Incidence of Herpes Zoster in HIV-Infected Patients Undergoing Antiretroviral Therapy: A Systematic Review and Meta-analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Registration
2.2. Search Strategy and Selection Criteria
2.3. Risk of Bias in Individual Studies and Data Extraction
2.4. Data Analysis
3. Results
3.1. Study Characteristics
3.2. Meta-Regression Analyses of Overall HZ Moderators
3.3. Subgroup Analyses by Sex
3.4. Subgroup Analyses by CD4 Count Level
3.5. Subgroup Segmented by ART Use
3.6. Meta-Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hope-Simpson, R.E. The nature of herpes zoster: A long-term study and a new hypothesis. Proc. R. Soc. Med. 1965, 58, 9–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchbinder, S.P.; Katz, M.H.; Hessol, N.A.; Liu, J.Y.; O’Malley, P.M.; Underwood, R.; Holmberg, S.D. Herpes zoster and human immunodeficiency virus infection. J. Infect. Dis. 1992, 166, 1153–1156. [Google Scholar] [CrossRef]
- Glesby, M.J.; Hoover, D.R.; Tan, T.; Shi, Q.; Gao, W.; French, A.L.; Toby, M.; Mary, Y.; Jack, D.; Jenny, R.; et al. Herpes zoster in women with and at risk for HIV: Data from the Women’s Interagency HIV Study. J. Acquir. Immune Defic. Syndr. 2004, 37, 1604–1609. [Google Scholar] [CrossRef] [PubMed]
- Grabar, S.; Tattevin, P.; Selinger-Leneman, H.; De La Blanchardiere, A.; De Truchis, P.; Rabaud, C.; Rey, D.; Daneluzzi, V.; Ferret, S.; Lascaux, A.-S.; et al. Incidence of Herpes Zoster in HIV-Infected Adults in the Combined Antiretroviral Therapy Era: Results From the FHDH-ANRS CO4 Cohort. Clin. Infect. Dis. 2015, 60, 1269–1277. [Google Scholar] [CrossRef] [Green Version]
- Morgan, D.; Mahe, C.; Malamba, S.; Okongo, M.; Mayanja, B.; Whitworth, J. Herpes zoster and HIV-1 infection in a rural Ugandan cohort. AIDS 2001, 15, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Veenstra, J.; Krol, A.; Van Praag, R.M.; Frissen, P.M.J.; Schellekens, P.T.; Lange, J.M.; Coutinho, R.A.; Van Der Meer, J.T. Herpes zoster, immunological deterioration and disease progression in HIV-1 infection. AIDS 1995, 9, 1153–1158. [Google Scholar] [CrossRef] [PubMed]
- Low, A.; Gavriilidis, G.; Larke, N.; B-Lajoie, M.R.; Drouin, O.; Stover, J.; Muhe, L.; Easterbrook, P. Incidence of opportunistic infections and the impact of antiretroviral therapy among HIV-infected adults in low- and middle-income countries: A systematic review and meta-analysis. Clin. Infect. Dis. Off. Publ. Infect Dis. Soc. Am. 2016, 62, 1595–1603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blank, L.J.; Polydefkis, M.J.; Moore, R.D.; Gebo, K.A. Herpes Zoster among Persons Living With HIV in the Current Antiretroviral Therapy Era. JAIDS J. Acquir. Immune Defic. Syndr. 2012, 61, 203–207. [Google Scholar] [CrossRef] [Green Version]
- Gebo, A.K.; Kalyani, R.; Moore, R.D.; Polydefkis, M.J. The Incidence of, Risk Factors for, and Sequelae of Herpes Zoster among HIV Patients in the Highly Active Antiretroviral Therapy Era. JAIDS J. Acquir. Immune Defic. Syndr. 2005, 40, 169–174. [Google Scholar] [CrossRef]
- Moanna, A.; Rimland, D. Decreasing Incidence of Herpes Zoster in the Highly Active Antiretroviral Therapy Era. Clin. Infect. Dis. 2013, 57, 122–125. [Google Scholar] [CrossRef] [Green Version]
- Kawai, K.; Yawn, B.P. Risk Factors for Herpes Zoster: A Systematic Review and Meta-analysis. Mayo Clin. Proc. 2017, 92, 1806–1821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinchinat, S.; Cebrián-Cuenca, A.M.; Bricout, H.; Johnson, R.W. Similar herpes zoster incidence across Europe: Results from a systematic literature review. BMC Infect. Dis. 2013, 13, 170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hung, C.-C.; Hsiao, C.-F.; Wang, J.-L.; Chen, M.-Y.; Hsieh, S.-M.; Sheng, W.-H.; Chang, S.-C. Herpes zoster in HIV-1-infected patients in the era of highly active antiretroviral therapy: A prospective observational study. Int. J. STD AIDS 2005, 16, 673–676. [Google Scholar] [CrossRef]
- Jansen, K.; Haastert, B.; Michalik, C.; Guignard, A.; Esser, S.; Dupke, S.; Plettenberg, A.; Skaletz-Rorowski, A.; Brockmeyer, N.H. Incidence and risk factors of herpes zoster among hiv-positive patients in the german competence network for HIV/AIDS (KompNet): A cohort study analysis. BMC Infect. Dis. 2013, 13, 372. [Google Scholar] [CrossRef] [PubMed]
- Kawai, K.; Hawkins, C.A.; Hertzmark, E.; Francis, J.M.; Sando, D.; Muya, A.N.; Ulenga, N.; Fawzi, W.W. Impact of Antiretroviral Therapy on the Risk of Herpes Zoster among Human Immunodeficiency Virus-Infected Individuals in Tanzania. Am. J. Trop. Med. Hyg. 2018, 98, 396–401. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Wang, C.; Glesby, M.J.; D’Souza, G.; French, A.; Minkoff, H.; Maurer, T.; Karim, R.; Young, M. Effects of highly active antiretroviral therapy and its adherence on herpes zoster incidence: A longitudinal cohort study. AIDS Res. Ther. 2013, 10, 34. [Google Scholar] [CrossRef] [Green Version]
- Vanhems, P.; Voisin, L.; Gayet-Ageron, A.; Trepo, C.; Cotte, L.; Peyramond, D.; Chidiac, C.; Touraine, J.-L.; Livrozet, J.-M.; Fabry, J.; et al. The Incidence of Herpes Zoster Is Less Likely Than Other Opportunistic Infections to Be Reduced by Highly Active Antiretroviral Therapy. JAIDS J. Acquir. Immune Defic. Syndr. 2005, 38, 111–113. [Google Scholar] [CrossRef]
- Domingo, P.; Torres, O.H.; Ris, J.; Vazquez, G. Herpes zoster as an immune reconstitution disease after initiation of combination antiretroviral therapy in patients with human immunodeficiency virus type-1 infection. Am. J. Med. 2001, 110, 605–609. [Google Scholar] [CrossRef]
- Jevtovic, D.; Salemović, D.; Ranin, J.; Pešić, I.; Žerjav, S.; Djurkovic-Djakovic, O. The prevalence and risk of immune restoration disease in HIV-infected patients treated with highly active antiretroviral therapy. HIV Med. 2005, 6, 140–143. [Google Scholar] [CrossRef]
- A Benson, C.; Andersen, J.W.; Macatangay, B.J.C.; Mailliard, R.B.; Rinaldo, C.R.; Read, S.; Bozzolo, D.R.; Purdue, L.; Jennings, C.; Keefer, M.C.; et al. Safety and Immunogenicity of Zoster Vaccine Live in Human Immunodeficiency Virus–Infected Adults With CD4+ Cell Counts > 200 Cells/mL Virologically Suppressed on Antiretroviral Therapy. Clin. Infect. Dis. 2018, 67, 1712–1719. [Google Scholar] [CrossRef]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Critical Appraisal Skills Programme: CASP, Cohort Study Checklist. 2018. Available online: https://casp-uk.net/casp-tools-checklists/ (accessed on 6 February 2020).
- Borenstein, M.; Hedges, L.V.; Higgins, J.T.; Rothstein, H. Regression in Meta-Analysis. 2015. Available online: https://www.meta-analysis.com/downloads/MRManual.pdf (accessed on 28 June 2020).
- Shearer, K.; Maskew, M.; Ajayi, T.; Berhanu, R.; Majuba, P.; Sanne, I.; Fox, M.P. Incidence and predictors of herpes zoster among antiretroviral therapy-naïve patients initiating HIV treatment in Johannesburg, South Africa. Int. J. Infect. Dis. 2014, 23, 56–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aidala, A.A.; Wilson, M.G.; Shubert, V. Gogolishvili, D.; Globerman, J.; Rueda, S.; Bozack, A.K.; Caban, M.; Rourke, S.B. Housing Status, Medical Care, and Health Outcomes among People Living With HIV/AIDS: A Systematic Review. Am. J. Public Health 2016, 106, e1–e23. [Google Scholar] [CrossRef]
- Young, S.; Wheeler, A.C.; McCoy, S.I.; Weiser, S.D. A Review of the Role of Food Insecurity in Adherence to Care and Treatment among Adult and Pediatric Populations Living with HIV and AIDS. AIDS Behav. 2014, 18, S505–S515. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.-Y.; Suaya, J.A.; Li, Q.; Galindo, C.M.; Misurski, D.; Burstin, S.; Levin, M.J. Incidence of herpes zoster in patients with altered immune function. Infection 2014, 42, 325–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization (WHO): Antiretroviral Therapy (ART) Coverage among All Age Groups. 2020. Available online: https://www.who.int/gho/hiv/epidemic_response/ART/en/ (accessed on 6 February 2020).
- Cohen, M.S.; Chen, Y.Q.; McCauley, M.; Gamble, T.; Hosseinipour, M.C.; Kumarasamy, N.; Hakim, J.G.; Kumwenda, J.; Grinsztejn, B.; Pilotto, J.H.; et al. Prevention of HIV-1 Infection with Early Antiretroviral Therapy. N. Engl. J. Med. 2011, 365, 493–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bricout, H.; Haugh, M.; Olatunde, O.; Prieto, R.G. Herpes zoster-associated mortality in Europe: A systematic review. BMC Public Health 2015, 15, 466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parra-Sánchez, M. Genital ulcers caused by herpes simplex virus. Enferm. Infecc. Microbiol. Clin. 2019, 37, 260–264. [Google Scholar] [CrossRef] [PubMed]
- Alliegro, M.B.; Dorrucci, M.; Pezzotti, P.; Rezza, G.; Sinicco, A.; Barbanera, M.; Castelli, F.; Tarantini, G.; Petrucci, A. Herpes zoster and progression to AIDS in a cohort of individuals who seroconverted to human immunodeficiency virus. Italian HIV Seroconversion Study. Clin. Infect. Dis. 1996, 23, 990–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Looker, K.J.; Elmes, J.A.; Gottlieb, S.L.; Schiffer, J.T.; Vickerman, P.; Turner, K.M.; Boily, M.C. Effect of HSV-2 infection on subsequent HIV acquisition: An updated systematic review and meta-analysis. Lancet Infect. Dis. 2017, 17, 1303–1316. [Google Scholar] [CrossRef] [Green Version]
- Kawai, K.; Yawn, B.P.; Wollan, P.; Harpaz, R. Increasing incidence of herpes zoster over a 60-year period from a population-based study. Clin. Infect. Dis. 2016, 63, 221–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keating, G.M. Shingles (Herpes Zoster) Vaccine (Zostavax®): A Review in the Prevention of Herpes Zoster and Postherpetic Neuralgia. BioDrugs 2016, 30, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Berkowitz, E.M.; Moyle, G.; Stellbrink, H.J.; Schürmann, D.; Kegg, S.; Stoll, M.; el Idrissi, M.; Oostvogels, L.; Heineman, T.C.; for the Zoster-015 HZ/su Study Group; et al. Safety and immunogenicity of an adjuvanted herpes zoster subunit candidate vaccine in HIV-infected adults: A phase 1/2a randomized, placebo-controlled study. J. Infect. Dis. 2015, 211, 1279–1287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratnam, I.; Chiu, C.; Kandala, N.B.; Easterbrook, P.J. Incidence and risk factors for immune reconstitution inflammatory syndrome in an ethnically diverse HIV type 1-infected cohort. Clin. Infect. Dis. 2006, 42, 418–427. [Google Scholar] [CrossRef] [PubMed]
Author/Year | Country/ Observational Years | Mean Age (years) | Gender (% men) | Participants | N (n/n) Without/with ART | Incidence | Associated Factors |
---|---|---|---|---|---|---|---|
Domingo et al., (2001) [18] | Spain/ 2 years | 38 (33–43) | 75% | 316 HIV infected | 0/316 | 9/100 PYs | CD8 count increase |
Vanhems et al., (2005) [17] | French/ 18 years | 32 | 88% | 441 HIV infected | 57/384 | 2.1/100 PYs | |
Hung et al., (2005) [13] | Taiwan/ 9 years | 35 (15–83) | 91.9% | 716 HIV infected | 175/541 | 5.67/100 PYs | CD4 count < 50 cells/mm3 |
Gebo et al., (2005) [9] | U.S.A/ 4 years | 41 (23–58) | 63% | 239 HIV infected | 58/100 | 3.2/100 PYs | ART and CD4 count 50–200 cells/mm3 |
Blank et al., (2012) [8] | U.S.A/ 7 years | 39 (32–44) | 62% | 4353 HIV infected | 180/552 | 0.93/100 PYs | ART within 90 days and CD4 count |
Liu et al., (2013) [16] | U.S.A/ 8 years | 36 | 0% | 2813 HIV infected | 760/2053 | 2.5/100 PYs | ART |
Moanna, Rimland. (2013) [10] | U.S.A/ 29 years | 41.5 | 99% | 3816 HIV infected | 903/2787 | 1.0 episodes/100 PYs | CD4 count < 50 cells/mm3 and prior HZ history |
Jansen et al., (2013) [14] | German/ 25 years | 37.8 (14.1–77.3) | 58.9% | 3757 HIV infected | 326/3757 | 1.7/100 PYs | ART and CD4 count < 100 cells/mm3 |
Shearer et al., (2014) [24] | South Africa/ 7.4 years | 36.6 | 37.8% | 15,025 HIV infected | 0/15,025 | 0.74/100 PYs | CD4 count < 50 cells/mm3 and prior HZ history |
Grabar et al., (2015) [4] | French/ 19 years | 40 | 69.3% | 91,044 HIV infected | 25,822/65,222 | 0.63/100PYs | Low CD4 count, female, high HIV RNA levels, low CD4/CD8 ratio and prior AIDS |
Kawai et al., (2018) [15] | Tanzania/ 6.8 years | 35 (29–41) | 28% | 72,670 HIV infected | 29,342/43,328 | 0.37/100 PYs | CD4 count < 50 cells/mm3, older age, female and year of enrollment |
Subgroup Category | No. of Studies | RR (95% Confidence Interval) | I2 (%) | p Value |
---|---|---|---|---|
Overall HZ | 11 | 2.30 (1.56–3.05) | 99.3 | 0.001 |
Sex | ||||
Male | 6 | 0.68 (0.52–0.80) | 97.5 | 0.001 |
Female | 6 | 0.32 (0.20–0.48) | 97.5 | 0.001 |
Income | ||||
High income | 8 | 2.64 (1.62–3.65) | 99.5 | 0.001 |
Low income | 2 | 1.33 (−0.56–3.22) | 99.3 | 0.001 |
AIDS history | ||||
Yes | 4 | 0.40 (0.28–0.54) | 98.3 | 0.001 |
No | 4 | 0.60 (0.46–0.72) | 98.3 | 0.001 |
Observation years | ||||
>7 years | 5 | 2.50 (1.29–3.71) | 99.6 | 0.001 |
≤7 years | 5 | 2.24 (1.09–3.40) | 99.1 | 0.001 |
HIV risk factor | ||||
Heterosexual | 4 | 0.41 (0.31–0.52) | 76.5 | 0.005 |
IDUs | 4 | 0.35 (0.20–0.54) | 88.7 | 0.001 |
MSM | 4 | 0.32 (0.19–0.49) | 90.2 | 0.001 |
CD4 count | ||||
CD4 < 200 | 4 | 0.78 (0.55–0.91) | 95.6 | 0.001 |
CD4 > 200 | 4 | 0.21 (0.06–0.51) | 97.0 | 0.001 |
ART use | ||||
Pre-ART | 6 | 6.22 (3.59–8.85) | 99.6 | 0.001 |
Post-ART | 6 | 2.00 (1.04–2.95) | 99.2 | 0.001 |
Variable | Coefficient | Standard Error | OR (95% CI) | p Value |
---|---|---|---|---|
Sex | ||||
Female | Reference | |||
Male | 1.47 | 0.48 | 0.54–2.41 | 0.002 * |
HIV risk factor | ||||
Heterosexual | Reference | |||
IDU | −0.77 | 0.51 | −1.76–0.22 | 0.13 |
MSM | 0.19 | 0.48 | −0.76–1.13 | 0.70 |
CD4 count | ||||
CD4 > 200 | Reference | |||
CD4 < 200 | 2.45 | 0.98 | 0.53–4.38 | 0.013 * |
AIDS history | ||||
No | Reference | |||
Yes | −0.57 | 0.42 | −1.39–0.25 | 0.17 |
ART use | ||||
With ART | Reference | |||
Absence of ART | 1.06 | 0.77 | −0.44–2.56 | 0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ku, H.-C.; Tsai, Y.-T.; Konara-Mudiyanselage, S.-P.; Wu, Y.-L.; Yu, T.; Ko, N.-Y. Incidence of Herpes Zoster in HIV-Infected Patients Undergoing Antiretroviral Therapy: A Systematic Review and Meta-analysis. J. Clin. Med. 2021, 10, 2300. https://doi.org/10.3390/jcm10112300
Ku H-C, Tsai Y-T, Konara-Mudiyanselage S-P, Wu Y-L, Yu T, Ko N-Y. Incidence of Herpes Zoster in HIV-Infected Patients Undergoing Antiretroviral Therapy: A Systematic Review and Meta-analysis. Journal of Clinical Medicine. 2021; 10(11):2300. https://doi.org/10.3390/jcm10112300
Chicago/Turabian StyleKu, Han-Chang, Yi-Tseng Tsai, Sriyani-Padmalatha Konara-Mudiyanselage, Yi-Lin Wu, Tsung Yu, and Nai-Ying Ko. 2021. "Incidence of Herpes Zoster in HIV-Infected Patients Undergoing Antiretroviral Therapy: A Systematic Review and Meta-analysis" Journal of Clinical Medicine 10, no. 11: 2300. https://doi.org/10.3390/jcm10112300
APA StyleKu, H. -C., Tsai, Y. -T., Konara-Mudiyanselage, S. -P., Wu, Y. -L., Yu, T., & Ko, N. -Y. (2021). Incidence of Herpes Zoster in HIV-Infected Patients Undergoing Antiretroviral Therapy: A Systematic Review and Meta-analysis. Journal of Clinical Medicine, 10(11), 2300. https://doi.org/10.3390/jcm10112300