Therapeutical Management and Drug Safety in Mitochondrial Diseases—Update 2020
Abstract
:1. Introduction on Mitochondrial Diseases
2. Safety of Drug Use in MDs
3. Management of Myopathy and Neuropathy: Therapeutic Strategies in Skeletal Muscle and Peripheral Neuron Involvement
3.1. Myopathy
3.2. Neuropathy
3.3. New Potential Primary Mitochondrial Myopathy (PMM) Treatment
4. Management and Treatment of Patients with Central Nervous System Involvement
4.1. Seizures and Epilepsy
4.2. Stroke-Like Episodes
4.3. Hearing Loss
4.4. Visual Loss
4.5. Parkinsonism and Movement Disorders
4.6. Anaesthesia
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Gorman, G.S.; Schaefer, A.M.; Ng, Y.; Gomez, N.; Blakely, E.L.; Alston, C.L.; Feeney, C.; Horvath, R.; Yu-Wai-Man, P.; Chinnery, P.F.; et al. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann. Neurol. 2015, 77, 753–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giles, R.E.; Blanc, H.; Cann, H.M.; Wallace, D.C. Maternal inheritance of human mitochondrial DNA. Proc. Natl. Acad. Sci. USA 1980, 77, 6715–6719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, J.B.; Chinnery, P.F. The dynamics of mitochondrial DNA heteroplasmy: Implications for human health and disease. Nat. Rev. Gene 2015, 16, 530–542. [Google Scholar] [CrossRef] [PubMed]
- Lake, N.J.; Compton, A.G.; Rahman, S.; Thorburn, D.R. Leigh syndrome: One disorder, more than 75 monogenic causes. Ann. Neurol. 2016, 79, 190–203. [Google Scholar] [CrossRef]
- DiMauro, S.; Schon, E.A. Mitochondrial respiratory-chain diseases. N. Engl. J. Med. 2003, 348, 2656–2668. [Google Scholar] [CrossRef]
- Parker, W.D.; Filley, C.M.; Parks, J.K. Cytochrome oxidase deficiency in Alzheimer’s disease. Neurology 1990, 40, 1302–1303. [Google Scholar] [CrossRef]
- Cadonic, C.; Sabbir, M.G.; Albensi, B.C. Mechanisms of Mitochondrial Dysfunction in Alzheimer’s Disease. Mol. Neurobiol. 2016, 53, 6078–6090. [Google Scholar] [CrossRef]
- Dimmock, D.P.; Lawlor, M.W. Presentation and Diagnostic Evaluation of Mitochondrial Disease. Pediatr. Clin. N. Am. 2017, 64, 161–171. [Google Scholar] [CrossRef] [Green Version]
- Lyseng-Williamson, K.A. Idebenone: A Review in Leber’s Hereditary Optic Neuropathy. Drugs 2016, 76, 805–813. [Google Scholar] [CrossRef]
- Klopstock, T.; Yu-Wai-Man, P.; Dimitriadis, K.; Rouleau, J.; Heck, S.; Bailie, M.; Atawan, A.; Chattopadhyay, S.; Schubert, M.; Garip, A.; et al. A randomized placebo-controlled trial of idebenone in Leber’s hereditary optic neuropathy. Brain 2011, 134, 2677–2686. [Google Scholar] [CrossRef]
- Peragallo, J.H.; Newman, N.J. Is there treatment for leber hereditary optic neuropathy? Curr. Opin. Ophthalmol. 2015, 26, 450–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guy, J.; Feuer, W.J.; Davis, J.L.; Porciatti, V.; Gonzalez, P.J.; Koilkonda, R.D.; Yuan, H.; Hauswirth, W.W.; Lam, B.L. Gene Therapy for Leber Hereditary Optic Neuropathy: Low- and Medium-Dose Visual Results. Ophthalmology 2017, 124, 1621–1634. [Google Scholar] [CrossRef] [PubMed]
- Salviati, L.; Trevisson, E.; Doimo, M.; Navas, P. Primary Coenzyme Q10 Deficiency; University of Washington: Seattle, WA, USA, 2017. [Google Scholar]
- de Vries, M.C.; Brown, D.A.; Allen, M.E.; Bindoff, L.; Gorman, G.S.; Karaa, A.; Keshavan, N.; Lamperti, C.; McFarland, R.; Ng, Y.S.; et al. Safety of drug use in patients with a primary mitochondrial disease: An international Delphi-based consensus. J. Inherit. Metab. Dis. 2020, 43, 800–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Augustin, K.; Khabbush, A.; Williams, S.; Eaton, S.; Orford, M.; Cross, J.H.; Heales, S.J.R.; Walker, M.C.; Williams, R.S.B. Mechanisms of action for the medium-chain triglyceride ketogenic diet in neurological and metabolic disorders. Lancet Neurol. 2018, 17, 84–93. [Google Scholar] [CrossRef]
- Jones, C.N.; Miller, C.; Tenenbaum, A.; Spremulli, L.L.; Saada, A. Antibiotic effects on mitochondrial translation and in patients with mitochondrial translational defects. Mitochondrion 2009, 9, 429–437. [Google Scholar] [CrossRef] [PubMed]
- McMillan, S.S.; King, M.; Tully, M.P. How to use the nominal group and Delphi techniques. Int. J. Clin. Pharm. 2016, 38, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Guan, M.X. Mitochondrial 12S rRNA mutations associated with aminoglycoside ototoxicity. Mitochondrion 2011, 11, 237–245. [Google Scholar] [CrossRef]
- Wolf, N.I.; Rahman, S.; Schmitt, B.; Taanman, J.; Duncan, A.J.; Harting, I.; Wohlrab, G.; Ebinger, F.; Rating, D.; Bast, T. Status epilepticus in children with Alpers’ disease caused by POLG1 mutations: EEG and MRI features. Epilepsia 2009, 50, 1596–1607. [Google Scholar] [CrossRef]
- Stacpoole, P.W.; Kerr, D.S.; Barnes, C.; Bunch, S.T.; Carney, P.R.; Fennell, E.M.; Felitsyn, N.M.; Gilmore, R.L.; Greer, M.; Henderson, G.N.; et al. Controlled clinical trial of dichloroacetate for treatment of congenital lactic acidosis in children. Pediatrics 2006, 117, 1519–1531. [Google Scholar] [CrossRef] [Green Version]
- Barshop, B.A.; Naviaux, R.K.; McGowan, K.A.; Levine, F.; Nyhan, W.L.; Loupis-Geller, A.; Haas, R.H. Chronic treatment of mitochondrial disease patients with dichloroacetate. Mol. Genet. Metab. 2004, 83, 138–149. [Google Scholar] [CrossRef]
- Ticci, C.; Sicca, F.; Ardissone, A.; Bertini, E.; Carelli, V.; Diodato, D.; di Vito, L.; Filosto, M.; la Morgia, C.; Lamperti, C.; et al. Mitochondrial epilepsy: A cross-sectional nationwide Italian survey. Neurogenetics 2020, 21, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Ng, Y.S.; Bindoff, L.A.; Gorman, G.S.; Horvath, R.; Klopstock, T.; Mancuso, M.; Martikainen, M.H.; Mcfarland, R.; Nesbitt, V.; Pitceathly, R.D.S.; et al. Consensus-based statements for the management of mitochondrial stroke-like episodes. Wellcome Open Res. 2020, 4, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalakas, M.C. Peripheral neuropathy and antiretroviral drugs. J. Peripher. Nerv. Syst. 2001, 6, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Martikainen, M.H. Clinical, genetic, and radiological features of extrapyramidal movement disorders in mitochondrial disease. JAMA Neurol. 2016, 73, 668–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujimoto, C.; Yamasoba, T. Mitochondria-targeted antioxidants for treatment of hearing loss: A systematic review. Antioxidants 2019, 8, 109. [Google Scholar] [CrossRef] [Green Version]
- Parikh, S.; Goldstein, A.; Karaa, A.; Koenig, M.K.; Anselm, I.; Brunel-Guitton, C.; Christodoulou, J.; Cohen, B.H.; Dimmock, D.; Enns, G.M.; et al. Patient care standards for primary mitochondrial disease: A consensus statement from the mitochondrial medicine society. Genet. Med. 2017, 19, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Tarnopolsky, M.A.; Roy, B.D.; MacDonald, U.R. A randomized, controlled trial of creatine monohydrate in patients with mitochondrial cytopathies. Muscle Nerve 1997, 20, 1502–1509. [Google Scholar] [CrossRef]
- Rodriguez, M.C.; MacDonald, J.R.; Mahoney, D.J.; Parise, G.; Beal, M.F.; Tarnopolsky, M.A. Beneficial effects of creatine, CoQ10, and lipoic acid in mitochondrial disorders. Muscle Nerve 2007, 35, 235–242. [Google Scholar] [CrossRef]
- Kaufmann, P.; Engelstad, K.; Wei, Y.; Jhung, S.; Sano, M.C.; Shungu, D.C.; Millar, W.S.; Hong, X.; Gooch, C.L.; Mao, X. Dichloroacetate causes toxic neuropathy in MELAS: A randomized, controlled clinical trial. Neurology 2006, 66, 324–330. [Google Scholar] [CrossRef]
- Jeppesen, T.D.; Schwartz, M.; Olsen, D.B.; Wibrand, F.; Krag, T.; Duno, M.; Hauerslev, S.; Vissing, J. Aerobic training is safe and improves exercise capacity in patients with mitochondrial myopathy. Brain 2006, 129, 3402–3412. [Google Scholar] [CrossRef] [Green Version]
- de Barcelos, P.; Emmanuele, V.; Hirano, M. Advances in primary mitochondrial myopathies. Curr. Opin. Neurol. 2019, 32, 715–721. [Google Scholar] [CrossRef] [PubMed]
- Haas, R.H. The evidence basis for coenzyme Q therapy in oxidative phosphorylation disease. Mitochondrion 2007, 7, S136–S145. [Google Scholar] [CrossRef] [PubMed]
- Parikh, S.; Saneto, R.; Falk, M.J.; Anselm, I.; Cohen, B.H.; Haas, R. A modern approach to the treatment of mitochondrial disease. Curr. Treat. Options Neurol. 2009, 11, 414–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ormazabal, A.; Casado, M.; Molero-Luis, M.; Montoya, J.; Rahman, S.; Aylett, S.; Hargreaves, I.; Heales, S.; Artuch, R. Can folic acid have a role in mitochondrial disorders? Drug Discov. Today 2015, 20, 1349–1354. [Google Scholar] [CrossRef]
- Koga, Y.; Akita, Y.M.D.P.; Nishioka, J.; Yatsuga, S.; Povalko, N.; Tanabe, Y.M.D.P.; Fujimoto, S.; Matsuishi, T. L-arginine improves the symptoms of strokelike episodes in MELAS. Neurology 2005, 64, 710–712. [Google Scholar] [CrossRef]
- Karaa, A.; Kriger, J.; Grier, J.; Holbert, A.; Thompson, J.L.P.; Parikh, S.; Hirano, M. Mitochondrial disease patients’ perception of dietary supplements’ use. Mol. Genet. Metab. 2016, 119, 100–108. [Google Scholar] [CrossRef] [Green Version]
- Gorman, G.S.; Chinnery, P.F.; DiMauro, S.; Hirano, M.; Koga, Y.; McFarland, R.; Suomalainen, A.; Thorburn, D.R.; Zeviani, M.; Turnbull, D.M. Mitochondrial diseases. Nat. Rev. Dis. Prim. 2016, 2, 1–22. [Google Scholar] [CrossRef]
- Tarnopolsky, M. Exercise testing as a diagnostic entity in mitochondrial myopathies. Mitochondrion 2004, 4, 529–542. [Google Scholar] [CrossRef]
- Olsen, R.K.J.; Olpin, S.E.; Andresen, B.S.; Miedzybrodzka, Z.H.; Pourfarzam, M.; Merinero, B.; Frerman, F.E.; Beresford, M.W.; Dean, J.C.S.; Cornelius, N.; et al. ETFDH mutations as a major cause of riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency. Brain 2007, 130, 2045–2054. [Google Scholar] [CrossRef]
- El-Hattab, W.; Zarante, A.M.; Almannai, M.; Scaglia, F. Therapies for mitochondrial diseases and current clinical trials. Mol. Genet. Metab. 2017, 122, 1–9. [Google Scholar] [CrossRef]
- Domínguez-González, C.; Madruga-Garrido, M.; Mavillard, F.; Garone, C.; Aguirre-Rodriguez, F.J.; Donati, M.A.; Kleinsteuber, K.; Marti, I.; Martin-Hernandez, E.; Morealejo-Aycinena, J.P.; et al. Deoxynucleoside Therapy for Thymidine Kinase 2–Deficient Myopathy. Ann. Neurol. 2019, 86, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Schirris, T.J.J.; Renkema, G.H.; Ritschel, T.; Voermans, N.C.; Bilos, A.; van Engelen, B.G.M.; Brandt, U.; Koopman, W.J.H.; Beyrath, J.D.; Rodenburg, R.J.; et al. Statin-induced myopathy is associated with mitochondrial complex III inhibition. Cell Metab. 2015, 22, 399–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karaa, H.R.; Goldstein, A.; Vockley, J.; Weaver, W.D.; Cohen, B.H. Randomized dose-escalation trial of elamipretide in adults with primary mitochondrial myopathy. Neurology 2018, 90, E1212–E1221. [Google Scholar] [CrossRef] [PubMed]
- Siegel, M.P.; Kruse, S.E.; Percival, J.M.; Goh, J.; White, C.C.; Hopkins, H.C.; Kavanagh, T.J.; Szeto, H.H.; Rabinovitch, P.S.; Marcinek, D.J. Mitochondrial-targeted peptide rapidly improves mitochondrial energetics and skeletal muscle performance in aged mice. Aging Cell 2013, 12, 763–771. [Google Scholar] [CrossRef] [Green Version]
- Madsen, K.L.; Buch, A.E.; Cohen, B.H.; Falk, M.J.; Goldsberry, A.; Goldstein, A.; Karaa, A.; Koenig, M.K.; Muraresku, C.C.; Meyer, C.; et al. Safety and efficacy of omaveloxolone in patients with mitochondrial myopathy: MOTOR trial. Neurology 2020, 94, e687–e698. [Google Scholar] [CrossRef]
- Taivassalo, T.; Jensen, T.D.; Kennaway, N.; DiMauro, S.; Vissing, J.; Haller, R.G. The spectrum of exercise tolerance in mitochondrial myopathies: A study of 40 patients. Brain 2003, 126, 413–423. [Google Scholar] [CrossRef]
- Mancuso, M.; McFarland, R.; Klopstock, T.; Hirano, M.; Artuch, R.; Bertini, E.; Bindoff, L.; Carelli, V.; Gorman, G.; Horvath, R.; et al. International Workshop: Outcome measures and clinical trial readiness in primary mitochondrial myopathies in children and adults, Consensus recommendations, 16–18 November 2016, Rome, Italy. Neuromuscul. Disord. 2017, 27, 1126–1137. [Google Scholar] [CrossRef] [Green Version]
- Montes, J.; McDermott, M.P.; Martens, W.B.; Dunaway, S.; Glanzman, A.M.; Riley, S.; Quigley, J.; Montgomery, M.J.; Sproule, D.; Tawil, R. Six-minute walk test demonstrates motor fatigue in spinal muscular atrophy. Neurology 2010, 74, 833–838. [Google Scholar] [CrossRef]
- Bernsen, P.L.J.A.; Gabreëls, F.J.M.; Ruitenbeek, W.; Hamburger, H.L. Treatment of complex I deficiency with riboflavin. J. Neurol. Sci. 1993, 118, 181–187. [Google Scholar] [CrossRef]
- Bugiani, M.; Lamantea, E.; Invernizzi, F.; Moroni, I.; Bizzi, A.; Zeviani, M.; Uziel, G. Effects of riboflavin in children with complex II deficiency. Brain Dev. 2006, 28, 576–581. [Google Scholar] [CrossRef]
- Tarnopolsky, M.A.; Parise, G. Direct measurement of high-energy phosphate compounds in patients with neuromuscular disease. Muscle Nerve 1999, 22, 1228–1233. [Google Scholar] [CrossRef]
- Moroni, M.; Bugiani, A.; Bizzi, G.; Castelli, E.; Lamantea, G.U. Cerebral white matter involvement in children with mitochondrial encephalopathies. Neuropediatrics 2002, 33, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Borchert, A.; Wilichowski, E.; Hanefeld, F. Supplementation with creatine monohydrate in children with mitochondrial encephalomyopathies. Muscle Nerve 1999, 22, 1299–1300. [Google Scholar] [CrossRef]
- Mancuso, M.; Orsucci, D.; Angelini, C.; Bertini, E.; Carelli, V.; Comi, G.P.; Federico, A.; Minetti, C.; Moggio, M.; Mongini, T.; et al. Mitochondrial neuropathies’: A survey from the large cohort of the Italian Network. Neuromuscul. Disord. 2016, 26, 272–276. [Google Scholar] [CrossRef]
- Rahman, S. Mitochondrial disease and epilepsy. Dev. Med. Child. Neurol. 2012, 54, 397–406. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.C.; Lee, Y.M.; Kim, H.D.; Lee, J.S.; Slama, A. Safe and effective use of the ketogenic diet in children with epilepsy and mitochondrial respiratory chain complex defects. Epilepsia 2007, 48, 82–88. [Google Scholar] [CrossRef]
- Lee, Y.M.; Kang, H.C.; Lee, J.S.; Kim, S.H.; Kim, E.Y.; Lee, S.K.; Slama, A.; Kim, H.D. Mitochondrial respiratory chain defects: Underlying etiology in various epileptic conditions. Epilepsia 2008, 49, 685–690. [Google Scholar] [CrossRef]
- Mancuso, M.; Gruosso, F.; Aravindhan, V. MELAS|MedLink Neurology. Available online: https://www.medlink.com/article/melas (accessed on 29 December 2020).
- Minamoto, H.; Kawabata, K.; Okuda, B.; Shibuya, N.; Tachibana, H.; Sugita, M.; Goto, Y.; Nishino, I.; Nonaka, I. Mitochondrial encephalomyopathy with elderly onset of stroke-like episodes. Intern. Med. 1996, 35, 991–995. [Google Scholar] [CrossRef] [Green Version]
- Kokotas, H.; Petersen, M.B.; Willems, P.J. Mitochondrial deafness. Clin. Genet. 2007, 71, 379–391. [Google Scholar] [CrossRef]
- Birch-Machin, M.A. Mitochondria-targeted antioxidants. FASEB J. 2015, 29, 4766–4771. [Google Scholar] [CrossRef] [Green Version]
- Ojano-Dirain, P.; Antonelli, P.J.; Le Prell, C.G. Mitochondria-targeted antioxidant mitoq reduces gentamicin-induced ototoxicity. Otol. Neurotol. 2014, 35, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Tate, D.; Antonelli, P.J.; Hannabass, K.R.; Dirain, C.O. Mitochondria-Targeted Antioxidant Mitoquinone Reduces Cisplatin-Induced Ototoxicity in Guinea Pigs. Otolaryngol. Head Neck Surg. 2017, 156, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Grönlund, M.A. Ophthalmological findings in children and young adults with genetically verified mitochondrial disease. Br. J. Ophthalmol. 2010, 94, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Traboulsi, E.I.; Parikh, S. Ophthalmological findings in 74 patients with mitochondrial disease. Ophthalmic Genet. 2017, 38, 67–69. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z. Dyslipidemia in retinal metabolic disorders. EMBO Mol. Med. 2019, 11. [Google Scholar] [CrossRef] [PubMed]
- Eells, J.T. Mitochondrial dysfunction in the aging retina. Biology 2019, 8, 31. [Google Scholar] [CrossRef] [Green Version]
- Kowluru, R.A.; Mishra, M. Therapeutic targets for altering mitochondrial dysfunction associated with diabetic retinopathy. Exp. Opin. Ther. Targets 2018, 22, 233–245. [Google Scholar] [CrossRef]
- Wu, M.Y.; Yiang, G.T.; Lai, T.T.; Li, C.J. The oxidative stress and mitochondrial dysfunction during the pathogenesis of diabetic retinopathy. Oxid. Med. Cell. Longev. 2018, 2018. [Google Scholar] [CrossRef]
- Miller, J.; Cascio, M.A.; Rosca, M.G. Diabetic retinopathy: The role of mitochondria in the neural retina and microvascular disease. Antioxidants 2020, 9, 905. [Google Scholar] [CrossRef]
- Feuer, W.J. Gene therapy for leber hereditary optic neuropathy initial results. Ophthalmology 2016, 123, 558–570. [Google Scholar] [CrossRef] [Green Version]
- Anheim, M. Movement disorders in mitochondrial diseases. Rev. Neurol. 2016, 172, 524–529. [Google Scholar] [CrossRef]
- Morgan, P.G.; Hoppel, C.L.; Sedensky, M. Mitochondrial Defects and Anesthetic Sensitivity. J. Am. Soc. Anesthesiol. 2002, 96, 1268–1270. [Google Scholar] [CrossRef] [PubMed]
- Rafique, M.B.; Cameron, S.D.; Khan, Q.; Biliciler, S.; Zubair, S. Anesthesia for children with mitochondrial disorders: A national survey and review. J. Anesth. 2013, 27, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, M.; Orsucci, D.; Filosto, M.; Simoncini, C.; Siciliano, G. Drugs and mitochondrial diseases: 40 queries and answers. Exp. Opin. Pharm. 2012, 13, 527–543. [Google Scholar] [CrossRef] [PubMed]
- Slone, J.; Huang, T. The special considerations of gene therapy for mitochondrial diseases. NPJ Genom. Med. 2020, 5. [Google Scholar] [CrossRef] [Green Version]
- Tachibana, M.; Kuno, T.; Yaegashi, N. Mitochondrial replacement therapy and assisted reproductive technology: A paradigm shift toward treatment of genetic diseases in gametes or in early embryos. Reprod. Med. Biol. 2018, 17, 421–433. [Google Scholar] [CrossRef] [Green Version]
- Gammage, P.A. Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo. Nat. Med. 2018, 24, 1691–1695. [Google Scholar] [CrossRef]
Drug (Classes). | Safe to Use? (Recommendations) | References |
---|---|---|
Adrenocorticotropic hormone | Yes | [20,21] |
Aminoglycosides | Contraindicated in homoplasmic m.1555A>G and m.1494C>T mutations | [18] |
Antiepileptic drugs (AEDs) | ||
Gabapentin | Yes | [22] |
Lacosamide | Yes | [23] |
Lamotrigine | Yes | [22] |
Levetiracetam (LEV) | Yes | [22] |
Phenobarbital | Yes | [22] |
Phenytoin | Yes | [23] |
Topiramate | Yes | [22] |
Valproic acid | Contraindicated in POLG * mutations | [19] |
Vigabatrin | Yes | [22] |
Zonisamide | Yes | [22] |
Antivirals | ||
Didanosine | No: may cause neuropathy | [24] |
Fialuridine | No: may cause neuropathy or myopathy and lactic acidosis | [24] |
Lamivudine | No: may cause neuropathy | [24] |
Stavudine | No: may cause neuropathy or myopathy and lactic acidosis | [24] |
Zalcitabine | No: may cause neuropathy | [24] |
Zidovudine | No: may cause myopathy | [24] |
Baclofen | Yes | [25] |
Benzodiadepine (i.e., midazolam) | Yes | [23] |
Carbamazepine | Yes | [14] |
Cisplatin | Caution: may precipitate the development of hearing loss | [26] |
Corticosteroids | Caution: may exacerbate myopathy if chronically used | [27] |
Dichloroacetate (DCA) | Caution: causes peripheral nerve toxicity in mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) | [28,29,30] |
Dietary supplements | ||
(Phospho)Creatine | Yes | [31,32,33,34] |
CoQ10 (ubiquinone and ubiquinol) | Yes | [33,34] |
Folic acid | Yes | [35] |
l-Arginine | Yes | [36] |
l-Carnitine | Yes | [34] |
Lipoic acid | Yes | [29,37] |
Riboflavin (vit. B2) | Yes | [38,39,40,41] |
Enalapril | Yes | [14] |
General anaesthetic (i.e., propofol) | Generally considered safe | [23] |
Haloperidol | Yes | [14] |
Idebenone | Yes | [7,8] |
Metformin | Yes | [27] |
Neuromuscular blocking agents | Not recommended in patients with myopathic phenotypes | |
Oxcarbazepine | Yes | [14] |
Paracetamol | Yes | [14] |
Pyrimidine deoxynucleoside and deoxynucleotides | Yes | [42] |
Statins | Caution: polymorphisms of uridine 5′-diphospho-glucuronosyltransferases (UGTs) and CIII could be predisposing factors in statin-induced myopathies | [43] |
Elamipretide (experimental) | Yes | [44,45] |
Omaveloxolone (experimental) | Yes | [46] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gruosso, F.; Montano, V.; Simoncini, C.; Siciliano, G.; Mancuso, M. Therapeutical Management and Drug Safety in Mitochondrial Diseases—Update 2020. J. Clin. Med. 2021, 10, 94. https://doi.org/10.3390/jcm10010094
Gruosso F, Montano V, Simoncini C, Siciliano G, Mancuso M. Therapeutical Management and Drug Safety in Mitochondrial Diseases—Update 2020. Journal of Clinical Medicine. 2021; 10(1):94. https://doi.org/10.3390/jcm10010094
Chicago/Turabian StyleGruosso, Francesco, Vincenzo Montano, Costanza Simoncini, Gabriele Siciliano, and Michelangelo Mancuso. 2021. "Therapeutical Management and Drug Safety in Mitochondrial Diseases—Update 2020" Journal of Clinical Medicine 10, no. 1: 94. https://doi.org/10.3390/jcm10010094
APA StyleGruosso, F., Montano, V., Simoncini, C., Siciliano, G., & Mancuso, M. (2021). Therapeutical Management and Drug Safety in Mitochondrial Diseases—Update 2020. Journal of Clinical Medicine, 10(1), 94. https://doi.org/10.3390/jcm10010094