Scapulothoracic Alignment Alterations in Patients with Walch Type B Osteoarthritis: An In Vivo Dynamic Analysis and Prospective Comparative Study
Abstract
:1. Introduction
2. Experimental Section
2.1. Subjects
2.2. Ethical Approval
2.3. Outcomes
2.4. Radiographic Evaluation
2.5. Scapula Positioning Relative to the Thorax
2.6. Motion Capture
2.7. Kinematic Analysis
2.8. Range of Motion
2.9. Statistical Analysis.
3. Results
3.1. Scapula Positioning Relative to the Thorax
3.2. Glenohumeral Motion
3.3. Scapulothoracic Motion
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Knowles, N.K.; Ferreira, L.M.; Athwal, G.S. Premorbid retroversion is significantly greater in type B2 glenoids. J. Shoulder Elbow Surg. 2016, 25, 1064–1068. [Google Scholar] [CrossRef] [PubMed]
- Raniga, S.; Knowles, N.K.; West, E.; Ferreira, L.M.; Athwal, G.S. The Walch type B humerus: Glenoid retroversion is associated with torsional differences in the humerus. J. Shoulder Elbow Surg. 2019, 28, 1801–1808. [Google Scholar] [CrossRef] [PubMed]
- Meyer, D.C.; Ernstbrunner, L.; Boyce, G.; Imam, M.A.; El Nashar, R.; Gerber, C. Posterior acromial morphology is significantly associated with posterior shoulder instability. J. Bone Joint Surg. Am. 2019, 101, 1253–1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aleem, A.W.; Chalmers, P.N.; Bechtold, D.; Khan, A.Z.; Tashjian, R.Z.; Keener, J.D. Association between rotator cuff muscle size and glenoid deformity in primary glenohumeral osteoarthritis. J. Bone Joint Surg. Am. 2019, 101, 1912–1920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knowles, N.K.; Carroll, M.J.; Keener, J.D.; Ferreira, L.M.; Athwal, G.S. A comparison of normal and osteoarthritic humeral head size and morphology. J. Shoulder Elbow Surg. 2016, 25, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Lädermann, A.; Chague, S.; Kolo, F.C.; Charbonnier, C. Kinematics of the shoulder joint in tennis players. J. Sci. Med. Sport/Sports Med. Australia 2016, 19, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Frank, R.M.; Ramirez, J.; Chalmers, P.N.; McCormick, F.M.; Romeo, A.A. Scapulothoracic anatomy and snapping scapula syndrome. Anat Res. Int. 2013, 2013, 635628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charbonnier, C.; Chague, S.; Kolo, F.C.; Chow, J.C.; Lädermann, A. A patient-specific measurement technique to model shoulder joint kinematics. Orthop. Traumatol. Surg. Res. 2014, 100, 715–719. [Google Scholar] [CrossRef] [PubMed]
- Charbonnier, C.; Chague, S.; Kolo, F.C.; Lädermann, A. Shoulder motion during tennis serve: Dynamic and radiological evaluation based on motion capture and magnetic resonance imaging. Int. J. Comput. Assist. Radiol. Surg. 2015, 10, 1289–1297. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; van der Helm, F.C.; Veeger, H.E.; Makhsous, M.; Van Roy, P.; Anglin, C.; Nagels, J.; Karduna, A.R.; McQuade, K.; Wang, X.; et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion--Part II: Shoulder, elbow, wrist and hand. J. Biomech. 2005, 38, 981–992. [Google Scholar] [CrossRef] [PubMed]
- Schneider, P.E.; Eberly, D.H. Geometric Tools for Computer Graphics (The Morgan Kaufmann Series in Computer Graphics); Morgan Kaufmann Publishers: San Francisco, CA, USA, 2002. [Google Scholar]
- Grood, E.S.; Suntay, W.J. A joint coordinate system for the clinical description of three-dimensional motions: Application to the knee. J. Biomech. Eng. 1983, 105, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Burkhart, S.S.; Morgan, C.D.; Kibler, W.B. The disabled throwing shoulder: Spectrum of pathology Part III: The SICK scapula, scapular dyskinesis, the kinetic chain, and rehabilitation. Arthroscopy 2003, 19, 641–661. [Google Scholar] [CrossRef]
- Borich, M.R.; Bright, J.M.; Lorello, D.J.; Cieminski, C.J.; Buisman, T.; Ludewig, P.M. Scapular angular positioning at end range internal rotation in cases of glenohumeral internal rotation deficit. J. Orthop. Sports Phys. Ther. 2006, 36, 926–934. [Google Scholar] [CrossRef] [PubMed]
- Ludewig, P.M.; Reynolds, J.F. The association of scapular kinematics and glenohumeral joint pathologies. J. Orthop. Sports Phys. Ther. 2009, 39, 90–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Page, P. Shoulder muscle imbalance and subacromial impingement syndrome in overhead athletes. Int. J. Sports Phys. Ther. 2011, 6, 51–58. [Google Scholar] [PubMed]
- Roche, S.J.; Funk, L.; Sciascia, A.; Kibler, W.B. Scapular dyskinesis: The surgeon’s perspective. Shoulder Elbow 2015, 7, 289–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dashottar, A.; Borstad, J. Posterior glenohumeral joint capsule contracture. Shoulder Elbow 2012, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.K.; Yang, D.S.; Kim, H.Y.; Choy, W.S. A comparison of 3D scapular kinematics between dominant and nondominant shoulders during multiplanar arm motion. Indian J. Orthop. 2013, 47, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Oyama, S.; Myers, J.B.; Wassinger, C.A.; Daniel Ricci, R.; Lephart, S.M. Asymmetric resting scapular posture in healthy overhead athletes. J. Athl. Train. 2008, 43, 565–570. [Google Scholar] [CrossRef] [Green Version]
Healthy Side (n = 7 Shoulders) | Pathologic Side (n = 7 Shoulders) | ||||||
---|---|---|---|---|---|---|---|
Mean ± SD | Median | Range | Mean ± SD | Median | Range | p-Value | |
Scapulothoracic distance (mm) | |||||||
At the trigonum spinae region | 77.7 ± 10.7 | 74.2 | (62.9–95.7) | 74.6 ± 14.9 | 67.4 | (62.5–103.5) | 0.583 |
At the inferior scapula angle region | 107.9 ± 12.3 | 108.7 | (82.1–119.6) | 102.1 ± 18.5 | 103.1 | (78.0–134.1) | 0.466 |
Healthy Side (n = 6 Shoulders) | Pathologic Side (n = 6 Shoulders) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Mean | ±SD | Median | Range | Mean | ±SD | Median | Range | p-Value * | |
Abduction (degrees) | |||||||||
Glenohumeral motion | 94 | ±11 | 95 | (80–106) | 73 | ±21 | 67 | (45–101) | 0.074 |
Scapular protraction (+)/retraction (–) | −8 | ±8 | −10 | (−17 to −7) | −6 | ±9 | −3 | (−24 to 2) | 0.763 |
Scapular medial (+)/lateral (–) rotation | −44 | ±5 | −45 | (−50 to −37) | −41 | ±10 | −45 | (−48 to −22) | 0.465 |
Scapular posterior (+)/anterior (–) tilt | −1 | ±15 | 4 | (−30 to −11) | −5 | ±22 | 4 | (−38 to 15) | 0.705 |
IR90 degrees ** | |||||||||
Glenohumeral motion (degrees) | 32 | ±10 | 27 | (22–45) | 23 | ±13 | 20 | (8–42) | 0.128 |
Scapular protraction (+)/retraction (–) | 9 | ±13 | 11 | (−11 to 23) | −7 | ±19 | −11 | (−24 to 25) | 0.321 |
Scapular medial (+)/lateral (–) rotation | −33 | ±5 | −32 | (−41 to −29) | −24 | ±6 | −27 | (−29 to −15) | 0.086 |
Scapular posterior (+)/anterior (–) tilt | −10 | ±5 | −8 | (−18 to −7) | −26 | ±8 | −23 | (−37 to −18) | 0.025 |
ER90 degrees ** | |||||||||
Glenohumeral motion | 38 | ±14 | 36 | (25–60) | 39 | ±16 | 47 | (15–53) | 0.889 |
Scapular protraction (+)/retraction (–) | −5 | ±3 | −5 | (−8 to −1) | −2 | ±13 | −1 | (−20 to 17) | 0.661 |
Scapular medial (+)/lateral (–) rotation | −37 | ±6 | −37 | (−46 to −29) | −34 | ±7 | −34 | (−40 to −25) | 0.499 |
Scapular posterior (+)/anterior (–) tilt | −4 | ±9 | 0 | (−19 to 1) | −15 | ±14 | −15 | (−32 to 7) | 0.200 |
Cross arms (degrees) | |||||||||
Scapular protraction (+)/retraction (–) | 7 | ±10 | 5 | (−4 to 26) | −4 | ±9 | −2 | (−17 to 8) | 0.209 |
Scapular medial (+)/lateral (–) rotation | −33 | ±8 | −32 | (−46 to −24) | −31 | ±4 | −31 | (−37 to −26) | 0.443 |
Scapular posterior (+)/anterior (–) tilt | −11 | ±24 | −15 | (−47 to 20) | −40 | ±9 | −43 | (−47 to −21) | 0.073 |
Hand behind back (degrees) | |||||||||
Scapular protraction (+)/retraction (–) | 28 | ±25 | 37 | (−22 to 45) | −18 | ±26 | −28 | (−34 to 35) | 0.082 |
Scapular medial (+)/lateral (–) rotation | −17 | ±7 | −17 | (−26 to −9) | −13 | ±6 | −13 | (−19 to −5) | 0.241 |
Scapular posterior (+)/anterior (–) tilt | −21 | ±6 | −20 | (−31 to −14) | −25 | ±7 | −22 | (−38 to −18) | 0.319 |
Comb hair (degrees) | |||||||||
Scapular protraction (+)/retraction (–) | −8 | ±12 | −8 | (−22 to 9) | −3 | ±3 | −3 | (−7 to 2) | 0.361 |
Scapular medial (+)/lateral (–) rotation | −42 | ±5 | −43 | (−49 to −35) | −41 | ±5 | −43 | (−46 to −34) | 0.755 |
Scapular posterior (+)/anterior (–) tilt | 0 | ±16 | 2 | (−30 to 17) | 6 | ±17 | 14 | (−26 to 17) | 0.464 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lädermann, A.; Athwal, G.S.; Bothorel, H.; Collin, P.; Mazzolari, A.; Raiss, P.; Charbonnier, C. Scapulothoracic Alignment Alterations in Patients with Walch Type B Osteoarthritis: An In Vivo Dynamic Analysis and Prospective Comparative Study. J. Clin. Med. 2021, 10, 66. https://doi.org/10.3390/jcm10010066
Lädermann A, Athwal GS, Bothorel H, Collin P, Mazzolari A, Raiss P, Charbonnier C. Scapulothoracic Alignment Alterations in Patients with Walch Type B Osteoarthritis: An In Vivo Dynamic Analysis and Prospective Comparative Study. Journal of Clinical Medicine. 2021; 10(1):66. https://doi.org/10.3390/jcm10010066
Chicago/Turabian StyleLädermann, Alexandre, George S. Athwal, Hugo Bothorel, Philippe Collin, Adrien Mazzolari, Patric Raiss, and Caecilia Charbonnier. 2021. "Scapulothoracic Alignment Alterations in Patients with Walch Type B Osteoarthritis: An In Vivo Dynamic Analysis and Prospective Comparative Study" Journal of Clinical Medicine 10, no. 1: 66. https://doi.org/10.3390/jcm10010066
APA StyleLädermann, A., Athwal, G. S., Bothorel, H., Collin, P., Mazzolari, A., Raiss, P., & Charbonnier, C. (2021). Scapulothoracic Alignment Alterations in Patients with Walch Type B Osteoarthritis: An In Vivo Dynamic Analysis and Prospective Comparative Study. Journal of Clinical Medicine, 10(1), 66. https://doi.org/10.3390/jcm10010066