Chronic Critical Illness and PICS Nutritional Strategies
Abstract
:1. Introduction
2. Protein Supplements
3. Specific Amino Acids
4. Omega 3 Fatty Acids (FA) and Specialized Pro-Resolving Mediator (SPMs) Supplementation
5. Probiotics
6. Anabolic Agents
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Rosenthal, M.; Gabrielli, A.; Moore, F. The evolution of nutritional support in long term ICU patients: From multisystem organ failure to persistent inflammation immunosuppression catabolism syndrome. Minerva Anestesiol. 2016, 82, 84–96. [Google Scholar] [PubMed]
- Girard, K.; Raffin, T.A. The chronically critically ill: To save or let die? Respir. Care 1985, 30, 339–347. [Google Scholar] [PubMed]
- Kahn, J.M.; Le, T.; Angus, D.C.; Cox, C.E.; Hough, C.L.; White, D.B.; Yende, S.; Carson, S. The epidemiology of chronic critical illness in the United States. Crit. Care Med. 2015, 43, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Iwashyna, T.J.; Cooke, C.R.; Wunsch, H.; Kahn, J.M. Population burden of long-term survivorship after severe sepsis in older Americans. J. Am. Geriatr. Soc. 2012, 60, 1070–1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwashyna, T.J.; Hodgson, C.L.; Pilcher, D.; Bailey, M.; van Lint, A.; Chavan, S.; Belomo, R. Timing of onset and burden of persistent critical illness in Australia and New Zealand: A retrospective, population-based, observational study. Lancet Respir. Med. 2016, 4, 566–573. [Google Scholar] [CrossRef]
- Moore, F.A.; Moore, E.E.; Billiar, T.R.; Vodovotz, Y.; Banerjee, A.; Moldawer, L.L. The role of NIGMS P50 sponsored team science in our understanding of multiple organ failure. J. Trauma Acute Care Surg. 2017, 83, 520–531. [Google Scholar] [CrossRef]
- Horn, D.L.; Bettcher, L.F.; Navarro, S.L.; Pascua, V.; Neto, F.C.; Cuschieri, J.; Raftery, D.; O′Keefe, G.E. Persistent metabolomic alterations characterize chronic critical illness after severe trauma. J. Trauma Acute Care Surg. 2021, 90, 35–45. [Google Scholar] [CrossRef]
- Jeschke, M.G.; Gauglitz, G.G.; Finnerty, C.C.; Kraft, R.; Mlcak, R.P.; Herndon, D.N. Survivors versus nonsurvivors postburn: Differences in inflammatory and hypermetabolic trajectories. Ann. Surg. 2014, 259, 814–823. [Google Scholar] [CrossRef] [Green Version]
- Vanzant, E.L.; Lopez, C.M.; Ozrazgat–Baslanti, T.; Ungaro, R.; Davis, R.; Cuenca, A.G.; Bihorac, A.; Leeuwenburgh, C.; Lanz, J.; Baker, H.V.; et al. Persistent inflammation, immunosuppression, and catabolism syndrome after severe blunt trauma. J. Trauma Acute Care Surg. 2014, 76, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Gentile, L.F.; Cuenca, A.G.; Efron, P.A.; Ang, D.; Bihorac, A.; McKinley, B.A.; Moldawer, L.L.; Moore, F.A. Persistent inflammation and immunosuppression: A common syndrome and new horizon for surgical intensive care. J. Trauma Acute Care Surg. 2012, 72, 1491–1501. [Google Scholar] [CrossRef] [Green Version]
- Loftus, T.J.; Mira, J.C.; Ozrazgat-Baslanti, T.; Ghita, G.L.; Wang, Z.; Stortz, J.A.; Brumback, B.A.; Bihorac, A.; Segal, M.S.; Anton, S.D.; et al. Sepsis and Critical Illness Research Center investigators: Protocols and standard operating procedures for a prospective cohort study of sepsis in critically ill surgical patients. BMJ Open 2017, 7, e015136. [Google Scholar] [CrossRef] [PubMed]
- Gardner, A.K.; Ghita, G.L.; Wang, Z.; Ozrazgat-Baslanti, T.; Raymond, S.L.; Mankowski, R.T.; Brumback, B.A.; Efron, P.A.; Bihorac, A.; Moore, F.A.; et al. The Development of Chronic Critical Illness Determines Physical Function, Quality of Life, and Long-Term Survival Among Early Survivors of Sepsis in Surgical ICUs. Crit. Care Med. 2019, 47, 566–573. [Google Scholar] [CrossRef]
- Brakenridge, S.C.; Efron, P.A.; Cox, M.C.; Stortz, J.A.; Hawkins, R.B.; Ghita, G.; Gardner, A.; Mohr, A.; Anton, S.D.; Moldawer, L.L.; et al. Current Epidemiology of Surgical Sepsis: Discordance Between Inpatient Mortality and 1-year Outcomes. Ann. Surg. 2019, 270, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Mankowski, R.T.; Anton, S.D.; Ghita, G.L.; Brumback, B.; Cox, M.C.; Mohr, A.M.; Leeuwenburgh, C.; Moldawer, L.L.; Efron, P.A.; Brakenridge, S.S.; et al. Older Sepsis Survivors Suffer Persistent Disability Burden and Poor Long-Term Survival. J. Am. Geriatr. Soc. 2020, 68, 1962–1969. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Liao, X.L.; He, X.L.; Xie, Z.C.; Lu, M.Z.; Kang, Y. Predictors of Long-term Mortality and Health Related Quality of Life for Elderly Patients with Sepsis. Sichuan Da Xue Xue Bao Yi Xue Ban 2018, 49, 140–144. [Google Scholar] [PubMed]
- Honselmann, K.C.; Buthut, F.; Heuwer, B.; Karadag, S.; Sayk, F.; Kurowski, V.; Thiele, H.; Droemann, D.; Wolfrum, S. Long-term mortality and quality of life in intensive care patients treated for pneumonia and/or sepsis: Predictors of mortality and quality of life in patients with sepsis/pneumonia. J. Crit. Care 2015, 30, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, S.; Ruokonen, E.; Varpula, T.; Ala-Kokko, T.I.; Pettila, V.; Finnsepsis Study Group. Long-term outcome and quality-adjusted life years after severe sepsis. Crit. Care Med. 2009, 37, 1268–1274. [Google Scholar] [CrossRef]
- Winters, B.D.; Eberlein, M.; Leung, J.; Needham, D.M.; Pronovost, P.J.; Sevransky, J.E. Long-term mortality and quality of life in sepsis: A systematic review. Crit. Care Med. 2010, 38, 1276–1283. [Google Scholar] [CrossRef]
- Wong, H.R.; Reeder, R.W.; Banks, R.; Berg, R.A.; Meert, K.L.; Hall, M.W.; McQuillen, P.S.; Mourani, P.M.; Chima, R.S.; Sorenson, S.; et al. Biomarkers for Estimating Risk of Hospital Mortality and Long-Term Quality-of-Life Morbidity After Surviving Pediatric Septic Shock: A Secondary Analysis of the Life After Pediatric Sepsis Evaluation Investigation. Pediatr. Crit. Care Med. 2021, 22, 8–15. [Google Scholar] [CrossRef]
- Puntillo, K.A. Pain experiences of intensive care unit patients. Heart Lung 1990, 19, 526–533. [Google Scholar]
- Puntillo, K.A.; White, C.; Morris, A.B.; Perdue, S.T.; Stanik-Hutt, J.; Thompson, C.L.; Wild, L.R. Patients’ perceptions and responses to procedural pain: Results from Thunder Project II. Am. J. Crit Care 2001, 10, 238–251. [Google Scholar] [CrossRef] [PubMed]
- Desbiens, N.A.; Mueller-Rizner, N.; Connors, A.F., Jr.; Wenger, N.S.; Lynn, J. The symptom burden of seriously ill hospitalized patients. SUPPORT Investigators. Study to Understand Prognoses and Preferences for Outcome and Risks of Treatment. J. Pain Symptom Manag. 1999, 17, 248–255. [Google Scholar] [CrossRef]
- Desbiens, N.A.; Wu, A.W.; Broste, S.K.; Wenger, N.S.; Connors, A.F., Jr.; Lynn, J.; Yasui, Y.; Phillips, R.P.; Fulkerson, W. Pain and satisfaction with pain control in seriously ill hospitalized adults: Findings from the SUPPORT research investigations. For the SUPPORT investigators. Study to Understand Prognoses and Preferences for Outcomes and Risks of Treatment. Crit. Care Med. 1996, 24, 1953–1961. [Google Scholar] [CrossRef]
- Nelson, J.E.; Meier, D.E.; Litke, A.; Natale, D.A.; Siegel, R.E.; Morrison, R.S. The symptom burden of chronic critical illness. Crit. Care Med. 2004, 32, 1527–1534. [Google Scholar] [CrossRef] [PubMed]
- Nelson, J.E.; Meier, D.E.; Oei, E.J.; Nierman, D.M.; Senzel, R.S.; Manfredi, P.L.; Davis, S.M.; Morrison, R.S. Self-reported symptom experience of critically ill cancer patients receiving intensive care. Crit. Care Med. 2001, 29, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Nelson, J.E.; Mercado, A.F.; Camhi, S.L.; Tandon, N.; Wallenstein, S.; August, G.I.; Morrison, R.S. Communication about chronic critical illness. Arch. Intern. Med. 2007, 167, 2509–2515. [Google Scholar] [CrossRef] [Green Version]
- Carson, S.S.; Bach, P.B. The epidemiology and costs of chronic critical illness. Crit. Care Clin. 2002, 18, 461–476. [Google Scholar] [CrossRef]
- Carson, S.S.; Cox, C.E.; Holmes, G.M.; Howard, A.; Carey, T.S. The changing epidemiology of mechanical ventilation: A population-based study. J. Intensive Care Med. 2006, 21, 173–182. [Google Scholar] [CrossRef]
- Carson, S.S.; Garrett, J.; Hanson, L.C.; Lanier, J.; Govert, J.; Brake, M.C.; Landucci, D.L.; Cox, C.E.; Carey, T.S. A prognostic model for one-year mortality in patients requiring prolonged mechanical ventilation. Crit. Care Med. 2008, 36, 2061–2069. [Google Scholar] [CrossRef] [Green Version]
- Van den Berghe, G. Neuroendocrine pathobiology of chronic critical illness. Crit. Care Clin. 2002, 18, 509–528. [Google Scholar] [CrossRef]
- Douglas, S.L.; Daly, B.J.; Gordon, N.; Brennan, P.F. Survival and quality of life: Short-term versus long-term ventilator patients. Crit. Care Med. 2002, 30, 2655–2662. [Google Scholar] [CrossRef] [PubMed]
- Daly, B.J.; Douglas, S.L.; Gordon, N.H.; Kelley, C.G.; O’Toole, E.; Montenegro, H.; Higgins, P. Composite outcomes of chronically critically ill patients 4 months after hospital discharge. Am. J. Crit. Care 2009, 18, 56–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carson, S.S.; Bach, P.B.; Brzozowski, L.; Leff, A. Outcomes after long-term acute care. An analysis of 133 mechanically ventilated patients. Am. J. Respir. Crit. Care Med. 1999, 159, 1568–1573. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, M.D.; Bala, T.; Wang, Z.; Loftus, T.; Moore, F. Chronic Critical Illness Patients Fail to Respond to Current Evidence-Based Intensive Care Nutrition Secondarily to Persistent Inflammation, Immunosuppression, and Catabolic Syndrome. JPEN J. Parenter. Enter. Nutr. 2020, 44, 1237–1249. [Google Scholar] [CrossRef]
- McClave, S.A.; Taylor, B.E.; Martindale, R.G.; Warren, M.M.; Johnson, D.R.; Braunschweig, C.; McCarthy, M.S.; Davanos, E.; Rice, T.W.; Cresci, G.A.; et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J. Parenter. Enter. Nutr. 2016, 40, 159–211. [Google Scholar] [CrossRef] [PubMed]
- Preiser, J.-C.; Ichai, C.; Orban, J.-C.; Groeneveld, A.B.J. Metabolic response to the stress of critical illness. Br. J. Anaesth. 2014, 113, 945–954. [Google Scholar] [CrossRef] [Green Version]
- Plank, L.D.; Hill, G.L. Sequential metabolic changes following induction of systemic inflammatory response in patients with severe sepsis or major blunt trauma. World J. Surg. 2000, 24, 630–638. [Google Scholar] [CrossRef]
- Monk, D.N.; Plank, L.D.; Franch-Arcas, G.; Finn, P.J.; Streat, S.J.; Hill, G.L. Sequential changes in the metabolic response in critically injured patients during the first 25 days after blunt trauma. Ann. Surg 1996, 223, 395–405. [Google Scholar] [CrossRef]
- Plank, L.D.; Connolly, A.B.; Hill, G.L. Sequential changes in the metabolic response in severely septic patients during the first 23 days after the onset of peritonitis. Ann. Surg. 1998, 228, 146–158. [Google Scholar] [CrossRef]
- Weijs, P.J.; Cynoberm, L.; DeLeggem, M.; Kreymann, G.; Wernerman, J.; Wolfe, R.R. Proteins and amino acids are fundamental to optimal nutrition support in critically ill patients. Crit. Care 2014, 18, 591. [Google Scholar] [CrossRef] [Green Version]
- Weijs, P.J.; Looijaard, W.G.; Beishuizen, A.; Girbes, A.R.; Oudemans-van Straaten, H.M. Early high protein intake is associated with low mortality and energy overfeeding with high mortality in non-septic mechanically ventilated critically ill patients. Crit. Care 2014, 18, 701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allingstrup, M.J.; Esmailzadeh, N.; Wilkens Knudsen, A.; Espersen, K.; Hartvig Jensen, T.; Wiis, J.; Perner, A.; Kondrup, J. Provision of protein and energy in relation to measured requirements in intensive care patients. Clin. Nutr. 2012, 31, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Compher, C.; Chittams, J.; Sammarco, T.; Nicolo, M.; Heyland, D.K. Greater Protein and Energy Intake May Be Associated with Improved Mortality in Higher Risk Critically Ill Patients: A Multicenter, Multinational Observational Study. Crit. Care Med. 2017, 45, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Deutz, N.E.; Wolfe, R.R. Is there a maximal anabolic response to protein intake with a meal? Clin. Nutr. 2013, 32, 309–313. [Google Scholar] [CrossRef] [Green Version]
- Hurt, R.T.; McClave, S.A.; Martindale, R.G.; Gautier, J.B.O.; Coss-Bu, J.A.; Dickerson, R.N.; Heyland, D.K.; Hoffer, L.J.; Moore, F.A.; Morris, C.R.; et al. Summary Points and Consensus Recommendations from the International Protein Summit. Nutr. Clin. Pract. 2017, 32, S142–S151. [Google Scholar] [CrossRef] [Green Version]
- Rondanelli, M.; Faliva, M.; Monteferrario, F.; Peroni, G.; Repaci, E.; Allieri, F.; Perna, S. Novel insights on nutrient management of sarcopenia in elderly. Biomed. Res. Int. 2015, 2015, 524948. [Google Scholar] [CrossRef]
- Barbul, A.; Rettura, G.; Levenson, S.M.; Seifter, E. Arginine: A thymotropic and wound–healing promoting agent. Surg. Forum 1977, 28, 101–103. [Google Scholar]
- Barbul, A.; Sisto, D.A.; Wasserkrug, H.L.; Efron, G. Arginine stimulates lymphocyte immune response in healthy human beings. Surgery 1981, 90, 244–251. [Google Scholar]
- Barbul, A.; Wasserkrug, H.L.; Sisto, D.A.; Seifter, E.; Rettura, G.; Levenson, S.M.; Efron, G. Thymic stimulatory actions of arginine. JPEN J. Parenter. Enter. Nutr. 1980, 4, 446–449. [Google Scholar] [CrossRef]
- Barbul, A. Arginine and immune function. Nutrition 1990, 6, 53–58. [Google Scholar]
- Barbul, A. Arginine: Biochemistry, physiology, and therapeutic implications. JPEN J. Parenter. Enter. Nutr. 1986, 10, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Barbul, A.; Fishel, R.S.; Shimazu, S.; Wasserkrug, H.L.; Yoshimura, N.N.; Tao, R.C.; Efron, G. Intravenous hyperalimentation with high arginine levels improves wound healing and immune function. J. Surg. Res. 1985, 38, 328–334. [Google Scholar] [CrossRef]
- Albina, J.E.; Mills, C.D.; Barbul, A.; Thirkill, C.E.; Henry, W.L., Jr.; Mastrofrancesco, B.; Caldwell, M.D. Arginine metabolism in wounds. Am. J. Physiol. 1988, 254, E459–E467. [Google Scholar] [CrossRef]
- Alexander, J.W.; Supp, D.M. Role of Arginine and Omega-3 Fatty Acids in Wound Healing and Infection. Adv. Wound Care 2014, 3, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Bansal, V.; Ochoa, J.B. Arginine availability, arginase, and the immune response. Curr. Opin. Clin. Nutr. Metab. Care 2003, 6, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Barbul, A.; Lazarou, S.A.; Efron, D.T.; Wasserkrug, H.L.; Efron, G. Arginine enhances wound healing and lymphocyte immune responses in humans. Surgery 1990, 108, 331–336, discussion 36–7. [Google Scholar] [PubMed]
- Zhu, X.; Pribis, J.P.; Rodriguez, P.C.; Morris, S.M.; Vodovotz, Y.; Billiar, T.R.; Ochoa, J.B. The central role of arginine catabolism in T-cell dysfunction and increased susceptibility to infection after physical injury. Ann. Surg. 2014, 259, 171–178. [Google Scholar] [CrossRef]
- Daly, J.M.; Reynolds, J.; Thom, A.; Kinsley, L.; Dietrick-Gallagher, M.; Shod, J.; Ruggieri, B. Immune and metabolic effects of arginine in the surgical patient. Ann. Surg. 1988, 208, 512–523. [Google Scholar] [CrossRef]
- Morris, S.M., Jr. Arginine: Master and commander in innate immune responses. Sci. Signal. 2010, 3, pe27. [Google Scholar] [CrossRef]
- Taheri, F.; Ochoa, J.B.; Faghiri, Z.; Culotta, K.; Park, H.J.; Lan, M.S.; Zea, A.H.; Ochoa, A.C. L-Arginine regulates the expression of the T-cell receptor zeta chain (CD3zeta) in Jurkat cells. Clin. Cancer Res. 2001, 7 (Suppl. S3), S958–S965. [Google Scholar]
- Rodriguez, P.C.; Zea, A.H.; Culotta, K.S.; Zabaleta, J.; Ochoa, J.B.; Ochoa, A.C. Regulation of T cell receptor CD3zeta chain expression by L-arginine. J. Biol. Chem. 2002, 277, 21123–21129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez, P.C.; Zea, A.H.; DeSalvo, J.; Culotta, K.S.; Zabaleta, J.; Quiceno, D.G.; Ochoa, J.B.; Ochoa, A.C. L-arginine consumption by macrophages modulates the expression of CD3 zeta chain in T lymphocytes. J. Immunol. 2003, 171, 1232–1239. [Google Scholar] [CrossRef] [Green Version]
- Zea, A.H.; Rodriguez, P.C.; Culotta, K.S.; Hernandez, C.P.; DeSalvo, J.; Ochoa, J.B.; Park, H.-J.; Zabaleta, J.; Ochoa, A.C. L-Arginine modulates CD3zeta expression and T cell function in activated human T lymphocytes. Cell Immunol. 2004, 232, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Makarenkova, V.P.; Bansal, V.; Matta, B.M.; Perez, L.A.; Ochoa, J.B. CD11b+/Gr-1+ myeloid suppressor cells cause T cell dysfunction after traumatic stress. J. Immunol. 2006, 176, 2085–2094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scumpia, P.O.; Delano, M.J.; Kelly–Scumpia, K.M.; Weinstein, J.S.; Wynn, J.L.; Winfield, R.D.; Xia, C.; Chung, C.S.; Ayala, A.; Atkinson, M.A.; et al. Treatment with GITR agonistic antibody corrects adaptive immune dysfunction in sepsis. Blood 2007, 110, 3673–3681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popovic, P.J.; Zeh, H.J., 3rd; Ochoa, J.B. Arginine and immunity. J. Nutr. 2007, 137 (Suppl. S2), S1681–S1686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenthal, M.D.; Vanzant, E.L.; Martindale, R.G.; Moore, F.A. Evolving paradigms in the nutritional support of critically ill surgical patients. Curr. Probl. Surg. 2015, 52, 147–182. [Google Scholar] [CrossRef]
- Cerra, F.B.; Siegel, J.H.; Coleman, B.; Border, J.R.; McMenamy, R.R. Septic autocannibalism. A failure of exogenous nutritional support. Ann. Surg. 1980, 192, 570–580. [Google Scholar] [CrossRef]
- Cynober, L.; de Bandt, J.P.; Moinard, C. Leucine and citrulline: Two major regulators of protein turnover. World Rev. Nutr. Diet 2013, 105, 97–105. [Google Scholar]
- Holecek, M. Beta-hydroxy-beta-methylbutyrate supplementation and skeletal muscle in healthy and muscle-wasting conditions. J. Cachexia Sarcopenia Muscle 2017, 8, 529–541. [Google Scholar] [CrossRef] [PubMed]
- Puthucheary, Z.A.; Rawal, J.; McPhail, M.; Connolly, B.; Ratnayake, G.; Chan, P.; Hopkins, N.S.; Phadke, R.; Dew, T.; Sidhu, P.S.; et al. Acute skeletal muscle wasting in critical illness. JAMA 2013, 310, 1591–1600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenthal, M.D.; Rosenthal, C.M.; Moore, F.A.; Martindale, R.G. Persistent, Immunosuppression, Inflammation, Catabolism Syndrome and Diaphragmatic Dysfunction. Curr. Pulmonol. Rep. 2017, 6, 54–57. [Google Scholar] [CrossRef]
- Bar-Peled, L.; Sabatini, D.M. Regulation of mTORC1 by amino acids. Trends Cell Biol. 2014, 24, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Curi, R.; Newsholme, P.; Procopio, J.; Lagranha, C.; Gorjao, R.; Pithon-Curi, T.C. Glutamine, gene expression, and cell function. Front. Biosci. 2007, 12, 344–357. [Google Scholar] [CrossRef] [Green Version]
- Sacks, G.S. Effect of glutamine-supplemented parenteral nutrition on mortality in critically ill patients. Nutr. Clin. Pract. 2011, 26, 44–47. [Google Scholar] [CrossRef]
- Ziegler, T.R.; Bazargan, N.; Leader, L.M.; Martindale, R.G. Glutamine and the gastrointestinal tract. Curr. Opin. Clin. Nutr. Metab. Care 2000, 3, 355–362. [Google Scholar] [CrossRef]
- Griffiths, R.D. Glutamine: Establishing clinical indications. Curr. Opin. Clin. Nutr. Metab. Care 1999, 2, 177–182. [Google Scholar] [CrossRef]
- Cetinbas, F.; Yelken, B.; Gulbas, Z. Role of glutamine administration on cellular immunity after total parenteral nutrition enriched with glutamine in patients with systemic inflammatory response syndrome. J. Crit. Care 2010, 25, 661.e1–661.e6. [Google Scholar] [CrossRef]
- Kim, H. Glutamine as an immunonutrient. Yonsei Med. J. 2011, 52, 892–897. [Google Scholar] [CrossRef] [Green Version]
- Calder, P.C.; Yaqoob, P. Understanding omega-3 polyunsaturated fatty acids. Postgrad. Med. 2009, 121, 148–157. [Google Scholar] [CrossRef]
- Calder, P. Limited impact of omega-3 fatty acids in patients with multiple cardiovascular risk factors. Evid. Based Med. 2014, 19, 18. [Google Scholar] [CrossRef]
- Weitz, D.; Weintraub, H.; Fisher, E.; Schwartzbard, A.Z. Fish oil for the treatment of cardiovascular disease. Cardiol. Rev. 2010, 18, 258–263. [Google Scholar] [CrossRef] [Green Version]
- Wilczynska-Kwiatek, A.; Bargiel-Matusiewicz, K.; Lapinski, L. Asthma, allergy, mood disorders, and nutrition. Eur. J. Med. Res. 2009, 14 (Suppl. S4), 248–254. [Google Scholar] [CrossRef] [Green Version]
- Turner, D.; Shah, P.S.; Steinhart, A.H.; Zlotkin, S.; Griffiths, A.M. Maintenance of remission in inflammatory bowel disease using omega-3 fatty acids (fish oil): A systematic review and meta-analyses. Inflamm. Bowel Dis. 2011, 17, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Singer, P.; Shapiro, H.; Theilla, M.; Anbar, R.; Singer, J.; Cohen, J. Anti-inflammatory properties of omega-3 fatty acids in critical illness: Novel mechanisms and an integrative perspective. Intensive Care Med. 2008, 34, 1580–1592. [Google Scholar] [CrossRef] [PubMed]
- Pradelli, L.; Klek, S.; Mayer, K.; Alsaleh, A.J.O.; Rosenthal, M.D.; Heller, A.R.; Muscaritoli, M. Omega-3 fatty acid-containing parenteral nutrition in ICU patients: Systematic review with meta-analysis and cost-effectiveness analysis. Crit. Care 2020, 24, 634. [Google Scholar] [CrossRef] [PubMed]
- Pradelli, L.; Klek, S.; Mayer, K.; Alsaleh, A.J.O.; Rosenthal, M.D.; Heller, A.R.; Muscaritoli, M. Cost-Effectiveness of Parenteral Nutrition Containing Omega-3 Fatty Acids in Hospitalized Adult Patients From 5 European Countries and the US. JPEN J. Parenter. Enter. Nutr. 2020. [Google Scholar] [CrossRef] [PubMed]
- Pradelli, L.; Mayer, K.; Klek, S.; Alsaleh, A.J.O.; Clark, R.; Rosenthal, M.D.; Heller, A.R.; Muscaritoli, M. Omega-3 fatty acid-containing parenteral nutrition in hospitalized patients: Systematic Review With Meta-Analysis and Trial Sequential Analysis. JPEN J. Parenter. Enteral. Nutr. 2020, 44, 44–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pittet, Y.K.; Berger, M.M.; Pluess, T.-T.; Voirol, P.; Revelly, J.-P.; Tappy, L.; Chiolero, R.L. Blunting the response to endotoxin in healthy subjects: Effects of various doses of intravenous fish oil. Intensive Care Med. 2010, 36, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Wischmeyer, P. Nutritional pharmacology in surgery and critical care: “You must unlearn what you have learned”. Curr. Opin. Anaesthesiol. 2011, 24, 381–388. [Google Scholar] [CrossRef]
- Massaro, M.; Scoditti, E.; Carluccio, M.A.; Campana, M.C.; De Caterina, R. Omega-3 fatty acids, inflammation and angiogenesis: Basic mechanisms behind the cardioprotective effects of fish and fish oils. Cell Mol. Biol. 2010, 56, 59–82. [Google Scholar]
- Yusof, H.M.; Cawood, A.L.; Ding, R.; Williams, J.A.; Napper, F.L.; Shearman, C.P.; Grimble, R.F.; Payne, S.P.K.; Calder, P.C. Limited impact of 2 g/day omega-3 fatty acid ethyl esters (Omacor(R)) on plasma lipids and inflammatory markers in patients awaiting carotid endarterectomy. Mar. Drugs 2013, 11, 3569–3581. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Omega-3 polyunsaturated fatty acids and inflammatory processes: Nutrition or pharmacology? Br. J. Clin. Pharmacol. 2013, 75, 645–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heller, A.R.; Rössler, S.; Litz, R.J.; Stehr, S.N.; Heller, S.C.; Koch, R.; Koch, T. Omega-3 fatty acids improve the diagnosis-related clinical outcome. Crit. Care Med. 2006, 34, 972–979. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, M.D.; Patel, J.; Staton, K.; Martindale, R.G.; Moore, F.A.; Upchurch, G.R., Jr. Can Specialized Pro-Resolving Mediators Deliver Benefit Originally Expected from Fish Oil? Curr. Gastroenterol. Rep. 2018, 20, 40. [Google Scholar] [CrossRef] [PubMed]
- Serhan, C.N.; Krishnamoorthy, S.; Recchiuti, A.; Chiang, N. Novel anti-inflammatory-pro-resolving mediators and their receptors. Curr. Top. Med. Chem. 2011, 11, 629–647. [Google Scholar] [CrossRef] [PubMed]
- Serhan, C.N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 2014, 510, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Calder, P.C. Eicosapentaenoic and docosahexaenoic acid derived specialised pro-resolving mediators: Concentrations in humans and the effects of age, sex, disease and increased omega-3 fatty acid intake. Biochimie 2020, 178, 105–123. [Google Scholar] [CrossRef]
- Williams, M.D.; Ha, C.Y.; Ciorba, M.A. Probiotics as therapy in gastroenterology: A study of physician opinions and recommendations. J. Clin. Gastroenterol. 2010, 44, 631–636. [Google Scholar] [CrossRef] [Green Version]
- Alverdy, J.; Zaborina, O.; Wu, L. The impact of stress and nutrition on bacterial-host interactions at the intestinal epithelial surface. Curr. Opin. Clin. Nutr. Metab. Care 2005, 8, 205–209. [Google Scholar] [CrossRef]
- Alverdy, J.C. During critical illness the gut does not pass the acid test. Crit. Care 2012, 16, 150. [Google Scholar] [CrossRef] [Green Version]
- Carlisle, E.M.; Poroyko, V.; Caplan, M.S.; Alverdy, J.; Morowitz, M.J.; Liu, D. Murine gut microbiota and transcriptome are diet dependent. Ann. Surg. 2013, 257, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Zaborina, O.; Holbrook, C.; Zaborin, A.; Alverdy, J. Depletion of intestinal phosphate after operative injury activates the virulence of P aeruginosa causing lethal gut-derived sepsis. Surgery 2008, 144, 189–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaborina, O.; Zaborin, A.; Romanowski, K.; Babrowski, T.; Alverdy, J. Host stress and virulence expression in intestinal pathogens: Development of therapeutic strategies using mice and C. elegans. Curr. Pharm. Des. 2011, 17, 1254–1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alverdy, J.; Holbrook, C.; Rocha, F.; Seiden, L.; Wu, R.L.; Musch, M.; Chang, E.; Ohman, D.; Suh, S. Gut-derived sepsis occurs when the right pathogen with the right virulence genes meets the right host: Evidence for in vivo virulence expression in Pseudomonas aeruginosa. Ann. Surg. 2000, 232, 480–489. [Google Scholar] [CrossRef]
- Babrowski, T.; Romanowski, K.; Fink, D.; Kim, M.; Gopalakrishnan, V.; Zaborina, O.; Alverdy, J.C. The intestinal environment of surgical injury transforms Pseudomonas aeruginosa into a discrete hypervirulent morphotype capable of causing lethal peritonitis. Surgery 2013, 153, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Laughlin, R.S.; Musch, M.W.; Hollbrook, C.J.; Rocha, F.M.; Chang, E.B.; Alverdy, J.C. The key role of Pseudomonas aeruginosa PA-I lectin on experimental gut-derived sepsis. Ann. Surg. 2000, 232, 133–142. [Google Scholar] [CrossRef]
- Bengmark, S. Bioecologic control of inflammation and infection in critical illness. Anesthesiol. Clin. 2006, 24, 299–323. [Google Scholar] [CrossRef]
- Bengmark, S. The bioecological medicine is here to stay. About microflora, synbiotics, immunity and resistance against disease. Lakartidningen 2006, 103, 293–297. [Google Scholar]
- Custodero, C.; Mankowski, R.; Lee, S.; Chen, Z.; Wu, S.; Manini, T.; Echeverri, J.H.; Sabbà, C.; Beavers, D.; Cauley, J.; et al. Evidence-based nutritional and pharmacological interventions targeting chronic low-grade inflammation in middle-age and older adults: A systematic review and meta-analysis. Aging Res. Rev. 2018, 46, 42–59. [Google Scholar] [CrossRef]
- Franceschi, C.; Campisi, J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69 (Suppl. S1), S4–S9. [Google Scholar] [CrossRef] [PubMed]
- Hart, D.W.; Herndon, D.N.; Klein, G.; Lee, S.B.; Celis, M.; Mohan, S.; Chinkes, D.L.; Wolf, S.E. Attenuation of posttraumatic muscle catabolism and osteopenia by long-term growth hormone therapy. Ann. Surg. 2001, 233, 827–834. [Google Scholar] [CrossRef] [PubMed]
- Jeschke, M.G.; Kraft, R.; Emdad, F.; Kulp, G.A.; Williams, F.N.; Herndon, D.N. Glucose control in severely thermally injured pediatric patients: What glucose range should be the target? Ann. Surg. 2010, 252, 521–527. [Google Scholar] [CrossRef] [Green Version]
- Jeschke, M.G.; Kulp, G.A.; Kraft, R.; Finnerty, C.C.; Mlcak, R.; Lee, J.O.; Herndon, D.N. Intensive insulin therapy in severely burned pediatric patients: A prospective randomized trial. Am. J. Respir. Crit. Care Med. 2010, 182, 351–359. [Google Scholar] [CrossRef]
- Porro, L.J.; Herndon, D.N.; Rodriguez, N.A.; Jennings, K.; Klein, G.L.; Mlcak, R.P.; Clayton, R.; Crites, N.N.; Hays, J.; Andersen, C.R.; et al. Five-year outcomes after oxandrolone administration in severely burned children: A randomized clinical trial of safety and efficacy. J. Am. Coll. Surg. 2012, 214, 489–502. [Google Scholar] [CrossRef] [Green Version]
- Sheffield-Moore, M.; Urban, R.J.; Wolf, S.E.; Jiang, J.; Catlin, D.H.; Herndon, D.N.; Wolfe, R.R.; Ferrando, A.A. Short-term oxandrolone administration stimulates net muscle protein synthesis in young men. J. Clin. Endocrinol. Metab. 1999, 84, 2705–2711. [Google Scholar] [CrossRef] [PubMed]
- Herndon, D.N.; Hart, D.W.; Wolf, S.E.; Chinkes, D.L.; Wolfe, R.R. Reversal of catabolism by beta-blockade after severe burns. N. Engl. J. Med. 2001, 345, 1223–1229. [Google Scholar] [CrossRef] [PubMed]
- Suman, O.E.; Spies, R.J.; Celis, M.M.; Mlcak, R.P.; Herndon, D.N. Effects of a 12-week resistance exercise program on skeletal muscle strength in children with burn injuries. J. Appl. Physiol. 2001, 91, 1168–1175. [Google Scholar] [CrossRef] [PubMed]
- Jeschke, M.G.; Chinkes, D.L.; Finnerty, C.C.; Kulp, G.; Suman, O.E.; Norbury, W.B.; Branski, L.K.; Gauglitz, G.G.; Mlcak, R.P.; Herndon, D.N. Pathophysiologic response to severe burn injury. Ann. Surg. 2008, 248, 387–401. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosenthal, M.D.; Vanzant, E.L.; Moore, F.A. Chronic Critical Illness and PICS Nutritional Strategies. J. Clin. Med. 2021, 10, 2294. https://doi.org/10.3390/jcm10112294
Rosenthal MD, Vanzant EL, Moore FA. Chronic Critical Illness and PICS Nutritional Strategies. Journal of Clinical Medicine. 2021; 10(11):2294. https://doi.org/10.3390/jcm10112294
Chicago/Turabian StyleRosenthal, Martin D., Erin L. Vanzant, and Frederick A. Moore. 2021. "Chronic Critical Illness and PICS Nutritional Strategies" Journal of Clinical Medicine 10, no. 11: 2294. https://doi.org/10.3390/jcm10112294
APA StyleRosenthal, M. D., Vanzant, E. L., & Moore, F. A. (2021). Chronic Critical Illness and PICS Nutritional Strategies. Journal of Clinical Medicine, 10(11), 2294. https://doi.org/10.3390/jcm10112294