components TOC: 92% TSS: 100% Hardness (as CaCO3): 66% Silica (SiO2): 58% Total Silicon, Si: 58% Total Boron, B: 58% Total Sulfur, S: 70% | [70] |
Synthetic AMW solutions (mimicking those from the Iberian Pyrite Belt in Huelva province (Southwest of Spain)) 2 scenarios: one with Fe(III) one without pH: 1.0, 1.5 Al(III): 600, 1800 (mg/L) Fe(III): 500, 125 (mg/L) Ca(II): 25 mg/L Cu(II): 40 mg/L Zn(II): 46 mg/L REEs(III): 60 mg/L | TiO2 tubular ceramic membrane Area: 44.92 cm2 Internal diameter: 6.5 mm Thickness: 2 mm Active layer of TiO2 supported on Al2O3. Flat-sheet polymeric MPF–34 (proprietary layer) Area: 140 cm2 | TiO2 ceramic membrane: 1nm Polymeric MPF–34: 200 Da | Ceramic membrane: Fraunhofer IKTS Polymeric membrane: Koch Membrane Systems (MPF–34) | Cross flow Ceramic: Cross flow velocity (cfv): 3.5 m/s TMP: 6–13 bar pH: 1–12 T: 25 °C Polymeric MPF–34: Cfv: 0.7 m/s TMP: 6–20 bar pH: 1–12 T: 25 °C | Ceramic: 9–13 LMH/bar Polymeric MPF–34: 0.6–3.6 LMH/bar | Pre–filter cartridge: 100 μm, polypropylene | TiO2 metal rejections: <60%, (highest rejections for trivalent transition metals) MPF–34 metal rejections: 80% independent on the concentration of the major components (Al(III) and Fe(III)) | [71] |
6. Application of Ceramic Membrane in VMD for Treatment of Mining Effluent
7. Concluding Remarks and Future Directions
- In-dept characterization of mining discharge and AMD prior to the development of an appropriate treatment train integrating ceramic membrane technology. Due to the significant impact of natural organic matter on the solubility of the dissolved metal species, performance of pretreatment processes, destabilization of colloids, membrane surface charge as well as membrane fouling and its reversibility, their concentration and nature need to be defined prior to the selection of the appropriate process train. Improved water characterization will aid in the selection of important process parameters such as required pre-treatment options to facilitate downstream membrane filtration, appropriate membrane pore sizes for rejection of targeted species, and membrane materials that could help mitigate interaction with potential foulants.
- Design and implement pilot-scale mining effluent and AMD treatment processes using various types of ceramic membranes with different pore sizes, either stand-alone or integrated with other treatment techniques. Pilot-scale testing is necessary to demonstrate the scalability of ceramic membrane processes in treating mine effluents. Process intensification and hybrid process development should be explored as a means of improving the economics of water treatment in this application
- Conduct long-term operation of pilot-scale ceramic membrane process to guarantee steady-state performance of the system without any or minimum requirement for membrane replacement. It is important to assess the longevity of ceramic processes and demonstrate that they are capable of yielding high flux and separation performance over extended periods of time. Their long-term performance will help inform the type and frequency of fouling remediation techniques (e.g., Backwashing, CIP) that are to be applied. The effect of repeated membrane cleaning on membrane durability over time should be closely established.
- Address pretreatment technologies that can be integrated with MF/UF/NF ceramic membranes for treatment of mining effluents and water recycling during mineral Processing (e.g., Floatation). High-level understanding of retention and fouling mechanisms associated with each treatment train as well as characterization of both membrane and foulants (such as surface charge, fractal dimensions and particle size) are crucial for selecting an appropriate treatment strategy for each specific water composition.
- Investigate the rejection performance of various ions, especially toxic heavy Metals (e.g., Arsenic and mercury) as well as sulfate, using modified/unmodified ceramic NF membranes for mine effluent and AMD treatment under different operations (permeate recovery, crossflow rate, operating pressure and temperature) and water quality Conditions (i.e., Ph, ionic strength, and concentration of inorganic and organic salts).
- Investigate the role of different Parameters (e.g., Feed water characteristics, membrane properties, modifying agent and operating condition), optimize the process performance and determine the long-term outcome of ceramic VMD process for treatment of mine waste and water recycling during mineral processing with respect to water recovery, membrane fouling and rejection of different salts, heavy metals and other dissolved, colloidal and particulate contaminants. There is currently a lack of available literature on the performance of VMD in the treatment of mine effluents, even though the technology has great potential applications in the recovery and reuse of resources from AMD, mineral Processing (e.g., Water recycling in floatation), sludge dewatering and maximizing the overall water recovery in mining industries
- Examine the potential application of RO-VMD hybrid process for high recovery of water from mining wastes. VMD is currently hindered by the technology’s need for a consistent heat source to operate effectively. Coupling it with mature industrialized technologies like RO could greatly improve both technical feasibility and process economics.
- Optimize the process design to reduce capital and operating costs and maximize water recovery. In addition, a comprehensive Cost–Benefit analyses comparing ceramic membranes with conventional treatment technologies should be the focus of future study. This entails assessing the long-term operational efficiency, membrane lifespan, and maintenance requirements under real-world mining conditions. Such analyses are essential for supporting informed decision-making and accelerating the industrial-scale adoption of ceramic membranes.
- Conduct systematic comparison of MF/UF/NF/VMD performance using polymeric and ceramic membranes, with respect to contaminant removal, membrane fouling, reversibility of fouling and techno-economic analysis. It is important to not only demonstrate the technical and economic feasibility of ceramic membranes in the treatment of mine-impacted water, but to also show that their performance is competitive, if not superior, to that of conventional polymeric membranes.
- Investigate the environmental impact and end-of-life management of ceramic membranes to better assess their long-term sustainability in mining applications. Studies that lead to information pertaining to the end-of-life management of ceramic membranes, such as recycling or disposal, should be conducted. This would help inform how to minimize the potential negative environmental concerns.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMD | Acid Mine Drainage |
MF | Microfiltration |
UF | Ultrafiltration |
NF | Nanofiltration |
RO | Reverse Osmosis |
VMD | Vacuum Membrane Distillation |
HDS | High-Density Sludge |
MWCO | Molecular Weight Cut-Off |
IEP | Isoelectric Point |
TMP | Transmembrane Pressure |
TSS | Total Suspended Solids |
TOC | Total Organic Carbon |
MD | Membrane Distillation |
LEP | Liquid Entry Pressure |
PTFE | Polytetrafluoroethylene |
PP | Polypropylene |
PVDF | Polyvinylidene Fluoride |
DCMD | Direct Contact Membrane Distillation |
AGMD | Air Gap Membrane Distillation |
SGMD | Sweeping Gas Membrane Distillation |
FAS | Fluoroalkylsilane |
CFA | Coal Fly Ash |
VOCs | Volatile Organic Compounds |
MTBE | Methyl-tert-butyl Ether |
References
- Natural Resources Canada. Comprehensive Energy Use Database. Available online: https://oee.nrcan.gc.ca/corporate/statistics/neud/dpa/menus/trends/comprehensive/trends_agg_ca.cfm (accessed on 21 March 2022).
- Dunne, R. Water Water Everywhere and not a Drop to Drink, nor Do I Know Its Whereabouts. In Water in Mineral Processing, Proceedings of the 1st International Symposium, Englewood, CO, USA, 31 January 2012; SME: West Springfield, MA, USA, 2012; pp. 1–15. [Google Scholar]
- Panayotova, M.; Panayotov, V. Application of membrane processes in mining and mineral processing. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2021. [Google Scholar] [CrossRef]
- Wadekar, S.S.; Vidic, R.D. Comparison of ceramic and polymeric nanofiltration membranes for treatment of abandoned coal mine drainage. Desalination 2018, 440, 135–145. [Google Scholar] [CrossRef]
- Laitinena, N.; Kulovaarab, M.; Lev, E.; Luonsib, A.; Teilleriab, N.; Nystr, M. Ultrafiltration of stone cutting mine wastewater membranes—A case study with ceramic. Desalination 2002, 149, 121–125. [Google Scholar] [CrossRef]
- Asta, M.P.; Ayora, C.; Acero, P.; Cama, J. Field rates for natural attenuation of arsenic in Tinto Santa Rosa acid mine drainage (SW Spain). J. Hazard. Mater. 2010, 177, 1102–1111. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.-S.; Youm, S.-J.; Oh, C.; Cho, Y.-C.; Ahn, J.S. Geochemical and eco-toxicological characteristics of stream water and its sediments affected by acid mine drainage. Catena 2017, 148, 52–59. [Google Scholar] [CrossRef]
- Feasby, G.; Jones, R.K.; Sector Natural Resources Canada, M. Report of Results of a Workshop on Mine Reclamation Workshop Hosted by the IGWG-Industry Task Force on Mine Reclamation Report by, n.d. Available online: https://mend-nedem.org/wp-content/uploads/2013/01/5.8e.pdf (accessed on 31 January 2025).
- Coumans, C. Mining in Canada: The Bigger Picture. 2003. Available online: https://miningwatch.ca/sites/default/files/Brief_for_Philippines.pdf (accessed on 31 January 2025).
- Tolonen, E.-T.; Sarpola, A.; Hu, T.; Rämö, J.; Lassi, U. Acid mine drainage treatment using by-products from quicklime manufacturing as neutralization chemicals. Chemosphere 2014, 117, 419–424. [Google Scholar] [CrossRef]
- Neculita, C.; Zagury, G.J.; Bussière, B. Passive Treatment of Acid Mine Drainage in Bioreactors using Sulfate-Reducing Bacteria. J. Environ. Qual. 2007, 36, 1–16. [Google Scholar] [CrossRef]
- Macías, F.; Caraballo, M.A.; Nieto, J.M. Environmental assessment and management of metal-rich wastes generated in acid mine drainage passive remediation systems. J. Hazard. Mater. 2012, 229–230, 107–114. [Google Scholar] [CrossRef]
- Zinck, J.; Griffith, W. CANMET Mining and Mineral Sciences Laboratories Review of Mine Drainage Treatment and Sludge Management Operations This Work Was Done on Behalf of MEND and Sponsored by the Mining Association of Canada (MAC) and MEND Project: 603054 Report CANMET-MMSL 10-058(CR), n.d. Available online: https://scholars.uky.edu/en/publications/precipitation-of-heavy-metals-with-sodium-sulfide-bench-scale-and (accessed on 31 January 2025).
- Madin, C. Innovative Treatment of Gold Mine Water for Sustainable Benefit-Processes and Case Studies. In World Gold 2007; The Australasian Institute of Mining and Metallurgy: Melbourne, Australia, 2007; pp. 109–116. [Google Scholar]
- Filho, J.A.; Azevedo, A.; Etchepare, R.; Rubio, J. Removal of sulfate ions by dissolved air flotation (DAF) following precipitation and flocculation. Int. J. Miner. Process. 2016, 149, 1–8. [Google Scholar] [CrossRef]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Bhattacharyya, D.; Jumawan, A.B.; Sun, G.; Sund-Hagelberg, C.; Schwitzgebel, K. Precipitation of heavy metals with sodium sulphide: Bench-scale and full-scale experimental results. In Proceedings of the AIChE Symposium Series, Detroit, MI, USA, 16–19 August 1981; pp. 31–38. [Google Scholar]
- Kim, B.M. Treatment of metal containing wastewater with calcium sulfide. In Proceedings of the AIChE Symposium Series, Detroit, MI, USA, 16–19 August 1981; pp. 39–48. [Google Scholar]
- Gaikwad, R.W.; Sapkal, V.S.; Sapkal, R.S. Ion exchange system design for removal of heavy metals from acid mine drainage wastewater. Acta Montan. Slovaca 2010, 15, 298–304. Available online: https://www.oalib.com/research/2272393 (accessed on 31 January 2025).
- Buzzi, D.C.; Viegas, L.S.; Rodrigues, M.A.S.; Bernardes, A.M.; Tenório, J.A.S. Water recovery from acid mine drainage by electrodialysis. Miner. Eng. 2013, 40, 82–89. [Google Scholar] [CrossRef]
- Stránská, E. Relationships between transport and physical–mechanical properties of ion exchange membranes. Desalination Water Treat. 2015, 56, 3220–3227. [Google Scholar] [CrossRef]
- Dry, M.J. The Purification of Polluted Mine Water; Report No. 98/14967/07; The Savmin Water Treatment Company (Pry) Ltd.: Johannesburg, South Africa, 1998. [Google Scholar]
- Gussmann, H.W.; van der Merwe, E.; Rohrs, R.G. The Use of Ion Exchanger for the Removal of Calcium, Sulphate and Metals from Acid Mine Waters and Other Effluents; Escom Conference, Society for Mining, Metallurgy & Exploration: Englewood, CO, USA, 1997; pp. 1–15. Available online: https://www.onemine.org/documents/the-use-of-ion-exchanger-for-the-removal-of-calcium-sulphate-and-metals-from-acid-mine-waters-and-other-effluents- (accessed on 31 January 2025).
- Schoeman, J.; Steyn, A. Investigation into alternative water treatment technologies for the treatment of underground mine water discharged by Grootvlei Proprietary Mines Ltd. into the Blesbokspruit in South Africa. Desalination 2001, 133, 13–30. [Google Scholar] [CrossRef]
- Howard, D.; Grobler, C.; Robinson, R.E.G.; Cole, P.M. Sustainable Purification of Mine Water Using Ion Exchange Technology. In Proceedings of the International Mine Water Conference, Pretoria, South Africa, 19–23 October 2009; pp. 447–453. Available online: http://www.mwen.info/docs/imwa_2009/IMWA2009_Howard.pdf (accessed on 31 January 2025).
- Frantz, T.S.; Silveira, N.; Quadro, M.S.; Andreazza, R.; Barcelos, A.A.; Cadaval, T.R.S.; Pinto, L.A.A. Cu(II) adsorption from copper mine water by chitosan films and the matrix effects. Environ. Sci. Pollut. Res. 2017, 24, 5908–5917. [Google Scholar] [CrossRef]
- Luisa, V.; Maria, F.U.; Nancy, G.; Marittza, F.; Veronica, V.; Ines, A. Development of sorbent materials for removing heavy metals from mining wastewater. Afinidad 2016, 73, 135–139. [Google Scholar]
- Ganiyu, S.O.; van Hullebusch, E.D.; Cretin, M.; Esposito, G.; Oturan, M.A. Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: A critical review. Sep. Purif. Technol. 2015, 156, 891–914. [Google Scholar] [CrossRef]
- Samaei, S.M.; Gato-Trinidad, S.; Altaee, A. The application of pressure-driven ceramic membrane technology for the treatment of industrial wastewaters—A review. Sep. Purif. Technol. 2018, 200, 198–220. [Google Scholar] [CrossRef]
- Fujioka, T.; Nghiem, L.D. Fouling control of a ceramic microfiltration membrane for direct sewer mining by backwashing with ozonated water. Sep. Purif. Technol. 2015, 142, 268–273. [Google Scholar] [CrossRef]
- More, T.T.; Yan, S.; Tyagi, R.D.; Surampalli, R.Y. Applications of Membrane Processes for Concentrated Industrial Wastewater Treatment. In Membrane Technology and Environmental Applications; ASCE Librry: Reston, VA, USA, 2013; Available online: https://ascelibrary.org/doi/10.1061/9780784412275.ch07 (accessed on 31 January 2025).
- Lee, M.; Wu, Z.; Li, K. Advances in ceramic membranes for water treatment. In Advances in Membrane Technologies for Water Treatment: Materials, Processes and Applications; Woodhead Publishing: Cambridge, UK, 2015; pp. 43–82. [Google Scholar] [CrossRef]
- Buekenhoudt, A. Stability of Porous Ceramic Membranes. Membr. Sci. Technol. 2008, 13, 1–31. [Google Scholar] [CrossRef]
- Liang, Z.; Zhang, H.; Li, Y.; Zhang, W.; Zhou, J.; Gu, Q.; Zhong, Z.; Xing, W. A reverse particle grading strategy for design and fabrication of porous SiC ceramic supports with improved strength. J. Adv. Ceram. 2024, 13, 1011–1022. [Google Scholar] [CrossRef]
- Rani, S.L.S.; Kumar, R.V. Insights on applications of low-cost ceramic membranes in wastewater treatment: A mini-review. Case Stud. Chem. Environ. Eng. 2021, 4, 100149. [Google Scholar] [CrossRef]
- Sun, L.; Wang, Z.; Gao, B. Ceramic membranes originated from cost effective and abundant natural minerals and industrial wastes for broad applications—A review. Desalination Water Treat. 2020, 201, 121–138. [Google Scholar] [CrossRef]
- Rakcho, Y.; Naboulsi, A.; Bouzid, T.; Abouliatim, Y.; Benhammou, A.; Abourriche, A.; Alami, J. Treating waste with waste: Treatment of textile wastewater using upcycled food waste as a pore-forming agent in the fabrication of ceramic membranes employing DOE/FFD design. Waste Manag. 2024, 190, 632–643. [Google Scholar] [CrossRef]
- Cai, C.; Sun, W.; He, S.; Zhang, Y.; Wang, X. Ceramic membrane fouling mechanisms and control for water treatment. Front. Environ. Sci. Eng. 2023, 17, 1–15. [Google Scholar] [CrossRef]
- Gitis, V.; Rothenberg, G. The Basics. In Ceramic Membranes: New Opportunities and Practical Applications; Wiley: Hoboken, NJ, USA, 2016; pp. 1–90. [Google Scholar] [CrossRef]
- Hofs, B.; Ogier, J.; Vries, D.; Beerendonk, E.F.; Cornelissen, E.R. Comparison of ceramic and polymeric membrane permeability and fouling using surface water. Sep. Purif. Technol. 2011, 79, 365–374. [Google Scholar] [CrossRef]
- Li, M.; Zhao, Y.; Zhou, S.; Xing, W. Clarification of raw rice wine by ceramic microfiltration membranes and membrane fouling analysis. Desalination 2010, 256, 166–173. [Google Scholar] [CrossRef]
- Stewart, D.R. Water Filtration Innovation to Optimize Recovery and Lower TCO. In Proceedings of the IMWA 2013–Reliable Mine Water Technology, Golden, CO, USA, 6–9 August 2013; pp. 735–740. [Google Scholar]
- Chandler, M.; Zydney, A. Effects of membrane pore geometry on fouling behavior during yeast cell microfiltration. J. Membr. Sci. 2006, 285, 334–342. [Google Scholar] [CrossRef]
- Griffiths, I.; Mitevski, I.; Vujkovac, I.; Illingworth, M.; Stewart, P. The role of tortuosity in filtration efficiency: A general network model for filtration. J. Membr. Sci. 2020, 598, 117664. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Kerker, S.; Schmitz, O.; Schmidt, A.A.; Czermak, P. Evaluation of the fouling potential of ceramic membrane configurations designed for the treatment of oilfield produced water. Sep. Sci. Technol. 2018, 53, 349–363. [Google Scholar] [CrossRef]
- Crittenden, J.C.; Trussell, R.R.; Hand, D.W.; Howe, K.J.; Tchobanoglous, G. MWH’s Water Treatment: Principles and Design, 2nd ed.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Rudolfs, W.; Balmat, J.L. Colloids in Sewage: I. Separation of Sewage Colloids with the Aid of the Electron Microscope. Sew. Ind. Wastes 1952, 24, 247–256. Available online: https://www.jstor.org/stable/25031836 (accessed on 31 January 2025).
- Li, Y.S.; Yan, L.; Xiang, C.B.; Hong, L.J. Treatment of oily wastewater by organic–inorganic composite tubular ultrafiltration (UF) membranes. Desalination 2006, 196, 76–83. [Google Scholar] [CrossRef]
- Xu, P.; Drewes, J.E.; Heil, D. Beneficial use of co-produced water through membrane treatment: Technical-economic assessment. Desalination 2008, 225, 139–155. [Google Scholar] [CrossRef]
- Huang, H.; Schwab, K.; Jacangelo, J.G. Pretreatment for Low Pressure Membranes in Water Treatment: A Review. Environ. Sci. Technol. 2009, 43, 3011–3019. [Google Scholar] [CrossRef]
- Kenari, S.L.D.; Barbeau, B. Understanding ultrafiltration fouling of ceramic and polymeric membranes caused by oxidized iron and manganese in water treatment. J. Membr. Sci. 2016, 516, 1–12. [Google Scholar] [CrossRef]
- Kenari, S.L.D.; Barbeau, B. Integrated pyrolucite fluidized bed-membrane hybrid process for improved iron and manganese control in drinking water. Water Res. 2017, 113, 50–61. [Google Scholar] [CrossRef]
- Kefeni, K.K.; Msagati, T.A.M.; Mamba, B.B. Acid mine drainage: Prevention, treatment options, and resource recovery: A review. J. Clean. Prod. 2017, 151, 475–493. [Google Scholar] [CrossRef]
- Bernat, X.; Pihlajamäki, A.; Fortuny, A.; Bengoa, C.; Stüber, F.; Fabregat, A.; Nyström, M.; Font, J. Non-enhanced ultrafiltration of iron(III) with commercial ceramic membranes. J. Membr. Sci. 2009, 334, 129–137. [Google Scholar] [CrossRef]
- Elzo, D.; Huisman, I.; Middelink, E.; Gekas, V. Charge effects on inorganic membrane performance in a cross-flow microfiltration process. Colloids Surf. A Physicochem. Eng. Asp. 1998, 138, 145–159. [Google Scholar] [CrossRef]
- Faibish, R.S.; Elimelech, M.; Cohen, Y. Effect of Interparticle Electrostatic Double Layer Interactions on Permeate Flux Decline in Crossflow Membrane Filtration of Colloidal Suspensions: An Experimental Investigation. J. Colloid Interface Sci. 1998, 204, 77–86. [Google Scholar] [CrossRef]
- Zhao, Y.; Xing, W.; Xu, N.; Wong, F.-S. Effects of inorganic salt on ceramic membrane microfiltration of titanium dioxide suspension. J. Membr. Sci. 2005, 254, 81–88. [Google Scholar] [CrossRef]
- Zhang, Y.; Fane, A.; Law, A. Critical flux and particle deposition of fractal flocs during crossflow microfiltration. J. Membr. Sci. 2010, 353, 28–35. [Google Scholar] [CrossRef]
- Xu, W.; Gao, B.; Mao, R.; Yue, Q. Influence of floc size and structure on membrane fouling in coagulation–ultrafiltration hybrid process—The role of Al13 species. J. Hazard. Mater. 2011, 193, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Meschke, K.; Herdegen, V.; Aubel, T.; Janneck, E.; Repke, J.-U. Treatment of opencast lignite mining induced acid mine drainage (AMD) using a rotating microfiltration system. J. Environ. Chem. Eng. 2015, 3, 2848–2856. [Google Scholar] [CrossRef]
- Final Remedial Investigation Report Upper Blackfoot Mining Complex Lewis and Clark County, Montana. 2013. Available online: https://deq.mt.gov/files/Land/StateSuperfund/UBMC/pdfs/RIFS/Final%20Report%20with%20Tables%20&%20Figures.pdf (accessed on 31 January 2025).
- Bakalár, T.; Pavolová, H.; Kozáková, Ľ.; Puškárová, P.; Kmecová, M.V. Combined microfiltration and reverse osmosis process for mining water treatment. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2019. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, P.V.A.; Pugazhenthi, G.; Pakshirajan, K. Recovery and purification of copper sulfide nanoparticles from acid mine drainage by biological sulfate reduction and microfiltration using low-cost ceramic membrane. Clean Technol. Environ. Policy 2023, 25, 1309–1322. [Google Scholar] [CrossRef]
- Al-Zoubi, H.; Rieger, A.; Steinberger, P.; Pelz, W.; Haseneder, R.; Härtel, G. Nanofiltration of acid mine drainage. Desalination Water Treat. 2010, 21, 148–161. [Google Scholar] [CrossRef]
- Sierra, C.; Saiz, J.R.Á.; Gallego, J.L.R. Nanofiltration of acid mine drainage in an abandoned mercury mining area. Water, Air, Soil Pollut. 2013, 224, 1734. [Google Scholar] [CrossRef]
- Sheoran, A.; Sheoran, V. Heavy metal removal mechanism of acid mine drainage in wetlands: A critical review. Miner. Eng. 2006, 19, 105–116. [Google Scholar] [CrossRef]
- Bertrand, S.; Lemaître, I.; Wittmann, E. Performance of a nanofiltration plant on hard and highly sulphated water during two years of operation. Desalination 1997, 113, 277–281. [Google Scholar] [CrossRef]
- Aguiar, A.; Andrade, L.; Grossi, L.; Pires, W.; Amaral, M. Acid mine drainage treatment by nanofiltration: A study of membrane fouling, chemical cleaning, and membrane ageing. Sep. Purif. Technol. 2018, 192, 185–195. [Google Scholar] [CrossRef]
- Juholin, P.; Kääriäinen, M.-L.; Riihimäki, M.; Sliz, R.; Aguirre, J.L.; Pirilä, M.; Fabritius, T.; Cameron, D.; Keiski, R.L. Comparison of ALD coated nanofiltration membranes to unmodified commercial membranes in mine wastewater treatment. Sep. Purif. Technol. 2018, 192, 69–77. [Google Scholar] [CrossRef]
- Cabrera, S.M.; Winnubst, L.; Richter, H.; Voigt, I.; Nijmeijer, A. Industrial application of ceramic nanofiltration membranes for water treatment in oil sands mines. Sep. Purif. Technol. 2021, 256, 117821. [Google Scholar] [CrossRef]
- López, J.; Reig, M.; Vecino, X.; Gibert, O.; Cortina, J. Comparison of acid-resistant ceramic and polymeric nanofiltration membranes for acid mine waters treatment. Chem. Eng. J. 2020, 382, 122786. [Google Scholar] [CrossRef]
- Van Gestel, T.; Vandecasteele, C.; Buekenhoudt, A.; Dotremont, C.; Luyten, J.; Leysen, R.; Van der Bruggen, B.; Maes, G. Salt retention in nanofiltration with multilayer ceramic TiO2 membranes. J. Membr. Sci. 2002, 209, 379–389. [Google Scholar] [CrossRef]
- Weber, R.; Chmiel, H.; Mavrov, V. Characteristics and application of new ceramic nanofiltration membranes. Desalination 2003, 157, 113–125. [Google Scholar] [CrossRef]
- Parks, G.A.; De Bruyn, P.L. The Zero Point of Charge of Oxides. Phys. Chem. 1962, 66, 967–973. Available online: https://pubs.acs.org/sharingguidelines (accessed on 31 January 2025). [CrossRef]
- Wang, Z.; Wei, Y.-M.; Xu, Z.-L.; Cao, Y.; Dong, Z.-Q.; Shi, X.-L. Preparation, characterization and solvent resistance of γ-Al2O3/α-Al2O3 inorganic hollow fiber nanofiltration membrane. J. Membr. Sci. 2016, 503, 69–80. [Google Scholar] [CrossRef]
- Tansel, B.; Sager, J.; Rector, T.; Garland, J.; Strayer, R.F.; Levine, L.; Roberts, M.; Hummerick, M.; Bauer, J. Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes. Sep. Purif. Technol. 2006, 51, 40–47. [Google Scholar] [CrossRef]
- Urase, T.; Oh, J.-I.; Yamamoto, K. Effect of pH on rejection of different species of arsenic by nanofiltration. Desalination 1998, 117, 11–18. [Google Scholar] [CrossRef]
- Seidel, A.; Waypa, J.J.; Elimelech, M. Role of Charge (Donnan) Exclusion in Removal of Arsenic from Water by a Negatively Charged Porous Nanofiltration Membrane; Mary Ann Liebert, Inc.: Larchmont, NY, USA, 2001; Available online: www.liebertpub.com (accessed on 31 January 2025).
- Sen, M.; Manna, A.; Pal, P. Removal of arsenic from contaminated groundwater by membrane-integrated hybrid treatment system. J. Membr. Sci. 2010, 354, 108–113. [Google Scholar] [CrossRef]
- Roy, S.; Majumdar, S.; Sahoo, G.C.; Bhowmick, S.; Kundu, A.K.; Mondal, P. Removal of As(V), Cr(VI) and Cu(II) using novel amine functionalized composite nanofiltration membranes fabricated on ceramic tubular substrate. J. Hazard. Mater. 2020, 399, 122841. [Google Scholar] [CrossRef]
- Roy, S.; Bhowmick, K.; Singh, P.; Bhowmick, S.; Mukherjee, M.; Majumdar, S.; Sahoo, G.C.; Mondal, P. Removal of heavy metals by surface tailored copper ion enhanced ceramic-supported-polymeric composite nanofiltration membrane. J. Environ. Chem. Eng. 2021, 9, 106368. [Google Scholar] [CrossRef]
- Le, N.L.; Nunes, S.P. Materials and membrane technologies for water and energy sustainability. Sustain. Mater. Technol. 2016, 7, 1–28. [Google Scholar] [CrossRef]
- Wen, X.; Li, F.; Zhao, X. Removal of nuclides and boron from highly saline radioactive wastewater by direct contact membrane distillation. Desalination 2016, 394, 101–107. [Google Scholar] [CrossRef]
- Zhang, H.; Xian, H. Review of Hybrid Membrane Distillation Systems. Membranes 2024, 14, 25. [Google Scholar] [CrossRef]
- Khayet, M. Membranes and theoretical modeling of membrane distillation: A review. Adv. Colloid Interface Sci. 2011, 164, 56–88. [Google Scholar] [CrossRef] [PubMed]
- Alkhudhiri, A.; Darwish, N.; Hilal, N. Membrane distillation: A comprehensive review. Desalination 2012, 287, 2–18. [Google Scholar] [CrossRef]
- Pramanik, B.K.; Thangavadivel, K.; Shu, L.; Jegatheesan, V. A critical review of membrane crystallization for the purification of water and recovery of minerals. Rev. Environ. Sci. Bio/Technol. 2016, 15, 411–439. [Google Scholar] [CrossRef]
- Wang, P.; Chung, T.S. Recent advances in membrane distillation processes: Membrane development, configuration design and application exploring. J. Membr. Sci. 2015, 474, 39–56. [Google Scholar] [CrossRef]
- Hendren, Z.D. Novel Ceramic Membranes for Membrane Distillation: Surface Modification, Performance Comparison with PTFE Membranes, and Treatment of Municipal Wastewater. Ph.D. Thesis, Duke University, Durham, NC, USA, 2011. [Google Scholar]
- Larbot, A.; Gazagnes, L.; Krajewski, S.; Bukowska, M.; Kujawski, W. Water desalination using ceramic membrane distillation. Desalination 2004, 168, 367–372. [Google Scholar] [CrossRef]
- Tadanaga, K.; Katata, N.; Minami, T. Formation process of super-water-repellent Al2O3 coating films with high transparency by the sol–gel method. J. Am. Ceram. Soc. 1997, 80, 3213–3216. [Google Scholar] [CrossRef]
- Wu, B.Y.; Sugimura, H.; Inoue, Y.; Takai, O.; Sugimura, H.; Inoue, Y.; Takai, O. Thin Films with Nano-textures for Transparent and Ultra Water-Repellent Coatings Produced from Trimethylmethoxysilane by Microwave Plasma CVD. Chem. Vap. Depos. 2002, 8, 47–52. [Google Scholar] [CrossRef]
- Kujawski, W.; Kujawa, J.; Wierzbowska, E.; Cerneaux, S.; Bryjak, M.; Kujawski, J. Influence of hydrophobization conditions and ceramic membranes pore size on their properties in vacuum membrane distillation of water–organic solvent mixtures. J. Membr. Sci. 2016, 499, 442–451. [Google Scholar] [CrossRef]
- Kujawa, J.; Cerneaux, S.; Kujawski, W.; Bryjak, M.; Kujawski, J. How To Functionalize Ceramics by Perfluoroalkylsilanes for Membrane Separation Process? Properties and Application of Hydrophobized Ceramic Membranes. ACS Appl. Mater. Interfaces 2016, 8, 7564–7577. [Google Scholar] [CrossRef] [PubMed]
- Hendren, Z.; Brant, J.; Wiesner, M. Surface modification of nanostructured ceramic membranes for direct contact membrane distillation. J. Membr. Sci. 2008, 331, 1–10. [Google Scholar] [CrossRef]
- Hubadillah, S.K.; Othman, M.H.D.; Matsuura, T.; Rahman, M.A.; Jaafar, J.; Ismail, A.; Amin, S.Z.M. Green silica-based ceramic hollow fiber membrane for seawater desalination via direct contact membrane distillation. Sep. Purif. Technol. 2018, 205, 22–31. [Google Scholar] [CrossRef]
- Kujawa, J.; Cerneaux, S.; Kujawski, W.; Knozowska, K. Hydrophobic ceramic membranes for water desalination. Appl. Sci. 2017, 7, 402. [Google Scholar] [CrossRef]
- Gu, J.; Ren, C.; Zong, X.; Chen, C.; Winnubst, L. Preparation of alumina membranes comprising a thin separation layer and a support with straight open pores for water desalination. Ceram. Int. 2016, 42, 12427–12434. [Google Scholar] [CrossRef]
- Wang, J.; Li, L.; Gu, J.; Yang, M.; Xu, X.; Chen, C.; Wang, H.; Agathopoulos, S. Highly stable hydrophobic SiNCO nanoparticle-modified silicon nitride membrane for zero-discharge water desalination. AIChE J. 2016, 63, 1272–1277. [Google Scholar] [CrossRef]
- Cerneaux, S.; Strużyńska, I.; Kujawski, W.M.; Persin, M.; Larbot, A. Comparison of various membrane distillation methods for desalination using hydrophobic ceramic membranes. J. Membr. Sci. 2009, 337, 55–60. [Google Scholar] [CrossRef]
- Rivier, C.; García-Payo, M.; Marison, I.; Von Stockar, U. Separation of binary mixtures by thermostatic sweeping gas membrane distillation II. Experimental results with aqueous formic acid solutions. J. Membr. Sci. 2002, 198, 197–210. [Google Scholar] [CrossRef]
- Gryta, M.; Karakulski, K.; Morawski, A.W. Purification of oily wastewater by hybrid UF/MD. Water Res. 2001, 35, 3665–3669. [Google Scholar]
- Drioll, E.; Criscuoli, A.; Curcioa, E. Integrated membrane operations for seawater desalination. Desalination 2002, 147, 77–81. [Google Scholar] [CrossRef]
- Mericq, J.-P.; Laborie, S.; Cabassud, C. Vacuum membrane distillation of seawater reverse osmosis brines. Water Res. 2010, 44, 5260–5273. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Gao, J.; Wang, H.; Chen, C. Hydrophobic porous alumina hollow fiber for water desalination via membrane distillation process. J. Membr. Sci. 2012, 403–404, 41–46. [Google Scholar] [CrossRef]
- Ko, C.-C.; Chen, C.-H.; Chen, Y.-R.; Wu, Y.-H.; Lu, S.-C.; Hu, F.-C.; Li, C.-L.; Tung, K.-L. Increasing the performance of vacuum membrane distillation using micro-structured hydrophobic aluminum hollow fiber membranes. Appl. Sci. 2017, 7, 357. [Google Scholar] [CrossRef]
- Ko, C.-C.; Ali, A.; Drioli, E.; Tung, K.-L.; Chen, C.-H.; Chen, Y.-R.; Macedonio, F. Performance of ceramic membrane in vacuum membrane distillation and in vacuum membrane crystallization. Desalination 2018, 440, 48–58. [Google Scholar] [CrossRef]
- Zhang, J.-W.; Fang, H.; Hao, L.-Y.; Xu, X.; Chen, C.-S. Preparation of silicon nitride hollow fibre membrane for desalination. Mater. Lett. 2012, 68, 457–459. [Google Scholar] [CrossRef]
- Wang, J.-W.; Li, L.; Zhang, J.-W.; Xu, X.; Chen, C.-S. β-Sialon ceramic hollow fiber membranes with high strength and low thermal conductivity for membrane distillation. J. Eur. Ceram. Soc. 2016, 36, 59–65. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Ko, C.-C.; Chen, L.-H.; Huang, C.-T.; Tung, K.-L.; Liao, Y.-C. A simple coating method to prepare superhydrophobic layers on ceramic alumina for vacuum membrane distillation. Sep. Purif. Technol. 2018, 198, 79–86. [Google Scholar] [CrossRef]
- Chen, X.; Gao, X.; Fu, K.; Qiu, M.; Xiong, F.; Ding, D.; Cui, Z.; Wang, Z.; Fan, Y.; Drioli, E. Tubular hydrophobic ceramic membrane with asymmetric structure for water desalination via vacuum membrane distillation process. Desalination 2018, 443, 212–220. [Google Scholar] [CrossRef]
- Pagliero, M.; Bottino, A.; Comite, A.; Costa, C. Silanization of tubular ceramic membranes for application in membrane distillation. J. Membr. Sci. 2020, 601, 117911. [Google Scholar] [CrossRef]
- Schnittger, J.; McCutcheon, J.; Hoyer, T.; Weyd, M.; Fischer, G.; Puhlfürß, P.; Halisch, M.; Voigt, I.; Lerch, A. Hydrophobic ceramic membranes in MD processes–Impact of material selection and layer characteristics. J. Membr. Sci. 2021, 618, 118678. [Google Scholar] [CrossRef]
- Schnittger, J.; McCutcheon, J.R.; Hoyer, T.; Weyd, M.; Voigt, I.; Lerch, A. Modified ceramic membranes for the treatment of highly saline mixtures utilized in vacuum membrane distillation. Desalination 2023, 567, 116943. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, J.; Qi, R.; Huang, J.; Chen, H.; Zhang, H. Development of Hydrophobic Coal-Fly-Ash-Based Ceramic Membrane for Vacuum Membrane Distillation. Materials 2023, 16, 3153. [Google Scholar] [CrossRef]
- Chen, X.; Chen, T.; Li, J.; Qiu, M.; Fu, K.; Cui, Z.; Fan, Y.; Drioli, E. Ceramic nanofiltration and membrane distillation hybrid membrane processes for the purification and recycling of boric acid from simulative radioactive waste water. J. Membr. Sci. 2019, 579, 294–301. [Google Scholar] [CrossRef]
- Kujawa, J.; Al-Gharabli, S.; Kujawski, W.; Knozowska, K. Molecular Grafting of Fluorinated and Nonfluorinated Alkylsiloxanes on Various Ceramic Membrane Surfaces for the Removal of Volatile Organic Compounds Applying Vacuum Membrane Distillation. ACS Appl. Mater. Interfaces 2017, 9, 6571–6590. [Google Scholar] [CrossRef]
- Zhang, J.-W.; Fang, H.; Wang, J.-W.; Hao, L.-Y.; Xu, X.; Chen, C.-S. Preparation and characterization of silicon nitride hollow fiber membranes for seawater desalination. J. Membr. Sci. 2013, 450, 197–206. [Google Scholar] [CrossRef]
- DiGuiseppi, W.H.; Newell, C.J.; Carey, G.; Kulkarni, P.R.; Xia, Z.; Stults, J.; Maher, T.L.; Houtz, E.F.; Mora, R.; Wice, R.; et al. Available and emerging liquid treatment technologies for PFASs. Remediat. J. 2024, 34, e21782. [Google Scholar] [CrossRef]
- Kujawa, J.; Kujawski, W.; Cyganiuk, A.; Dumée, L.F.; Al-Gharabli, S. Upgrading of zirconia membrane performance in removal of hazardous VOCs from water by surface functionalization. Chem. Eng. J. 2019, 374, 155–169. [Google Scholar] [CrossRef]
- Chiam, C.-K.; Sarbatly, R. Vacuum membrane distillation processes for aqueous solution treatment—A review. Chem. Eng. Process. Process Intensif. 2013, 74, 27–54. [Google Scholar] [CrossRef]
- Tijing, L.D.; Woo, Y.C.; Choi, J.-S.; Lee, S.; Kim, S.-H.; Shon, H.K. Fouling and its control in membrane distillation—A review. J. Membr. Sci. 2015, 475, 215–244. [Google Scholar] [CrossRef]
- Gryta, M. Fouling in direct contact membrane distillation process. J. Membr. Sci. 2008, 325, 383–394. [Google Scholar] [CrossRef]
- Gryta, M. Alkaline scaling in the membrane distillation process. Desalination 2008, 228, 128–134. [Google Scholar] [CrossRef]
- Mohammadi, T.; Bakhteyari, O. Concentration of l-lysine monohydrochloride (l-lysine–HCl) syrup using vacuum membrane distillation. Desalination 2006, 200, 591–594. [Google Scholar] [CrossRef]
- He, F.; Sirkar, K.K.; Gilron, J. Effects of antiscalants to mitigate membrane scaling by direct contact membrane distillation. J. Membr. Sci. 2009, 345, 53–58. [Google Scholar] [CrossRef]
Feed Source and Characteristics | ΔT (°C) | Membrane Material | MWCO/Pore Aize | Vacuum Pressure (Bar) | Grafted Chemical | Feed Velocity | Permeate Flux (at Steady State) | Rejection Efficiency | Ref. |
---|---|---|---|---|---|---|---|---|---|
NaCl solution: 0.5 M (29.2 g/L) | 40-ambient | Tubular zirconia Length: 15 cm ID: 7 mm OD: 10 mm | 50 nm | 0.003 | Perfluoro-alkylsilane | 210 L/h | Consistent decrease from 12.1 to 7.5 LMH | 99–96% | [100] |
NaCl solution: 0.5 M (29.2 g/L) | Tubular titania Length: 15 cm ID: 7 mm OD: 10 mm | 5 nm | 6.1 LMH | >99% | |||||
NaCl solution: 1 M (58.4 g/L) | 4.2 LMH | ||||||||
NaCl solution: 0.68 M (40 g/L) | 80-ambient | Hollow fiber alumina Length: 10 cm | 700 nm | 0.04 | FAS | N/A | 42.9 LMH | >99.5% | [105] |
NaCl solution: 0.60 M (35 g/L) | 70-ambient | Hollow fiber alumina Length: 9 cm | 220 nm | 0.03 | FAS | 60 L/h | 60 LMH | >99.9% | [106] |
165 nm | 30 LMH | ||||||||
NaCl solution: 1 M (58.4 g/L) | 50-ambient | Hollow fiber alumina Length: 25 cm | 220 nm | 0.03 | FAS | 8.4 L/h | 20 LMH | >99.9% | [107] |
NaCl solution: 0.34 M (20 g/L) | 70-ambient | Hollow fiber silicon nitride Length: not given | 740 nm | 0.02 | FAS | N/A | 25 LMH | >99% | [108] |
NaCl solution: 0.68 M (40 g/L) | 22.3 LMH | ||||||||
NaCl solution: 0.34 M (20 g/L) | 50-ambient | Hollow fiberβ-Sialon (ɑ-Si3N4 + Al2O3) Length: 8 cm | 800 nm | 0.02 | FAS | 100 L/h | 4.0 LMH | >99% | [109] |
80-ambient | 12.2 LMH | ||||||||
NaCl solution: 0.68 M (40 g/L) | 50-ambient | 3.7 LMH | |||||||
80-ambient | 10.7 LMH | ||||||||
NaCl solution: 0.60 M (35 g/L) | 70-ambient | Alumina disk Length: n.a. | 2.4 um (400 nm after modification) | 0.03 | Silica/alumina nanoparticle + FAS/ethanol | 60 L/h | 29.3 LMH | 99.9% | [110] |
30 L/h | 18 LMH | ||||||||
NaCl solution: 0.51 M (30 g/L) | 70-ambient | Tubular asymmetric alumina Length: 11 cm | Active layer: 150 nm Support layer: 3.2 um | 0.05 | Hexadecyltrimethoxysilane | 160 L/h | 30 LMH | 99.9% | [111] |
NaCl solution (90 g/L) | 70-ambient | Tubular alumina Length: 9.2–11.9 cm | 70 nm | 0.02 | Methyltrichlorosilane (MTS) | 1.4 m/s | 21.5–23.1 LMH | 99.9% | [112] |
200 nm | 29.1–31.2 LMH | ||||||||
NaCl solution (30 g/L) | 60-ambient | Tubular alumina | 100 nm | 0.1 | FAS | 0.7 m/s | 16 LMH | 99.9% | [113] |
400 nm | 13 LMH | ||||||||
Tubular titania | 100 nm | 17 LMH | |||||||
400 nm | 25 LMH | ||||||||
Tubular zirconia Length: 25 cm | 110 nm | 6 LMH | |||||||
NaCl solution (350 g/L) | 55 to 75-ambient | Tubular alumina | 100, 200 and 400 nm | 0.075 to 0.125 | FAS and n-Octyltriethoxysilane | 0.14 to 1.08 m/s | 17.5 LMH | >99.9% | [114] |
Tubular zirconia Length: 25 cm | 35 LMH | ||||||||
NaCl solution 10,000 ppm (~10 g/L) | 55 to 70-ambient | Tubular coal fly ash (CFA) Length: 50 cm | 0.15 and 0.18 µm | N/A | FAS | 40 to 80 L/h | 5–20 LMH | 98–99.9% | [115] |
Simulated radioactive wastewater (0–40 g/L boric acid, 0–200 ppm Co+ and Ag+) | 60 to 80-ambient | Tubular alumina Length: 11 cm | 200 nm | 0.85 to 0.95 | Hexadecyltrimethoxysilane | 40 to 160 L/h | 15–35 LMH | 99.9% (boric acid rejection) | [116] |
Water-organic solvent mixture 0–20 wt% EtOH 0–4 wt% EtAc 0–4 wt% BuOH | 35-ambient | Tubular titania, zirconia and alumina Length: 15 cm | 5 kDa | 0.04 | FAS | N/A | N/A | EtAc separation factor 1.3–30 | [93] |
300 kDa | EtAc separation factor 32–60 | ||||||||
Water-organic solvent mixture 0–3 wt% BuOH, EtAc and MTBE | 25 to 65-ambient | Tubular titania Length: 15 cm | 5 kDa | 0.001 | FAS and n-Octyltriethoxysilane | 17 L/min | N/A | Separation factor: 5–56 (MTBE 1–30 (EtAc) 1–7 (BuOH) | [117] |
300 kDa | Separation factor: 62–109 (MTBE) 35–48 (EtAc) 9–12 (BuOH) | ||||||||
300 kDa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dashtban Kenari, S.L.; Mortazavi, S.; Mosadeghsedghi, S.; Atallah, C.; Volchek, K. Advancing Ceramic Membrane Technology for Sustainable Treatment of Mining Discharge: Challenges and Future Directions. Membranes 2025, 15, 112. https://doi.org/10.3390/membranes15040112
Dashtban Kenari SL, Mortazavi S, Mosadeghsedghi S, Atallah C, Volchek K. Advancing Ceramic Membrane Technology for Sustainable Treatment of Mining Discharge: Challenges and Future Directions. Membranes. 2025; 15(4):112. https://doi.org/10.3390/membranes15040112
Chicago/Turabian StyleDashtban Kenari, Seyedeh Laleh, Saviz Mortazavi, Sanaz Mosadeghsedghi, Charbel Atallah, and Konstantin Volchek. 2025. "Advancing Ceramic Membrane Technology for Sustainable Treatment of Mining Discharge: Challenges and Future Directions" Membranes 15, no. 4: 112. https://doi.org/10.3390/membranes15040112
APA StyleDashtban Kenari, S. L., Mortazavi, S., Mosadeghsedghi, S., Atallah, C., & Volchek, K. (2025). Advancing Ceramic Membrane Technology for Sustainable Treatment of Mining Discharge: Challenges and Future Directions. Membranes, 15(4), 112. https://doi.org/10.3390/membranes15040112