Virtual Body Ownership Illusions for Mental Health: A Narrative Review
Abstract
:1. Introduction
1.1. Alterations in Body Representation in Pathological Conditions
1.2. The Concept of “Body Matrix”
1.3. Body Illusions to Manipulate the Body Matrix/Body Representation
1.4. VR to Induce BOIs in Clinical Populations
2. Search Strategy
Eligibility Criteria
3. Virtual Body Ownership Illusions for Mental Health
3.1. Virtual BOIs to Modulate Pain Responses
3.2. Virtual BOIs to Modulate Motor Responses
3.3. Virtual BOIs to Modulate Psychological Responses
4. Discussion and Future Directions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Riva, G.; Wiederhold, B.K.; Mantovani, F. Neuroscience of Virtual Reality: From Virtual Exposure to Embodied Medicine. Cyberpsychol. Behav. Soc. Netw. 2019, 22, 82–96. [Google Scholar] [CrossRef]
- Slater, M.; Sanchez-Vives, M.V. Enhancing our lives with immersive virtual reality. Front. Robot. AI 2016, 3, 74. [Google Scholar] [CrossRef] [Green Version]
- Conn, C.; Lanier, J.; Fisher, S.; Druin, A. Virtual environments and interactivity: Windows to the future. In ACM SIGGRAPH 89 Panel Proceedings, SIGGRAPH 1989; Association for Computing Machinery: New York, NY, USA, 1989; pp. 7–18. [Google Scholar] [CrossRef]
- Conn, C.; Lanier, J.; Minsky, M.; Fisher, S.; Druin, A. Virtual Environments and Interactivity: Windows to the Future. 1989. Available online: https://dl.acm.org/citation.cfm?id=77278 (accessed on 18 February 2019).
- Botella, C.; Quero, S.; Baños, R.M.; Perpiña, C.; Palacios, A.G.; Riva, G. Virtual reality and psychotherapy. Stud. Health Technol. Inf. 2004, 99, 37–54. [Google Scholar] [CrossRef]
- Riva, G.; Serino, S.; Di Lernia, D.; Pavone, E.F.; Dakanalis, A. Embodied medicine: Mens sana in corpore virtuale sano. Front. Hum. Neurosci. 2017, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matamala-Gomez, M.; de Icco, R.; Avenali, M.; Balsamo, F. Multisensory integration techniques in neurorehabilitation: The use of virtual reality as a rehabilitation tool. Confin. Cephalalgica 2018, 28, 81–85. [Google Scholar]
- Riva, G. The key to unlocking the virtual body: Virtual reality in the treatment of obesity and eating disorders. J. Diabetes Sci. Technol. 2011, 5, 283–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riva, G.; Mantovani, F. From the body to the tools and back: A general framework for presence in mediated interactions. Interact. Comput. 2012, 24, 203–210. [Google Scholar] [CrossRef]
- Slater, M. Immersion and the illusion of presence in virtual reality. Br. J. Psychol. 2018, 109, 431–433. [Google Scholar] [CrossRef]
- Slater, M.; Pérez Marcos, D.; Ehrsson, H.; Sanchez-Vives, M.V. Towards a digital body: The virtual arm illusion. Front. Hum. Neurosci. 2008, 2, 6. [Google Scholar] [CrossRef] [Green Version]
- Slater, M.; Spanlang, B.; Sanchez-Vives, M.V.; Blanke, O. First person experience of body transfer in virtual reality. PLoS ONE 2010, 5, e10564. [Google Scholar] [CrossRef] [Green Version]
- Bohil, C.J.; Alicea, B.; Biocca, F.A. Virtual reality in neuroscience research and therapy. Nat. Rev. Neurosci. 2011, 12, 752. [Google Scholar] [CrossRef] [PubMed]
- Tarr, M.J.; Warren, W.H. Virtual reality in behavioral neuroscience and beyond. Nat. Neurosci. 2002, 5, 1089–1092. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.E.; Brown, J.D. Illusion and Well-Being: A Social Psychological Perspective on Mental Health. Psychol. Bull. 1988, 103, 193–210. [Google Scholar] [CrossRef]
- Tsay, A.; Allen, T.J.; Proske, U.; Giummarra, M.J. Sensing the body in chronic pain: A review of psychophysical studies implicating altered body representation. Neurosci. Biobehav. Rev. 2015, 52, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Thakkar, K.N.; Nichols, H.S.; McIntosh, L.G.; Park, S. Disturbances in body ownership in schizophrenia: Evidence from the rubber hand illusion and case study of a spontaneous out-of-body experience. PLoS ONE 2011, 6, e27089. [Google Scholar] [CrossRef] [PubMed]
- Riva, G. The neuroscience of body memory: From the self through the space to the others. Cortex 2018, 104, 241–260. [Google Scholar] [CrossRef]
- Dakanalis, A.; Clerici, M.; Bartoli, F.; Caslini, M.; Crocamo, C.; Riva, G.; Carrà, G. Risk and maintenance factors for young women’s DSM-5 eating disorders. Arch. Womens Ment. Health 2017, 20, 721–731. [Google Scholar] [CrossRef]
- Lewis, J.S.; Kersten, P.; McCabe, C.S.; McPherson, K.M.; Blake, D.R. Body perception disturbance: A contribution to pain in complex regional pain syndrome (CRPS). Pain 2007, 133, 111–119. [Google Scholar] [CrossRef]
- Themelis, K.; Newport, R. An investigation of contextual factors in the application of multisensory illusions for analgesia in hand osteoarthritis. Rheumatol. Adv. Pract. 2018, 2, rky019. [Google Scholar] [CrossRef] [Green Version]
- Giummarra, M.J.; Gibson, S.J.; Georgiou-Karistianis, N.; Bradshaw, J.L. Central mechanisms in phantom limb perception: The past, present and future. Brain Res. Rev. 2007, 54, 219–232. [Google Scholar] [CrossRef]
- Berlucchi, G.; Aglioti, S. The body in the brain: Neural bases of corporeal awareness. Trends Neurosci. 1997. Available online: http://www.sciencedirect.com/science/article/pii/S0166223697011363 (accessed on 10 April 2017).
- Vallar, G.; Ronchi, R. Somatoparaphrenia: A body delusion. A review of the neuropsychological literature. Exp. Brain Res. 2009, 192, 533–551. [Google Scholar] [CrossRef] [PubMed]
- Moseley, G.L.; Olthof, N.; Venema, A.; Don, S.; Wijers, M.; Gallace, A.; Spence, C. Psychologically induced cooling of a specific body part caused by the illusory ownership of an artificial counterpart. Proc. Natl. Acad. Sci. USA 2008, 105, 13169–13173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tieri, G.; Gioia, A.; Scandola, M.; Pavone, E.F.; Aglioti, S.M. Visual appearance of a virtual upper limb modulates the temperature of the real hand: A thermal imaging study in Immersive Virtual Reality. Eur. J. Neurosci. 2017, 45, 1141–1151. [Google Scholar] [CrossRef] [PubMed]
- Folegatti, A.; de Vignemont, F.; Pavani, F.; Rossetti, Y.; Farnè, A. Losing one’s hand: Visual-proprioceptive conflict affects touch perception. PLoS ONE 2009, 4, e6920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llobera, J.; Slater, M. The relationship between virtual body ownership and temperature sensitivity. J. R. Soc. Interface 2013, 10, 20130300. [Google Scholar] [CrossRef] [Green Version]
- Barnsley, N.; McAuley, J.H.; Mohan, R.; Dey, A.; Thomas, P.; Moseley, G.L. The rubber hand illusion increases histamine reactivity in the real arm. Curr. Biol. 2011, 21, R945–R946. [Google Scholar] [CrossRef] [Green Version]
- Maselli, A.; Kilteni, K.; López-Moliner, J.; Slater, M. The sense of body ownership relaxes temporal constraints for multisensory integration. Sci. Rep. 2016, 6, 30628. [Google Scholar] [CrossRef]
- Moseley, G.L.; Gallace, A.; Spence, C. Bodily illusions in health and disease: Physiological and clinical perspectives and the concept of a cortical ‘body matrix’. Neurosci. Biobehav. Rev. 2012, 36, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J.; Daunizeau, J.; Kilner, J.; Kiebel, S.J. Action and behavior: A free-energy formulation. Biol. Cybern. 2010, 102, 227–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bremner, A.J.; Holmes, N.P.; Spence, C. Infants lost in (peripersonal) space? Trends Cogn. Sci. 2008, 12, 298–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallagher, S. How the Body Shapes the Mind. 2005. Available online: https://philpapers.org/rec/GALHTB-4 (accessed on 12 July 2019).
- Kilteni, K.; Maselli, A.; Kording, K.P.; Slater, M. Over my fake body: Body ownership illusions for studying the multisensory basis of own-body perception. Front. Hum. Neurosci. 2015, 9, 141. [Google Scholar] [CrossRef] [PubMed]
- Hohwy, J.; Paton, B. Explaining away the body: Experiences of supernaturally caused touch and touch on non-hand objects within the rubber hand illusion. PLoS ONE 2010, 5, e9416. [Google Scholar] [CrossRef]
- Lackner, J.R. Some proprioceptive influences on the perceptual representation of body shape and orientation. Brain 1988, 111, 281–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arzy, S.; Overney, L.S.; Landis, T.; Blanke, O. Neural mechanisms of embodiment: Asomatognosia due to premotor cortex damage. Arch. Neurol. 2006, 63, 1022–1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longo, M.R.; Schüür, F.; Kammers, M.P.M.; Tsakiris, M.; Haggard, P. What is embodiment? A psychometric approach. Cognition 2008, 107, 978–998. [Google Scholar] [CrossRef] [Green Version]
- Goodwin, G.M.; Mccloskey, D.I.; Matthews, P.B.C. Proprioceptive illusions induced by muscle vibration: Contribution by muscle spindles to perception? Science 1972, 175, 1382–1384. [Google Scholar] [CrossRef]
- Lenggenhager, B.; Tadi, T.; Metzinger, T.; Blanke, O. SOM: Video ergo sum: Manipulating bodily self-consciousness. Science 2007, 317, 1096–1099. [Google Scholar] [CrossRef] [Green Version]
- Ehrsson, H.H. The experimental induction of out-of-body experiences. Science 2007, 317, 1048. [Google Scholar] [CrossRef] [Green Version]
- Tastevin, J. En partant de l’experience d’Aristotle [Starting from Aristotle’s experience]. L’Encephale 1937, 1, 140–158. Available online: https://scholar.google.it/scholar?hl=en&as_sdt=0%2C5&q=En+partant+de+l%27experience+d%27Aristotle+&btnG= (accessed on 18 December 2020).
- Botvinick, M.; Cohen, J. Rubber hands ‘feel’ touch that eyes see. Nature 1998, 391, 756. [Google Scholar] [CrossRef]
- Normand, J.M.; Giannopoulos, E.; Spanlang, B.; Slater, M. Multisensory stimulation can induce an illusion of larger belly size in immersive virtual reality. PLoS ONE 2011, 6, e16128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serino, S.; Scarpina, F.; Dakanalis, A.; Keizer, A.; Pedroli, E.; Castelnuovo, G.; Chirico, A.; Catallo, V.; Di Lernia, D.; Riva, G. The Role of Age on Multisensory Bodily Experience: An Experimental Study with a Virtual Reality Full-Body Illusion. Cyberpsychol. Behav. Soc. Netw. 2018, 21, 304–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petkova, V.; Ehrsson, H. If I Were You: Perceptual Illusion of Body Swapping. PLoS ONE. 2008. Available online: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0003832 (accessed on 8 April 2017).
- Serino, S.; Polli, N.; Riva, G. From avatars to body swapping: The use of virtual reality for assessing and treating body-size distortion in individuals with anorexia. J. Clin. Psychol. 2019, 75, 313–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seinfeld, S.; Arroyo-Palacios, J.; Iruretagoyena, G.; Hortensius, R.; Zapata, L.E.; Borland, D.; de Gelder, B.; Slater, M.; Sanchez-Vives, M.V. Offenders become the victim in virtual reality: Impact of changing perspective in domestic violence. Sci. Rep. 2018, 8, 2692. [Google Scholar] [CrossRef] [PubMed]
- Maselli, A.; Slater, M. The building blocks of the full body ownership illusion. Front. Hum. Neurosci. 2013, 7, 83. [Google Scholar] [CrossRef] [Green Version]
- Samad, M.; Chung, A.J.; Shams, L. Perception of Body Ownership Is Driven by Bayesian Sensory Inference. PLoS ONE 2015, 10, e0117178. [Google Scholar] [CrossRef]
- Bolognini, N.; Russo, C.; Vallar, G. Crossmodal illusions in neurorehabilitation. Front. Behav. Neurosci. 2015, 9, 212. [Google Scholar] [CrossRef]
- Sanchez-Vives, M.V.; Spanlang, B.; Frisoli, A.; Bergamasco, M.; Slater, M. Virtual hand illusion induced by visuomotor correlations. PLoS ONE 2010, 5, e10381. [Google Scholar] [CrossRef] [Green Version]
- Banakou, D.; Groten, R.; Slater, M. Illusory ownership of a virtual child body causes overestimation of object sizes and implicit attitude changes. Proc. Natl. Acad. Sci. USA 2013, 110, 12846–12851. [Google Scholar] [CrossRef] [Green Version]
- Reinhard, R.; Shah, K.G.; Faust-Christmann, C.A.; Lachmann, T. Acting your avatar’s age: Effects of virtual reality avatar embodiment on real life walking speed. Media Psychol. 2020, 23, 293–315. [Google Scholar] [CrossRef] [Green Version]
- Matamala-Gomez, M.; Nierula, B.; Donegan, T.; Slater, M.; Sanchez-Vives, M.V. Manipulating the Perceived Shape and Color of a Virtual Limb Can Modulate Pain Responses. J. Clin. Med. 2020, 9, 291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martini, M.; Perez-Marcos, D.; Sanchez-Vives, M.V. What Color is My Arm? Changes in Skin Color of an Embodied Virtual Arm Modulates Pain Threshold. Front. Hum. Neurosci. 2013, 7, 438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergström, I.; Kilteni, K.; Slater, M. First-Person Perspective Virtual Body Posture Influences Stress: A Virtual Reality Body Ownership Study. PLoS ONE 2016, 11, e0148060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matamala-Gomez, M.; Malighetti, C.; Cipresso, P.; Pedroli, E.; Realdon, O.; Mantovani, F.; Riva, G. Changing Body Representation Through Full Body Ownership Illusions Might Foster Motor Rehabilitation Outcome in Patients With Stroke. Front. Psychol. 2020, 11, 1962. [Google Scholar] [CrossRef] [PubMed]
- Kilteni, K.; Normand, J.M.; Sanchez-Vives, M.V.; Slater, M. Extending body space in immersive virtual reality: A very long arm illusion. PLoS ONE 2012, 7, e40867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serino, S.; Scarpina, F.; Keizer, A.; Pedroli, E.; Dakanalis, A.; Castelnuovo, G.; Chirico, A.; Novelli, M.; Gaudio, S.; Riva, G. A novel technique for improving bodily experience in a non-operable super-super obesity case. Front. Psychol. 2016, 7, 837. [Google Scholar] [CrossRef] [Green Version]
- Martini, M.; Kilteni, K.; Maselli, A.; Sanchez-Vives, M.V. The body fades away: Investigating the effects of transparency of an embodied virtual body on pain threshold and body ownership. Sci. Rep. 2015, 5, 13948. [Google Scholar] [CrossRef] [Green Version]
- Martini, M.; Perez-Marcos, D.; Sanchez-Vives, M.V. Modulation of pain threshold by virtual body ownership. Eur. J. Pain 2014, 18, 1040–1048. [Google Scholar] [CrossRef] [Green Version]
- Donati, A.R.; Shokur, S.; Morya, E.; Campos, D.S.; Moioli, R.C.; Gitti, C.M.; Augusto, P.B.; Tripodi, S.; Pires, C.G.; Pereira, G.A.; et al. Long-Term Training with a Brain-Machine Interface-Based Gait Protocol Induces Partial Neurological Recovery in Paraplegic Patients. Sci. Rep. 2016, 6, 30383. [Google Scholar] [CrossRef] [Green Version]
- Osimo, S.A.; Pizarro, R.; Spanlang, B.; Slater, M. Conversations between self and self as Sigmund Freud—A virtual body ownership paradigm for self counselling. Sci. Rep. 2015, 5, 13899. [Google Scholar] [CrossRef]
- Slater, M.; Pertaub, D.P.; Barker, C.; Clark, D.M. An experimental study on fear of public speaking using a virtual environment. Cyberpsychol. Behav. 2006, 9, 627–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elmagarmid, A.; Fedorowicz, Z.; Hammady, H.; Ilyas, I.; Khabsa, M.; Ouzzani, M. Rayyan: A systematic reviews web app for exploring and filtering searches for eligible studies for Cochrane Reviews. In Evidence-Informed Public Health: Opportunities and Challenges. Abstracts of the 22nd Cochrane Colloquium; John Wiley & Sons: Hyderabad, India, 2014; pp. 21–26. [Google Scholar]
- Longo, M.R.; Betti, V.; Aglioti, S.M.; Haggard, P. Visually induced analgesia: Seeing the body reduces pain. J. Neurosci. 2009, 29, 12125–12130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matamala-Gomez, M.; Donegan, T.; Bottiroli, S.; Sandrini, G.; Sanchez-Vives, M.V.; Tassorelli, C. Immersive Virtual Reality and Virtual Embodiment for Pain Relief. Front. Hum. Neurosci. 2019, 13, 279. [Google Scholar] [CrossRef]
- Matamala-Gomez, M.; Gonzalez, A.M.D.; Slater, M.; Sanchez-Vives, M.V. Decreasing Pain Ratings in Chronic Arm Pain Through Changing a Virtual Body: Different Strategies for Different Pain Types. J. Pain 2019, 20, 685–697. [Google Scholar] [CrossRef] [PubMed]
- Mancini, F.; Longo, M.R.; Kammers, M.P.M.; Haggard, P. Visual distortion of body size modulates pain perception. Psychol. Sci. 2011, 22, 325–330. [Google Scholar] [CrossRef] [Green Version]
- Romano, D.; Maravita, A. The visual size of one’s own hand modulates pain anticipation and perception. Neuropsychologia 2014, 57, 93–100. [Google Scholar] [CrossRef]
- Solcà, M.; Ronchi, R.; Bello-Ruiz, J.; Schmidlin, T.; Herbelin, B.; Luthi, F.; Konzelmann, M.; Beaulieu, J.Y.; Delaquaize, F.; Schnider, A.; et al. Heartbeat-enhanced immersive virtual reality to treat complex regional pain syndrome. Neurology 2018, 91, e1–e11. [Google Scholar] [CrossRef]
- Pozeg, P.; Palluel, E.; Ronchi, R.; Solcà, M.; Al-Khodairy, A.W.; Jordan, X.; Kassouha, A.; Blanke, O. Virtual reality improves embodiment and neuropathic pain caused by spinal cord injury. Neurology 2017, 89, 1894–1903. [Google Scholar] [CrossRef] [Green Version]
- Pamment, J.; Aspell, J.E. Putting pain out of mind with an ‘out of body’ illusion. Eur. J. Pain 2017, 21, 334–342. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, V.S.; Altschuler, E.L. The use of visual feedback, in particular mirror visual feedback, in restoring brain function. Brain 2009, 132, 1693–1710. [Google Scholar] [CrossRef] [Green Version]
- Osumi, M.; Inomata, K.; Inoue, Y.; Otake, Y.; Morioka, S.; Sumitani, M. Characteristics of phantom limb pain alleviated with virtual reality rehabilitation. Pain Med. 2019, 20, 1038–1046. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Catalan, M.; Guðmundsdóttir, R.A.; Kristoffersen, M.B.; Zepeda-Echavarria, A.; Caine-Winterberger, K.; Kulbacka-Ortiz, K.; Widehammar, C.; Eriksson, K.; Stockselius, A.; Ragnö, C.; et al. Phantom motor execution facilitated by machine learning and augmented reality as treatment for phantom limb pain: A single group, clinical trial in patients with chronic intractable phantom limb pain. Lancet 2016, 388, 2885–2894. [Google Scholar] [CrossRef]
- Alphonso, A.L.; Monson, B.T.; Zeher, M.J.; Armiger, R.S.; Weeks, S.R.; Burck, J.M.; Moran, C.; Davoodie, R.; Loeb, G.E.; Pasquina, P.F.; et al. Use of a virtual integrated environment in prosthetic limb development and phantom limb pain. Annu. Rev. CyberTherapy Telemed. 2012, 10, 305–309. Available online: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L616399708 (accessed on 27 November 2020).
- Hwang, H.; Cho, S.; Lee, J.H. The effect of virtual body swapping with mental rehearsal on pain intensity and body perception disturbance in complex regional pain syndrome. Int. J. Rehabil. Res. 2014, 37, 167–172. [Google Scholar] [CrossRef]
- Grunt, S.; Newman, C.J.; Saxer, S.; Steinlin, M.; Weisstanner, C.; Kaelin-Lang, A. The Mirror Illusion Increases Motor Cortex Excitability in Children with and Without Hemiparesis. Neurorehabil. Neural Repair 2017, 31, 280–289. [Google Scholar] [CrossRef]
- Kumar, V.; Arya, K.; Pandian, S.; Sethi, T.; Samal, S. Mirror therapy in management of somatosensory impairment among post stroke hemiparesis. Int. J. Stroke 2016, 11, 133. [Google Scholar] [CrossRef] [Green Version]
- Thieme, H.; Bayn, M.; Wurg, M.; Zange, C.; Pohl, M.; Behrens, J. Mirror therapy for patients with severe arm paresis after stroke—A randomized controlled trial. Clin. Rehabil. 2013, 27, 314–324. [Google Scholar] [CrossRef]
- Michielsen, M.E.; Selles, R.W.; van der Geest, J.N.; Eckhardt, M.; Yavuzer, G.; Stam, H.J.; Smits, M.; Ribbers, G.M.; Bussmann, J.B. Motor Recovery and Cortical Reorganization After Mirror Therapy in Chronic Stroke Patients. Neurorehabil. Neural Repair 2011, 25, 223–233. [Google Scholar] [CrossRef]
- Rothgangel, A.; Bekrater-Bodmann, R. Mirror therapy versus augmented/virtual reality applications: Towards a tailored mechanism-based treatment for phantom limb pain. Pain Manag. 2019, 9, 151–159. [Google Scholar] [CrossRef]
- Weber, L.M.; Nilsen, D.M.; Gillen, G.; Yoon, J.; Stein, J. Immersive Virtual Reality Mirror Therapy for Upper Limb Recovery after Stroke: A Pilot Study. Am. J. Phys. Med. Rehabil. 2019, 98, 783–788. [Google Scholar] [CrossRef]
- Ossmy, O.; Mansano, L.; Frenkel-Toledo, S.; Kagan, E.; Koren, S.; Gilron, R.; Reznik, D.; Soroker, N.; Mukamel, R. Motor learning in hemi-Parkinson using VR-manipulated sensory feedback. Disabil. Rehabil. Assist. Technol. 2020, 1–13. [Google Scholar] [CrossRef] [PubMed]
- In, T.; Lee, K.; Song, C. Virtual reality reflection therapy improves balance and gait in patients with chronic stroke: Randomized controlled trials. Med. Sci. Monit. 2016, 22, 4046–4053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Franco, M.; Cohn, B.; Ofek, E.; Burin, D.; Maselli, A. The Self-Avatar Follower Effect in Virtual Reality. In Proceedings of the 2020 IEEE Conference on Virtual Reality and 3D User Interfaces, VR 2020, Atlanta, GA, USA, 22–26 March 2020; pp. 18–25. [Google Scholar] [CrossRef]
- Burin, D.; Kilteni, K.; Rabuffetti, M.; Slater, M.; Pia, L. Body ownership increases the interference between observed and executed movements. PLoS ONE 2019, 14, e0209899. [Google Scholar] [CrossRef] [Green Version]
- Riva, G.; Baños, R.M.; Botella, C.; Mantovani, F.; Gaggioli, A. Transforming experience: The potential of augmented reality and virtual reality for enhancing personal and clinical change. Front. Psychiatry 2016, 7, 164. [Google Scholar] [CrossRef] [PubMed]
- Tagini, S.; Scarpina, F.; Bruni, F.; Scacchi, M.; Mauro, A.; Zampini, M. The virtual hand illusion in obesity: Dissociation between multisensory interactions supporting illusory experience and self-location recalibration. Multisens. Res. 2020, 33, 337–361. [Google Scholar] [CrossRef] [PubMed]
- Scarpina, F.; Serino, S.; Keizer, A.; Chirico, A.; Scacchi, M.; Castelnuovo, G.; Mauro, A.; Riva, G. The Effect of a Virtual-Reality Full-Body Illusion on Body Representation in Obesity. J. Clin. Med. 2019, 8, 1330. [Google Scholar] [CrossRef] [Green Version]
- Keizer, A.; van Elburg, A.; Helms, R.; Dijkerman, H.C. A virtual reality full body illusion improves body image disturbance in anorexia nervosa. PLoS ONE 2016, 11, e0163921. [Google Scholar] [CrossRef]
- Provenzano, L.; Porciello, G.; Ciccarone, S.; Lenggenhager, B.; Tieri, G.; Marucci, M.; Dazzi, F.; Loriedo, C.; Bufalari, I. Characterizing Body Image Distortion and Bodily Self-Plasticity in Anorexia Nervosa via Visuo-Tactile Stimulation in Virtual Reality. J. Clin. Med. 2019, 9, 98. [Google Scholar] [CrossRef] [Green Version]
- Falconer, C.J.; Rovira, A.; King, J.A.; Gilbert, P.; Antley, A.; Fearon, P.; Ralph, N.; Slater, M.; Brewin, C.R. Embodying self-compassion within virtual reality and its effects on patients with depression. BJPsych Open 2016, 2, 74–80. [Google Scholar] [CrossRef] [Green Version]
- Barra, J.; Giroux, M.; Metral, M.; Cian, C.; Luyat, M.; Kavounoudias, A.; Guerraz, M. Functional properties of extended body representations in the context of kinesthesia. Neurophysiol. Clin. 2020, 50, 455–465. [Google Scholar] [CrossRef]
- Winter, D.; Malighetti, C.; Cipolletta, S.; Ahmed, S.; Benson, B.; Röhricht, F. Construing and body dissatisfaction in chronic depression: A study of body psychotherapy. Psychiatry Res. 2018, 270, 845–851. [Google Scholar] [CrossRef] [PubMed]
- Peck, T.C.; Seinfeld, S.; Aglioti, S.M.; Slater, M. Putting yourself in the skin of a black avatar reduces implicit racial bias. Conscious. Cogn. 2013, 22, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Slater, M.; Pertaub, D.P.; Steed, A. Public Speaking in Virtual Reality: Facing an Audience of Avatars. IEEE Comput. Graph. Appl. 1999, 19, 6–9. [Google Scholar] [CrossRef] [Green Version]
- Slater, M.; Antley, A.; Davison, A.; Swapp, D.; Guger, C.; Barker, C.; Pistrang, N.; Sanchez-Vives, M.V. A virtual reprise of the Stanley Milgram obedience experiments. PLoS ONE 2006, 1, e39. [Google Scholar] [CrossRef] [PubMed]
- Maister, L.; Slater, M.; Sanchez-Vives, M.V.; Tsakiris, M. Changing bodies changes minds: Owning another body affects social cognition. Trends Cogn. Sci. 2015, 19, 6–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavani, F.; Zampini, M. The role of hand size in the fake-hand illusion paradigm. Perception 2007, 36, 1547–1554. [Google Scholar] [CrossRef] [PubMed]
- Gheorghiu, V.A.; Huebner, M. Die Sensorische Suggestibilitätsskala (SSK) als Erhebungsverfahren für Täuschbarkeit. The scale of sensory suggestibility as assessment of deception. Exp. Klin. Hypnose 1992, 8, 117–129. [Google Scholar]
- Sierra, M.; Berrios, G.E. The Cambridge Depersonalization Scale: A new instrument for the measurement of depersonalization. Psychiatry Res. 2000, 93, 153–164. [Google Scholar] [CrossRef]
- Lewis, J.; McCabe, C. Body perception disturbance (BPD) in CRPS. Pract. Pain Manag. 2010, 60–66. [Google Scholar]
- Spanlang, B.; Normand, J.M.; Borland, D.; Kilteni, K.; Giannopoulos, E.; Pomés, A.; González-Franco, M.; Perez-Marcos, D.; Arroyo-Palacios, J.; Muncunill, X.N.; et al. How to Build an Embodiment Lab: Achieving Body Representation Illusions in Virtual Reality. Front. Robot. AI 2014, 1. [Google Scholar] [CrossRef] [Green Version]
- Serino, S.; Baglio, F.; Rossetto, F.; Realdon, O.; Cipresso, P.; Parsons, T.D.; Cappellini, G.; Mantovani, F.; De Leo, G.; Nemni, R.; et al. Picture Interpretation Test (PIT) 360°: An Innovative Measure of Executive Functions. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef]
- Malighetti, C.; Serino, S.; Riva, G.; Cipolletta, S. Inside and outside the self. Virtual reality and repertory grids in the spatial analysis of anorexic patients’ meanings. Annu. Rev. CyberTherapy Telemed. 2016, 14, 78–83. [Google Scholar]
- Chirico, A.; Malighetti, C.; Serino, S.; Cipresso, P.; Pedroli, E.; Tuena, C.; Riva, G. Towards an advancement of multisensory integration deficits in anorexia nervosa: Exploring temporal discrimination processing of visuo-auditory stimuli. Annu. Rev. CyberTherapy Telemed. 2019, 17, 53–58. [Google Scholar]
- Cipolletta, S.; Malighetti, C.; Serino, S.; Riva, G.; Winter, D. Intrapersonal, interpersonal, and physical space in anorexia nervosa: A virtual reality and repertory grid investigation. Psychiatry Res. 2017, 252, 87–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett, L.F. The theory of constructed emotion: An active inference account of interoception and categorization. Soc. Cogn. Affect. Neurosci. 2017, 12, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Apps, M.A.J.; Tsakiris, M. The free-energy self: A predictive coding account of self-recognition. Neurosci. Biobehav. Rev. 2014, 41, 85–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holmes, N.P.; Spence, C. The body schema and multisensory representation(s) of peripersonal space. Cogn. Process. 2004, 5, 94–105. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, E.C.; Bertrand, P.; Lesur, M.E.; Palomo, P.; Demarzo, M.; Cebolla, A.; Baños, R.; Tori, R. Virtual Body Swap: A New Feasible Tool to Be Explored in Health and Education. In Proceedings of the 18th Symposium on Virtual and Augmented Reality, SVR 2016, Gramado, Brazil, 21–24 June 2016; pp. 81–89. [Google Scholar] [CrossRef]
- Moseley, G.L. I can’t find it! Distorted body image and tactile dysfunction in patients with chronic back pain. Pain 2008, 140, 239–243. [Google Scholar] [CrossRef]
- Rothgangel, A.S.; Braun, S.M.; Beurskens, A.J.; Seitz, R.J.; Wade, D.T. The clinical aspects of mirror therapy in rehabilitation: A systematic review of the literature. Int. J. Rehabil. Res. 2011, 34, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Nissler, C.; Nowak, M.; Connan, M.; Büttner, S.; Vogel, J.; Kossyk, I.; Márton, Z.C.; Castellini, C. VITA—An everyday virtual reality setup for prosthetics and upper-limb rehabilitation. J. Neural Eng. 2019, 16, 026039. [Google Scholar] [CrossRef] [Green Version]
- Kiryu, T.; So, R.H.Y. Sensation of presence and cybersickness in applications of virtual reality for advanced rehabilitation. J. Neuroeng. Rehabil. 2007, 4, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Lernia, D.; Serino, S.; Pezzulo, G.; Pedroli, E.; Cipresso, P.; Riva, G. Feel the time. Time perception as a function of interoceptive processing. Front. Hum. Neurosci. 2018, 12, 74. [Google Scholar] [CrossRef] [PubMed]
- Di Lernia, D.; Cipresso, P.; Pedroli, E.; Riva, G. Toward an embodied medicine: A portable device with programmable interoceptive stimulation for heart rate variability enhancement. Sensors 2018, 18, 2469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iodice, P.; Porciello, G.; Bufalari, I.; Barca, L.; Pezzulo, G. An interoceptive illusion of effort induced by false heart-rate feedback. Proc. Natl. Acad. Sci. USA 2019, 116, 13897–13902. [Google Scholar] [CrossRef] [Green Version]
Author/Date | Clinical Condition | Sample Size | Study Design | Virtual BOI (Type) | Control Condition | Multisensory Correlations (Type) | Training Period | BI and Clinical Assessment | Main Outcomes | MH Related Responses |
---|---|---|---|---|---|---|---|---|---|---|
Tagini et al., 2020 [92] | Psychiatric disorders | N = 21 patients with obesity N = 20 healthy subjects | Between-groups study | Virtual hand illusion | Async. VTS Healthy control group | Two sessions of 3 min of sync. VTS | N/A | Illusion questionnaire from (2007) [103]. Proprioceptive drift. Sensory Susceptibility Scale [104] | Findings demonstrate that individuals affected by obesity had a typical subjective experience of the illusion, while the objective effect of the illusion on self-location was reduced. | Psychological responses |
Provenzano et al., 2020 [95] | Psychiatric disorders | N = 20 patients with AN N = 20 healthy controls | Between-groups study | Full virtual body illusion | 3 min of async. VTS | 3 min of sync. VTS and different virtual body sizes | The experiment consisted of two sessions: a pre-experimental and an experimental session with about one week break in between, in which the individualized avatars were created. | Embodiment Questionnaire VAS emotional embodiment scale VAS Similarity and Attractiveness Ratings of the Avatars | Embodiment was stronger after sync VTS in both groups, but did not reduce BID in participants with AN. The cognitive-emotional, more than the perceptual component of BID, is severely altered in AN and perspective (1PP vs. 3PP) from which a body is evaluated may play a crucial role. | Psychological responses |
Scarpina et al., 2019 [93] | Psychiatric disorders | N = 15 patients with obesity N = 15 healthy subjects | Mix-model subject-design (within conditions and between groups) | Full virtual body illusion | 90 s of abdomen async. VTS | 90 s of abdomen sync. VTS | N/A | Embodiment Questionnaire. Body Part Size Estimation Task. | Virtual-fullBOI was efficiently induced in individuals with obesity to the same extent as in the healthy-weight individuals. Both healthy-weight individuals and individuals affected by obesity showed a reduction of the error after the synchronous, but not the asynchronous condition, with respect to the baseline. | Psychological responses |
Matamala-Gomez et al., 2019 [70] | Pain disorders | CRPS (n=9) and PNI (n=10) patients were immersed in VR and the virtual arm was shown at 4 transparency levels (transparency test) and 3 sizes (size test). | Mix-model design: between-groups, one factor (groups), within-subjects (1 × 3 and 1 × 4). | Full virtual body illusion | Different virtual arm conditions: Transparency and size. | 45 s of sync. VTS per condition. | N/A | Embodiment questionnaire after each virtual reality test. Pain Numeric Intensity Scale (0 = no pain to 10 = worst pain). | All 7 conditions globally decreased pain ratings by half. Increasing transparency decreased pain in CRPS but did the opposite in PNI, whereas increasing size slightly increased pain ratings only in CRPS. Embodiment in VR can decrease pain ratings of chronic arm pain, although the type of pain determines which strategy to decrease pain is most useful. | Pain responses |
Osumi et al., 2019 [77] | Amputation | N= 13 patients with phantom limb and N = 6 patients with brachial plexus avulsion injury (BPA), all experiencing phantom limb pain. | Between subjects design | Virtual arm illusion MVF. | N/A | 20 min of sync. VMC. | N/A | Embodiment questionnaire Bimanual circle-line coordination task (BCT). Short-Form McGill Pain Questionnaire (SF-MPQ) (0 = no pain to 3 = severe pain). | The VR-MVF rehabilitation demonstrated significant phantom limb pain alleviation, and this had a significant relationship with the restoration of phantom limb movement. VR-MVF rehabilitation led to greater alleviation of phantom limb pain among patients with brachial plexus avulsion injury compared with amputee patients. | Pain responses |
Weber et al., 2019 [86] | Neurological disorders | N = 10 outpatients with chronic stroke | Pre-post within-subjects study | Virtual arm illusion. | N/A | 5 min of sync. VMC per session. | 12 sessions | No embodiment assessment. Fugl-Meyer Upper Extremity Scores. | There was a small improvement in mean upper limb motor recovery that did not achieve statistical significance from baseline to post-test. | Motor responses |
Solcà et al. 2018 [73] | Pain disorders | N = 24 patients with CRPS N = 24 healthy controls | Crossover double-blind study | Rubber hand illusion Virtual hand illusion | Async. VTS or heartbeat-enhanced virtual reality stimulation. Healthy controls. | 90 s of sync. VTS or sync. Heartbeat-enhanced virtual reality stimulation per condition. | N/A | Proprioceptive drift Ownership Illusion questionnaire Pain visual analogue scale | The primary outcome measures for pain reduction were subjective pain ratings, force strength, and heart rate variability (HRV). Heartbeat-enhanced virtual reality reduced pain ratings, improved motor limb function, and modulated a physiologic pain marker (HRV). | Pain responses |
Seinfeld et al., 2018 [49] | Psychological disorders | Experimental group: N = 20 intimate partner violence offenders Control group: N = 19 healthy controls | Between-groups (one factor) | Full virtual body illusion | Control group | 2 min of sync. VMC. | N/A | Embodiment questionnaire Face-Body Compound emotion recognition test | Being embodied in a female victim who suffers verbal abuse and intimidation by a male character using VR resulted in an improvement of the ability of Offenders to recognize fear in female faces, and reduced their response bias towards wrongly attributing happy emotional states to fearful facial expressions, independently of gender. | Psychological responses |
Themelis and Newport, 2018 [21] | Others | N = 28 patients with painful HOA | Two-period randomized crossover design | Stretched virtual arm illusion | Real hand condition Virtual arm illusion without being stretched. | Visuo-tactile and proprioceptive manipulation. Unspecified time. | N/A | 7-point Likert scale questionnaire on six statements relating to the emotional experience, perceived hand size, susceptibility, ownership, agency over the virtual arm illusion. | Stretching the hand both inside and outside of the virtual environment led to a reduction in subjective pain ratings. Virtual stretching led to changes in body perception with no changes in pressure pain threshold. | Pain responses |
Pozeg et al., 2017 [74] | Neurological disorders | N = 20 patients with paraplegia (SCI); N = 20 healthy controls | 2 factorial, randomized, repeated-measures design. | Virtual leg illusion | Async. VTS. | 60 s of async. VTS | N/A | 9-item questionnaire adapted from body illusion studies, with items referring to the experienced ownership of the virtual legs, illusory touch, and referred touch. Pain-visual analogue scale (0 = no pain/100 = worst pain). Cambridge Depersonalization Scale (CDS) [105]. | Patients with SCI are less sensitive to multisensory stimulations inducing illusory leg ownership (as compared to HC) and leg ownership decreased with time since SCI. In contrast, no differences between groups in global body ownership as tested with the FBI were found. VLI and FBI were both associated with mild analgesia that was only during the VLI specific for synchronous visuo-tactile stimulation and the lower back position. | Pain and embodiment responses |
Pamment et al., 2017 [75] | Pain disorders | N = 18 chronic pain patients. | 1 × 3 within-subjects study | Full virtual body illusion | Async. VTS. | 2 min of sync. VTS. | N/A | 7-point Likert scale embodiment questionnaire Gill Pain Questionnaire | Pain intensity in chronic pain patients was reduced by 37% by ‘out of body’ illusions. | Pain responses |
Falconer et al., 2016 [96] | Psychiatric disorders | N = 15 depressive patients | 1 × 2 within-subjects study | Full child virtual body illusion. Full adult virtual body illusion. | No control group/conditions | 2 min of sync. VMC. | N/A | Ownership questionnaire. Patient Health Question-naire-9 (PHQ-9). Zung Self-Rating Depression Scale (SDS). Self-Compassion and Self-Criticism Scale (SCCS). | Significant reductions in depression severity and self-criticism, as well as a significant increase in self-compassion were found, from baseline to 4-week follow-up. | Psychological responses |
Keizer et al., 2016 [94] | Psychiatric disorders | N = 30 AN patient | 1 × 2 Mix-model design. Factor: Congruency | Full virtual body illusion | Healthy controls and async. VTS | 90 s of sync. VTS per condition | N/A | Embodiment questionnaire Body Attitude Test (BAT) Eating Disorder Inventory-II (EDI-II) | It is possible to decrease AN patients’ overestimation of body size in an experimental FBI setting, with effects remaining at least up to ~2 h and 45 min after the illusion is induced. | Psychological responses |
Ortiz-Catalan et al., 2016 [78] | Amputation | N = 14 amputee patients with phantom limb pain | A Single Group Clinical Trial study | Virtual arm illusion | N/A | 15 min of sync. VMC. | N/A | No embodiment assessment. Numeric rating scale (0 = no pain to 10 = worst pain). Short-form McGill Pain Questionnaire. | Phantom limb pain decreased from pre-treatment to the last treatment session by 47% for weighted pain distribution, 32% for the numeric rating scale, and 51% for the pain rating index. The numeric rating scale score for intrusion of phantom limb pain in activities of daily living and sleep was reduced by 43% and 61%, respectively. | Pain responses |
In et al., 2016 [88] | Neurological disorders | Experimental group (VRRT): N = 13 patients with chronic stroke Control group: N = 12 patients with chronic stroke | Between-groups study | VRRT virtual reality reflection therapy | No VRRT control group | 30 min of sync VMC | 4 weeks. | No embodiment assessment. Berg Balance Scale (BBS). Functional Reaching Test (FRT). Timed Up and Go (TUG). | In the change of BBS scores, both the VRRT and the control group displayed significant improvements after the intervention, and the improvement was significantly better in the VRRT group than in the control group. FRT, TUG, and 10 m Walk Test improved more in the VRRT group than in the control group. | Motor responses |
Hwang et al., 2014 [80] | Pain disorders | Experimental group (Virtual Body Swapping with mental rehearsal) N = 13 CRPS patients. Control group1 (Mental rehearsal): N = 13 CRPS patients. Control group2 (Watching movement): N = 13 CRPS patients. | Within-subjects study | Body swapping | Control groups 1 and 2 | Experimental group: 1PP Motor imagery VMC + virtual arm VMC Control group 1: 1PP Motor imagery VMC. Control group 2: Real arm VMC. Unspecified time. | N/A | Illusion strength questionnaire. Body distortion questionnaire [106]. Pain Intensity questionnaire. | Pain intensity did not decrease significantly after treatment in any of the groups. Body Perception Disturbance improved significantly after treatment in the VBS group, but not in the other groups. | Pain responses |
Alphonso et al. 2012 [79] | Amputation | N = 18 patients with trans-radial/trans-humeral amputation | Within-subjects study | Virtual arm illusion | No control condition | Two 10 min of sync. VMC, with a break of 5 min. | 20 days. | No embodiment assessment. 100 mm- visual analogue scale (0 = no pain to 100 = worst pain). | Data from the visual analogue scale showed a decrease in phantom limb pain as the virtual integrated environment sessions increased. | Pain responses |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matamala-Gomez, M.; Maselli, A.; Malighetti, C.; Realdon, O.; Mantovani, F.; Riva, G. Virtual Body Ownership Illusions for Mental Health: A Narrative Review. J. Clin. Med. 2021, 10, 139. https://doi.org/10.3390/jcm10010139
Matamala-Gomez M, Maselli A, Malighetti C, Realdon O, Mantovani F, Riva G. Virtual Body Ownership Illusions for Mental Health: A Narrative Review. Journal of Clinical Medicine. 2021; 10(1):139. https://doi.org/10.3390/jcm10010139
Chicago/Turabian StyleMatamala-Gomez, Marta, Antonella Maselli, Clelia Malighetti, Olivia Realdon, Fabrizia Mantovani, and Giuseppe Riva. 2021. "Virtual Body Ownership Illusions for Mental Health: A Narrative Review" Journal of Clinical Medicine 10, no. 1: 139. https://doi.org/10.3390/jcm10010139
APA StyleMatamala-Gomez, M., Maselli, A., Malighetti, C., Realdon, O., Mantovani, F., & Riva, G. (2021). Virtual Body Ownership Illusions for Mental Health: A Narrative Review. Journal of Clinical Medicine, 10(1), 139. https://doi.org/10.3390/jcm10010139