Alteration within the Hippocampal Volume in Patients with LHON Disease—7 Tesla MRI Study
Abstract
:1. Introduction
2. Methods
2.1. Subjects
2.2. MRI Acquisition
2.3. Image Analysis
2.4. Statistical Analysis
3. Results
3.1. Participants
3.2. Hippocampus Volumetric Differences between Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Carelli, V. Leber’s hereditary optic neuropathy. In Mitochondrial Disorders in Neurology: Blue Books of Practical Neurology, 2nd ed.; Schapira, A.H.V., DiMauro, S., Eds.; Butterworth-Heinemann: Boston, MA, USA, 2002; Volume 26. [Google Scholar]
- Fantini, M.; Asanad, S.; Karanjia, R.; Sadun, A. Hormone replacement therapy in Leber’s hereditary optic neuropathy: Accelerated visual recovery in vivo. J. Curr. Ophthalmol. 2019, 31, 102–105. [Google Scholar] [CrossRef]
- Hudson, G.; Carelli, V.; Horvath, R.; Zeviani, M.; Smeets, H.J.; Chinnery, P.F. X-Inactivation patterns in females harboring mtDNA mutations that cause Leber hereditary optic neuropathy. Mol. Vis. 2007, 13, 18199976. [Google Scholar]
- Summerfield, J.J.; Lepsien, J.; Gitelman, D.R.; Mesulam, M.M.; Nobre, A.C. Orienting Attention Based on Long-Term Memory Experience. Neuron 2006, 49, 905–916. [Google Scholar] [CrossRef] [Green Version]
- Rolls, E.T.; Xiang, J.Z. Spatial view cells in the primate hippocampus andmemory recall. Rev. Neurosci. 2006, 17, 175–200. [Google Scholar]
- Arleo, A.; Gerstner, W. Spatial cognition and neuro-mimetic navigation: A model of hippocampal place cell activity. Biol. Cybern. 2000, 83, 287–299. [Google Scholar] [CrossRef]
- Ekstrom, A.D.; Kahana, M.J.; Caplan, J.B.; Fields, T.A.; Isham, E.A.; Newman, E.L.; Fried, I. Cellular networks underlying human spatial navigation. Nature 2003, 425, 184–188. [Google Scholar]
- Poucet, B.; Lenck-Santini, P.P.; Paz-Villagran, V.; Save, E. Place cells, neocortexand spatial navigation: A short review. J. Physiol. Paris 2003, 97, 537–546. [Google Scholar]
- Maguire, E.A.; Frackowiak, R.S.J.; Frith, C.D. Recalling Routes around London: Activation of the Right Hippocampus in Taxi Drivers. J. Neurosci. 1997, 17, 7103–7110. [Google Scholar] [CrossRef] [Green Version]
- Crane, J.; Milner, B. What went where? Impaired object-location learning inpatients with right hippocampal lesions. Hippocampus 2005, 15, 216–231. [Google Scholar]
- Feigenbaum, J.D.; Morris, R.G. Allocentric versus egocentric spatial memoryafter unilateral temporal lobectomy in humans. Neuropsychology 2004, 18, 462–472. [Google Scholar]
- Ashburner, J.; Friston, K.J. Why Voxel-Based Morphometry Should Be Used. NeuroImage 2001, 14, 1238–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaretskaya, N.; Fischl, B.; Reuter, M.; Renvall, V.; Polimeni, J.R. Advantages of cortical surface reconstruction using submillimeter 7 T MEMPRAGE. NeuroImage 2018, 165, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Bilkey, D.K. Space and context in the temporal cortex. Hippocampus 2007, 17, 813–825. [Google Scholar] [CrossRef] [PubMed]
- Gagnon, L.; Schneider, F.C.; Siebner, H.R.; Paulson, O.B.; Kupers, R.; Ptito, M. Activation of the hippocampal complex during tactile maze solving in congenitally blind subjects. Neuropsychol. 2012, 50, 1663–1671. [Google Scholar] [CrossRef]
- Lepore, N.; Shi, Y.; Lepore, F.; Fortin, M.; Voss, P.; Chou, Y.-Y.; Lord, C.; Lassonde, M.; Dinov, I.; Toga, A.W.; et al. Pattern of hippocampal shape and volume differences in blind subjects. NeuroImage 2009, 46, 949–957. [Google Scholar] [CrossRef] [Green Version]
- Boutet, C.; Chupin, M.; Lehéricy, S.; Marrakchi-Kacem, L.; Epelbaum, S.; Poupon, C.; Wiggins, C.; Vignaud, A.; Hasboun, D.; Defontaines, B.; et al. Detection of volume loss in hippocampal layers in Alzheimer’s disease using 7 T MRI: A feasibility study. NeuroImage Clin. 2014, 5, 341–348. [Google Scholar] [CrossRef]
- Springer, E.; Dymerska, B.; Cardoso, P.L.; Robinson, S.D.; Weisstanner, C.; Wiest, R.; Schmitt, B.; Trattnig, S. Comparison of Routine Brain Imaging at 3 T and 7 T. Investig. Radiol. 2016, 51, 469–482. [Google Scholar] [CrossRef] [Green Version]
- Fortin, M.; Voss, P.; Lord, C.; Lassonde, M.; Pruessner, J.; Saint-Amour, D.; Rainville, C.; Leporé, F. Wayfinding in the blind: Hippocampal volume enhancement and spatial navigation. Brain 2020, in press. [Google Scholar]
- Maguire, E.A.; Gadian, D.G.; Johnsrude, I.S.; Good, C.D.; Ashburner, J.; Frackowiak, R.S.; Frith, C.D. Navigation-related structural change in thehippocampi of taxi drivers. Proc. Natl. Acad. Sci. USA 2000, 97, 4398–4403. [Google Scholar] [CrossRef] [Green Version]
- Pruessner, J.C.; Li, L.M.; Serles, W.; Pruessner, M.; Collins, D.L.; Kabani, N.; Lupien, S.; Evans, A.C. Volumetry of hippocampus and amygdala with high-resolution MRI andthree-dimensional analysis software: Minimizing the discrepanciesbetween laboratories. Cereb Cortex 2000, 10, 433–442. [Google Scholar] [CrossRef]
- Joseph, R. The right cerebral hemisphere: Emotion, music, visual-spatial skills, body-image, dreams, and awareness. J. Clin. Psychol. 1988, 44, 630–673. [Google Scholar] [CrossRef]
- Burgess, N.; A Maguire, E.; O’Keefe, J. The Human Hippocampus and Spatial and Episodic Memory. Neuron 2002, 35, 625–641. [Google Scholar] [CrossRef] [Green Version]
- Hartley, T.; Maguire, E.A.; Spiers, H.J.; Burgess, N. The well-worn route and the path less traveled: Distinct neural bases of route following and wayfinding in humans. Neuron 2003, 37, 878–888. [Google Scholar] [CrossRef] [Green Version]
- Iaria, G.; Petrides, M.; Dagher, A.; Pike, B.; Bohbot, V.D. Cognitive Strategies Dependent on the Hippocampus and Caudate Nucleus in Human Navigation: Variability and Change with Practice. J. Neurosci. 2003, 23, 5945–5952. [Google Scholar] [CrossRef]
- Mellet, E.; Bricogne, S.; Tzourio-Mazoyer, N.; Ghaëm, O.; Petit, L.; Zago, L.; Etard, O.; Berthoz, A.; Mazoyer, B.; Denis, M. Neural Correlates of Topographic Mental Exploration: The Impact of Route versus Survey Perspective Learning. NeuroImage 2000, 12, 588–600. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.W.; Miyasato, L.E.; Clayton, N.S. Neurobiological bases of spatial learning in the natural environment: Neurogenesis and growth in the avian and mammalian hippocampus. NeuroReport 1998, 9, 15–27. [Google Scholar] [CrossRef]
- Jiang, J.; Zhu, W.; Shi, F.; Liu, Y.; Li, J.; Qin, W.; Li, K.; Yu, C.; Jiang, T. Thick Visual Cortex in the Early Blind. J. Neurosci. 2009, 29, 2205–2211. [Google Scholar] [CrossRef] [Green Version]
- Park, H.-J.; Lee, J.D.; Kim, E.Y.; Park, B.; Oh, M.-K.; Lee, S.; Kim, J.-J. Morphological alterations in the congenital blind based on the analysis of cortical thickness and surface area. NeuroImage 2009, 47, 98–106. [Google Scholar] [CrossRef]
- Kupers, R.; Pietrini, P.; Ricciardi, E.; Ptito, M. The Nature of Consciousness in the Visually Deprived Brain. Front. Psychol. 2011, 2, 19. [Google Scholar] [CrossRef] [Green Version]
- Qin, W.; Xuan, Y.; Liu, Y.; Jiang, T.; Yu, C. Functional Connectivity Density in Congenitally and Late Blind Subjects. Cereb. Cortex 2014, 25, 2507–2516. [Google Scholar] [CrossRef] [Green Version]
- Ma, G.; Yang, D.; Qin, W.; Liu, Y.; Jiang, T.; Yu, C. Enhanced Functional Coupling of Hippocampal Sub-regions in Congenitally and Late Blind Subjects. Front. Neurosci. 2017, 10, 612. [Google Scholar] [CrossRef] [Green Version]
- Dahmani, L.; Courcot, B.; Near, J.; Patel, R.; Amaral, R.S.C.; Chakravarty, M.M.; Bohbot, V.D. Fimbria-Fornix Volume Is Associated with Spatial Memory and Olfactory Identification in Humans. Front. Syst. Neurosci. 2020, 13, 87. [Google Scholar] [CrossRef] [Green Version]
Variable | LHON (n = 15) M (SD) | HC (n = 15) M (SD) | Z Value or χ2 | p |
---|---|---|---|---|
Age (years) | 36.2 (14.9) | 33.11 (7.17) | 0.62 | 0.53 |
Education (years) | 15.53 (1.81) | 16 (0.95) | −1.02 | 0.31 |
Sex (% male) | 86 | 80 | 0.24 | 0.61 |
Mitochondrial mutation 11778G > A (%) | 100 | |||
Duration of illness from the beginning of symptoms (months) | 187.2 (159.66) |
Side | Structure Name | LHON (n = 15) M (SD) | HC (n = 15) M (SD) | Z | p |
---|---|---|---|---|---|
Right | Hippocampal tail | 572.11 | 479.68 | 2.613 | 0.009 |
Subiculum body | 217.35 | 195.62 | 2.364 | 0.018 | |
CA1 body | 128.75 | 105.62 | 3.069 | 0.002 | |
Subiculum head | 160.91 | 145.29 | 1.618 | 0.106 | |
Hippocampal fissure | 131.77 | 98.81 | 1.991 | 0.046 | |
Presubiculum head | 133.82 | 117.52 | 1.908 | 0.056 | |
CA1 head | 506.95 | 482.58 | 1.203 | 0.229 | |
Presubiculum body | 170.24 | 157.91 | 1.037 | 0.300 | |
Parasubiculum | 65.66 | 57.05 | 1.327 | 0.184 | |
Molecular layer HP head | 320.88 | 308.35 | 0.871 | 0.384 | |
Molecular layer HP body | 231.77 | 208.36 | 2.447 | 0.014 | |
GC ML DG head | 149.42 | 149.05 | −0.041 | 0.967 | |
CA3 body | 94.81 | 79.03 | 2.738 | 0.006 | |
GC ML DG body | 132.35 | 116.01 | 2.945 | 0.003 | |
CA4 head | 126.23 | 124.82 | 0.083 | 0.934 | |
CA4 body | 118.07 | 101.21 | 3.401 | 0.001 | |
Fimbria | 54.53 | 78.70 | −3.194 | 0.001 | |
CA3 head | 122.53 | 120.76 | 0.124 | 0.901 | |
HATA | 51.90 | 48.53 | 0.871 | 0.384 | |
Whole hippocampal body | 1147.87 | 1042.45 | 2.364 | 0.018 | |
Whole hippocampal head | 1638.30 | 1553.95 | 1.078 | 0.281 | |
Whole hippocampus | 3358.28 | 3176.08 | 2.281 | 0.023 | |
Left | Hippocampal tail | 541.80 | 563.74 | −0.207 | 0.836 |
Subiculum body | 216.48 | 207.24 | 1.120 | 0.263 | |
CA1 body | 113.39 | 94.82 | 1.784 | 0.074 | |
Subiculum head | 170.35 | 169.64 | 0.041 | 0.967 | |
Hippocampal fissure | 180.47 | 168.89 | 0.498 | 0.619 | |
Presubiculum head | 139.84 | 129.54 | 0.415 | 0.678 | |
CA1 head | 488.79 | 484.37 | 0.166 | 0.868 | |
Presubiculum body | 178.68 | 189.15 | −0.415 | 0.678 | |
Parasubiculum | 69.86 | 63.31 | 0.788 | 0.431 | |
Molecular layer HP head | 315.01 | 311.26 | 0.207 | 0.836 | |
Molecular layer HP body | 218.17 | 209.16 | 0.954 | 0.340 | |
GC ML DG head | 145.64 | 145.12 | 0.581 | 0.561 | |
CA3 body | 82.34 | 68.71 | 1.701 | 0.089 | |
GC ML DG body | 125.86 | 120.95 | 0.622 | 0.534 | |
CA4 head | 122.78 | 122.28 | 0.456 | 0.648 | |
CA4 body | 112.13 | 104.03 | 1.452 | 0.147 | |
Fimbria | 72.34 | 90.17 | −1.949 | 0.051 | |
CA3 head | 115.56 | 119.51 | 0.290 | 0.772 | |
HATA | 53.48 | 51.52 | 0.249 | 0.803 | |
Whole hippocampal body | 1119.39 | 1084.22 | 0.954 | 0.340 | |
Whole hippocampal head | 1621.30 | 1596.56 | 0.373 | 0.709 | |
Whole hippocampus | 3242.49 | 3144.52 | 0.373 | 0.709 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grochowski, C.; Jonak, K.; Maciejewski, M.; Stępniewski, A.; Rahnama-Hezavah, M. Alteration within the Hippocampal Volume in Patients with LHON Disease—7 Tesla MRI Study. J. Clin. Med. 2021, 10, 14. https://doi.org/10.3390/jcm10010014
Grochowski C, Jonak K, Maciejewski M, Stępniewski A, Rahnama-Hezavah M. Alteration within the Hippocampal Volume in Patients with LHON Disease—7 Tesla MRI Study. Journal of Clinical Medicine. 2021; 10(1):14. https://doi.org/10.3390/jcm10010014
Chicago/Turabian StyleGrochowski, Cezary, Kamil Jonak, Marcin Maciejewski, Andrzej Stępniewski, and Mansur Rahnama-Hezavah. 2021. "Alteration within the Hippocampal Volume in Patients with LHON Disease—7 Tesla MRI Study" Journal of Clinical Medicine 10, no. 1: 14. https://doi.org/10.3390/jcm10010014
APA StyleGrochowski, C., Jonak, K., Maciejewski, M., Stępniewski, A., & Rahnama-Hezavah, M. (2021). Alteration within the Hippocampal Volume in Patients with LHON Disease—7 Tesla MRI Study. Journal of Clinical Medicine, 10(1), 14. https://doi.org/10.3390/jcm10010014